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Abstract

Skilled forelimb behaviors are among the most important for studying motor learning in multiple 

species including humans. This protocol describes learned forelimb tasks for mice using a two-

axis robotic manipulandum. Our device provides a highly compact adaptation of actuated planar 

two-axis arms that is simple and inexpensive to construct. This paradigm has been dominant for 

decades in primate motor neuroscience. Our device can generate arbitrary virtual movement 

tracks, arbitrary time-varying forces or arbitrary position- or velocity-dependent force patterns. We 

describe several example tasks permitted by our device, including linear movements, movement 

sequences and aiming movements. We provide the mechanical drawings and source code needed 

to assemble and control the device, and detail the procedure to train mice to use the device. Our 

software can be simply extended to allow users to program various customized movement assays. 

The device can be assembled in a few days, and the time to train mice on the tasks that we 

describe ranges from a few days to several weeks. Furthermore, the device is compatible with 

various neurophysiological techniques that require head fixation.
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Further information on research design is available in the Nature Research Reporting Summary 

linked to this article.

Introduction

Learned reaching behaviors using robotic manipulanda have long been a mainstay of motor 

neuroscience in human and nonhuman primate studies1–4, and are also used in nonmotor and 

cognitive neuroscience studies that require the measurement of motor output5. More 

recently, various rodent forelimb tasks adapting features of the reaching paradigms in 

primates have become more widely used as well6–11. Forelimb tasks in rodents allow 

convenient access to numerous models of neurological disorders. Such studies can also be 

made amenable to various genetic tools for neural perturbations, for in vivo brain imaging 

and for electrophysiology. Nevertheless, forelimb adaptations of primate reaching devices 

have not been widely available and have typically required extensive engineering expertise 

to fabricate, assemble and program12–14. In our research, we have developed a direct rodent 

adaptation of the planar two-axis robotic manipulanda used in primate research that can be 

easily and inexpensively constructed from a small number of simple parts with little 

engineering expertise needed for implementation. It is also compact enough to be 

compatible with complex microscopy and electrophysiology methodologies15,16.

Development of the approach

Our device recapitulates the capabilities of primate planar manipulanda, including a large 

workspace, arbitrary position- or velocity-dependent force patterns or constrained 

movements along arbitrary virtual tracks in the x-y plane. We also designed our device to be 

highly compact (73 mm high × 69 mm wide × 83 mm deep) so that in vivo brain microscopy 

and electrophysiology equipment can gain unobstructed access to the space around the 

animal. The design is also streamlined, requiring only five custom 3D-printed linkages and a 

single custom machined mount that can be commercially fabricated, and can thus be 

assembled with little engineering expertise.

Our design permits a wide variety of learned rodent forelimb movement assays ranging from 

simple linear reaching movements16, to movement sequences15, to a variety of forelimb 

aiming tasks, a subset of which we describe in this protocol. The key elements of the design 

are lightweight 3D-printed plastic linkages that, when assembled, allow motion with low 

inertia and friction, and little anisotropy over the planar workspace. These features are 

important for mice to learn and execute complex movement trajectories ~200 trials per 

session, due to the small size of mice and the large effects of relatively small forces on their 

paw motion. We employ the two-degree-of-freedom selective compliance (‘double 

SCARA’) design used in devices constructed for larger organisms17. This permits a large 

planar workspace (7.75 cm2), which we have found to be useful for developing tasks in 

which animals alternate between executing multiple distinct movement types (e.g., 

trajectories aimed in different directions in distinct spatial locations)15. This, in turn, allows 

the neural underpinnings of different types of forelimb movements to be distinguished in 

single sessions (e.g., by comparing the effects of neural perturbation on each movement type 

or comparing physiological recordings during each movement type)15.
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In this protocol, we first describe the manufacture and assembly of our device and provide 

the relevant mechanical drawings. We then detail the electronics used to control the device 

and the programmatic strategy for operating these electronics during behavioral experiments, 

including example code that experimenters can easily extend to program arbitrary custom 

movement assays. Finally, we summarize the procedure for training animals to learn and 

execute several example tasks.

Applications and limitations of the method

The procedures that we describe here apply to studies in which head-fixed mice execute 

skilled forelimb movements for water reward. There is no fundamental reason this device 

could not be operated by a freely moving animal, although we have not attempted such 

experiments. In addition, it is likely that the device could be used by other small animals 

such as rats. To date, however, we have not attempted rat studies. It is likely, for example, 

that because rats are larger than mice, a larger device would be needed (i.e., one capable of 

producing and withstanding larger forces). In this scenario, we anticipate that it would be 

straightforward to replace the motor/encoder units that we recommend with larger-diameter 

models. This, in turn, would require scaling up the size of the custom computer-aided design 

(CAD) parts that we provide by a corresponding amount, updating the linkage lengths in the 

LabVIEW code to ensure correct geometric transformations and updating the mechanical 

parameters used by the device controllers.

A limitation of the current design is that the force applied by the animal to the handle is not 

directly measured by a force transducer. In addition, our device does not include a touch 

sensor to sense skin contact from the animal with the handle. In this design, we sought to 

produce a device with minimal inertia and friction and highly isotropic motion across 

movement directions (achieved by the simple construction from lightweight 3D-printed 

plastics and low-inertia DC motors). We found that the addition of electronic components to 

the handle, with their associated wiring, made it very difficult to maintain the lightweight, 

low-friction, isotropic mechanical properties of the minimal design presented here. 

Nevertheless, such additional components could in principle be added to revised versions of 

our design.

Comparison with other methods

Several alternative devices for rodent forelimb assays have been described. For example, a 

common behavioral assay uses a one-dimensional lever-type device7, which is only 

appropriate for studying linear pushing or pulling movements. Alternatively, a two-degree-

of-freedom joystick-type device has also been described6. This device has been used in 

conjunction with a magnet to provide a fixed-magnitude transverse magnetic field triggered 

on the handle position. However, the lack of a true controlled force actuator output prevents 

design and application of arbitrary two-dimensional time-, position- or velocity-dependent 

forces, or arbitrary constrained trajectories.

A three-degree-of-freedom actuated manipulandum has also been described, primarily for 

assaying pulling motions in freely moving rats (ETH Pattus12–14). This device shares general 

capabilities with our device, with a few notable differences. First, the ETH device possesses 
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additional mechanisms for actuating a third degree of freedom for wrist rotation, whereas 

our device is designed solely for planar motion. Second, our device was designed for use in 

head-fixed mice to be compatible with in vivo brain microscopy and electrophysiology 

methodologies. Thus, compared to the ETH device, our design is much more compact (73 × 

69 × 83 mm versus 212 × 150 × 160 mm13) and occupies only the space ventral to the 

animal, to allow unobstructed access to the animal from above for microscopy and 

physiology. Finally, because we aimed to produce a device that could be assembled in 

neuroscience laboratories with limited mechanical engineering expertise, the construction is 

much simpler, requiring only five custom 3D-printed linkages and a single custom 

aluminum mount.

Compared to two-degree-of-freedom planar manipulanda of similar design that are used in 

human and non-human primate studies1,4,18,19, our device recapitulates the large planar 

workspace and real-time control of arbitrary time-varying and kinematic-dependent force 

patterns. One difference is that, while most primate devices also have force transducers on 

their handles, as described above, the extremely low inertia of our device makes such an 

addition difficult, to also maintain our device’s isotropic mechanical properties.

Level of expertise needed to implement the protocol

Basic engineering and programming experience are sufficient to assemble the device. 

Surgical skills are needed for head-fixation preparations, and basic animal handling 

experience is needed to train mice to perform the tasks described. For extending the 

capabilities of our example code, or for customizing the electronics, a moderate skill in 

programming in the National Instruments LabVIEW environment is needed.

Experimental design

Device mechanical assembly—The device consists of four 3D-printed plastic 

mechanical linkages: two ‘upper arm’ and two ‘lower arm’ linkages (Fig. 1a). The two lower 

linkages are connected to each other at a ‘wrist’ joint that consists of ball bearings and an 

extended shaft on which is mounted a 3D-printed plastic handle for the animal to grasp with 

its forepaw (Fig. 2a,b). Each upper and lower linkage pair is connected by an ‘elbow’ joint 

consisting of a 2-mm shaft in 2-mm ball bearings (Fig. 2c,d). Each upper arm linkage is also 

connected to one of the two motor shafts (Fig. 2e–h). The two motor-encoder units are 

affixed to a custom mounting bracket (Fig. 1b), and each motor unit has an integrated 

backshaft-mounted optical rotary encoder (Fig. 1c; Maxon Motors). We also place the 

animal in a custom 3D-printed transparent plastic tube (Fig. 1d).

The forward and inverse kinematics to move between handle cartesian coordinates and the 

shoulder rotational coordinates, as well as the Jacobian to convert from cartesian forces to 

joint torques, follow standard five-bar linkage configurations (e.g., as in ref. 17), with link 

lengths of 37 mm for the upper linkages, 31 mm for the lower linkages and 22 mm for the 

separation between the motor shafts. These transformations are all executed in the provided 

code that we describe below.
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The range of motion of the arms of the device is constrained by three M3 screws mounted at 

indexed locations on the mounting bracket (Fig. 2g). The motion limits set by these screws 

are chosen to avoid reaching the mechanical singularities associated with this design 

(beyond which there is no longer a 1:1 mapping between shoulder rotational coordinates and 

handle cartesian position). In addition, these screws define indexed locations that the robot 

can sense to locate its ‘home’ position, so that the software can determine the absolute 

rotational positions of the two shoulder joints. The fully assembled device (Fig. 1e,f; model 

available at https://grabcad.com/library/full-protocol-2) is compact enough to fit in typical in 

vivo physiology and microscopy rigs (Fig. 1g).

Control electronics—The control electronics for this device are based on the National 

Instruments (NI) cRIO (compact reconfigurable input-output) environment. This consists of 

a ‘chassis’ that contains an FPGA (field-programmable gate array) chip (Fig. 3a and 

Supplementary Fig. 1a), a personal computer (PC) running a real-time operating system 

(OS) (RT-PC; Fig. 3b and Supplementary Fig. 1b) and several modules that interface with 

the FPGA and provide the device with customizable input-output capabilities. Finally, the 

cRIO system communicates with a standard PC via universal serial bus (USB) (Fig. 3c and 

Supplementary Fig. 1c). All three devices (FPGA with input/output (I/O) modules, RT-PC 

and standard PC) are programmed and communicate through the LabVIEW programming 

environment. The system we describe here uses three modules: two motor control modules 

that monitor rotations of the optical encoder, drive the motors and read analog motor 

winding current (NI 9505); and one module that provides 32 digital input and output 

channels (NI 9403) for reading or controlling any other devices needed for in vivo behavior 

and physiology studies (Fig. 3d,e; our code implements communication with a water 

delivery solenoid, lick sensor and two microscope frame clocks).

These electronics are used to operate the device in one of two modes. In the first mode, the 

device can be sent to and held at arbitrary positions in the workspace. This is used to ‘lock’ 

the handle position (e.g., at the home position before trial start, or at the trial end position), 

as well as to return the handle from arbitrary trial end positions back to the home position. In 

the second mode, the device allows the animal to execute a forelimb movement. In this case, 

the robot applies force vectors to the handle depending on the animal’s instantaneous 

position and velocity and the trial type—i.e., for a constrained trajectory (Fig. 4b,c), the 

force needed to constrain motion to the desired track; for an aiming movement (Fig. 4f,i), no 

force or simple simulated friction. Any other arbitrary force patterns can be encoded through 

LabVIEW, as decribed below.

Control software—The electronics are programmed and operated in a hierarchy of 

controllers. Input/output operations through the modules are executed in FPGA, which 

operates on a 40 MHz clock (Fig. 3a). The FPGA also contains low-level device controllers 

(Supplementary Fig. 1a). At all times, the FPGA controls motor current (which is related by 

a scale factor to motor torque) at 10 kHz by comparing the current in the motor windings to 

the ‘desired’ current and correcting errors by varying the PWM (pulse-width-modulated) 

voltage delivered to the motor (Supplementary Fig. 1a; ‘Torque controllers’). This and the 

other controllers are ‘PID’ (proportional-integral-derivative).
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When the robot is instructed to hold a fixed specific position, an additional FGPA process is 

activated to control each motor’s rotational angle (Supplementary Fig. 1a; ‘Position 

controllers’). This position controller compares the present rotational angle of each motor to 

the desired angle (at 1 kHz), by adjusting the ‘desired current’ used in the ‘Torque 

controller’ described previously.

Above the FPGA controller is the RT-PC controller, which executes at 1 kHz (Fig. 3b). This 

software converts between the rotational positions of the encoders and the cartesian x-y 
position of the handle via the forward dynamics (joints to cartesian) and inverse dynamics 

(cartesian to joints) kinematic transformations (Supplementary Fig. 1b). It uses this 

information to operate the general ‘state machine’ of the device (Supplementary Fig. 1b). In 

our example code, device states include: ‘homing’ the device to find the positional origin, 

sending the device to a desired location via a controlled trajectory, holding position and 

allowing the animal to execute a trial. The code executed during a behavioral trial depends 

on trial type, which the experimenter sets programmatically (Supplementary Fig. 1b). The 

trial execution code consists of the following: (i) releasing the robot from the prior position-

hold; (ii) monitoring the handle position and velocity at each point in time; (iii) computing 

the desired force vector to apply to the handle, depending on the present position and 

velocity and trial type; and (iv) terminating the trial upon completion or termination criterion 

by initiating the hold-position state. At each point in time, the device converts the desired 

cartesian force into desired torques in each motor winding, via the transpose of the velocity 

Jacobian matrix12 (matrix of first-order partial derivatives of the forward kinematics 

transform). The desired torques are then relayed to the torque controllers in the FPGA 

(Supplementary Fig. 1a). In a separate process, the RT-PC also samples data from the FPGA, 

logs it to a memory buffer and periodically empties the buffer into a USB stream, to be read 

and emptied periodically by the standard PC (not shown).

At the top of the hierarchy, the standard PC executes a high-level control loop (Fig. 3c). This 

is the software with which users interact during behavioral experiments (Supplementary Fig. 

1c). It consists of a front panel to monitor robot state and animal behavioral performance and 

to adjust various robot and behavioral parameters (Fig. 5d). A glossary of controls in the 

user interface is listed in Box 1. It also reads ‘trial lists’ written by the experimenter, which 

specify the parameters that define each trial. Trial lists contain in order the following: trial 

type, desired movement angle (rads), movement length (mm), turning movement length 

(mm), turning movement angle (rads), maximum error, reward magnitude scale factor, 

movement timeout (ms) and reward type. These are defined in ‘TrialListElements.ctl’. The 

standard PC also operates a state machine that loads trials, updates robot parameters, 

executes trials through the RT-PC state machine and delivers water reward to the animal. 

Finally, the standard PC periodically empties the USB stream from the RT-PC into a 

memory buffer and allows the experimenter to write the data samples in the memory buffer 

to a hard disk. The physical connections between the devices that implement these processes 

are described below and in Fig. 3d,e.
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Trial types and real-time state-dependent force output

The central capability of our device is that every millisecond (i.e., at 1 kHz) it generates a 

two-dimensional x and y force that can be programmed as arbitrary mathematical functions 

of instantaneous present and past position and velocity. In particular, users can specify at 

every point in time (at 1 kHz) the following relationships:

F = A ⋅ x + B ⋅ y + C ⋅ v x + D ⋅ v y

Where

x =

xt
xt − 1

⋮
xt − n

, y =

yt
yt − 1

⋮
yt − n

, v x =

vxt

vxt − 1

⋮
vxt − n

, v y =

vyt

vyt − 1

⋮
vyt − n

, F =
Fxt

Fyt

xt and yt are the position, vxt  and vyt  are the velocity, and Fx
t  and Fy

t  are the force, in the x and 

y dimensions, respectively, at time point t. A, B, C and D are matrices of constants that can 

take on any user-defined values. (In our code, n, the number of past position and velocity 

measurements kept in memory for subsequent force computations, is set to 8, but this could 

in principle be set to larger buffers.)

Or

Fxt = a1
x ⋅ xt + b1

x ⋅ yt + c1
x ⋅ vxt + d1

x ⋅ vyt

+ a2
x ⋅ xt − 1 + b2

x ⋅ yt − 1 + c2
x ⋅ vxt − 1 + d2

x ⋅ vyt − 1 + …

Fyt = a1
y ⋅ xt + b1

y ⋅ yt + c1
y ⋅ vxt + d1

y ⋅ vyt

+ a2
y ⋅ xt − 1 + b2

y ⋅ yt − 1 + c2
y ⋅ vxt − 1 + d2

y ⋅ vyt − 1 + …

The generation of such arbitrary position- and velocity-dependent forces is demonstrated in 

practice in both of the tasks illustrated in Fig. 4b,c.

Figure 4b uses the following position- and velocity- dependent force generation function to 

constrain motion to a forward trajectory:

Fxt = a ⋅ xt + b ⋅ vxt ; Fyt = 0

Where a and b are negative numbers, such that this produces an instantaneous x force that is 

proportionate in magnitude and opposite in direction to the mouse’s instantaneous distance 

from the y axis and to the x velocity, while allowing unimpeded motion along the y axis.

Figure 4c uses the following position- and velocity-dependent force generation function to 

constrain motion to a forward trajectory for 6 mm, followed by a lateral trajectory of 6 mm:
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Fxt = a ⋅ xt + b ⋅ vxt , y < 6mm
0, y ≥ 6mm

Fyt =
0, y < 6mm

a ⋅ yt − 6 + b ⋅ vyt , y ≥ 6mm

Where a and b are negative numbers, such that for the first 6 mm of forward motion, this 

produces an instantaneous x force that is proportionate in magnitude and opposite in 

direction to the mouse’s instantaneous distance from the y axis and to the x velocity. When 

the mouse’s forward position reaches 6 mm, the code switches to a different function in 

which the robot produces an instantaneous y force that is proportionate in magnitude and 

opposite in direction to the mouse’s instantaneous distance from the horizontal line located 

at y = 6 mm and to the y velocity, while allowing unimpeded motion along that horizontal 

line located at y = 6 mm.

Thus, these data explicitly demonstrate two examples of position- and velocity-dependent 

force functions used to produce constrained motion trajectories, updated by the device at 1 

kHz. Users can program any other arbitrary position- and velocity-dependent force by the 

mathematical relations described above.

The user interface for controlling the pattern of applied forces involves specifying different 

‘trial types’ (Supplementary Fig. 1). Each trial type leads to the execution of a different code 

block in the ‘MathScript’ node ‘computeTorqueAndForce.vi’. These are simple MATLAB-

syntax mathematical statements that specify the instantaneous cartesian force output as 

arbitrary functions position and velocity as described above. The example code that we 

provide implements three trial types: linear pushing movements (in a virtual linear track), 

two-part turning motions (in a virtual L-shaped or T-shaped track) in which a forward 

motion is followed by a lateral motion to the left or right and aiming movements, in which 

the mouse is able to produce arbitrary two-dimensional trajectories, but is only rewarded for 

those terminating near a target region of the user’s choosing (Supplementary Video 1). Users 

who desire to implement additional assays can do so by adding additional trial types and 

writing the equations that specify the force patterns on those trial types in the force 

computation MathScript node.

Data collection and synchronization

The instantaneous values of all state variables are maintained in memory on the FPGA. The 

value of each variable is ‘sampled’ by the RT-PC at 200 Hz, and the resulting data are 

streamed over USB to a memory buffer on the standard PC. The standard PC software 

collects all data streams into a single T×N matrix, where T is the total number of time 

points, and N is the number of data streams (N = 11 in our example code). At either 

experiment termination or when instructed by the user (via the ‘write data’ operation 

described in Fig. 5/Step 39), the standard PC software takes this data matrix and writes it to 

a plain-text comma-separated value (CSV) file, which can be read by a variety of software, 

including by directly ‘dragging and dropping’ the file into MATLAB. Data from an example 

file can be found in Supplementary Data 1 and are described in Anticipated results.
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In our example code, the data matrix contains the following 11 data stream variables in 

order: x and y position (mm), commanded current to motors 1 and 2, trial type, desired 

movement angle (rads), frame counters 1 and 2, lick sensor, reward solenoid and robot state. 

These are defined in ‘DataRecord.ctl’ (in the ‘typedef controls’ folder in Fig. 5b). The frame 

counters count digital TTL (‘transistor-transistor logic’) pulses, and if either counter is not 

wired to an input, that count will simply remain at zero. Thus, when users analyze the 

resulting data file, cross-referencing a frame counter with the simultaneously acquired 

behavioral data allows synchronization of different data sources such as microscopes or 

electrophysiology systems.

Animal training

During behavioral training, animals are water restricted and generally obtain all water during 

training sessions. Our studies have employed head-fixed behavior. Thus, mice undergo a 

surgical procedure during which we implant a steel plate over the cranium to permit fixation 

to external grounding bars15,16. During behavioral sessions, animals’ bodies are confined to 

a tube (Fig. 1d), with an opening under the right forelimb (for our studies of right forelimb 

movement). The robotic manipulandum handle is placed ~2 cm ventral to, and at roughly the 

same anterior-posterior plane as, the head (Fig. 1e). Placement is a key factor in the early 

training of animals, and heavier animals (e.g., older males) typically require placement 

farther from the body than lighter animals (e.g., younger females). In our tasks, successful 

trial completion is followed by a 1-s delay before reward delivery, followed by another ~3.5-

s delay before the robotic handle automatically returns itself to the home position beneath 

the mouse (Fig. 4a). This basic task structure, and the associated delays, can be customized 

through the state machine code (Supplementary Fig. 1c).

For most tasks, we first employ an initial training phase during which animals can only 

execute forward-directed linear movements in a virtual track (Fig. 4b). In our experience, 

this simple task facilitates the learning of the basic task structure, timing and reward 

association. We typically continue with this initial phase until mice can execute ~150–200 

trials in a single ~25-min session (typically ~3–5 d).

Depending on the task under study, subsequent training can proceed in different ways. For 

the alternating left-right movement sequence task (Fig. 4c), in early training, mice 

experience two different L-shaped virtual tracks (‘Max error’ of 0 mm in Fig. 5d). This helps 

animals to gain experience in the kinematic patterns of the two movement types. In later 

training (after ~1 week), we transition to T-shaped tracks (‘Max error’ of, e.g., 3 mm). In 

this case, animals have the option of initiating either of the two movement trajectories. If 

they move in the wrong direction, however, no reward is delivered. In our experience, this 

helps to drive learning to distinguish the two trial types for the animal (a process that takes 

an additional 1–2 weeks). Alternatively, we have studied aiming movements (Fig. 4f,i). In 

this case, early in training, movements that terminate relatively far from the target still yield 

reward (large ‘Max error’ in Fig. 5d). As animals begin to better target their movements, we 

progressively tighten the reward contingency (smaller ‘Max error’). This encourages further 

performance improvements, with a total training time of 1–2 weeks.
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Materials

Mice

We have trained a variety of wild-type (C57/bl6, CD1) and transgenic mice (e.g., GAD2-
Cre/lox-stop-lox-ChR2 and Math1-Cre/Rbp4-Cre/CAG-lox-stop-lox-tTA/TRE-lox-stop-lox-
GCaMP6f) on these tasks without finding clear differences in their ability to learn these 

behaviors. Mice of both sexes perform equally well, and all age ranges tested (~6 weeks to 

~8 months) can learn these tasks !CAUTION Any experiments involving live mice must 

conform to relevant institutional and national regulations. All procedures followed animal 

care and biosafety guidelines approved by Stanford University’s Administrative Panel on 

Laboratory Animal Care and Administrative Panel on Biosafety in accordance with NIH 

guidelines.

Example dataset

We have provided the raw data in Supplementary Data 1 for the data set that gave rise to Fig. 

4f and the rightmost panel of Fig. 4g. This contains the time-varying x and y position, the 

solenoid open state, the time-varying robot state and the lick sensor value for this 

experiment.

Equipment

Manipulandum

• Plastic linkages and handle (3D printed from CAD files provided in 

Supplementary Data 2)

• 2-mm diameter stainless steel shaft (McMaster #1174K19), cut to 12-mm length 

for each of the two elbow joints and 22-mm length (or as desired) for the wrist 

joint/handle

• 2-mm diameter bearings × 5 mm outer × 2 mm height (quantity: six) (McMaster 

7804K119)

• M2 × 0.4 mm, 6-mm length button head screws (quantity: two) (McMaster 

91306A653)

• M2 × 0.4-mm low-profile nuts (quantity: two) (McMaster 90710A020)

• Flat M2 screws (quantity: six) for affixing the motors to the bracket (McMaster 

91294A004)

• M3 screws (quantity: three) for motion limiters (McMaster 91292A109)

• Integrated motor + encoder units (quantity: two) (Maxon B7A1F24007CF, 

containing DCX22S EB KL

24V motor with ENX 16 RIO 65536IMP encoder)

Electronics

• NI cRIO chassis and RT-PC (cRIO-9053, #786424–01)
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• NI 9505 (#779126–01) DC brushed servo drive and encoder reader (quantity: 

two)

• NI 9403 (#779787–01) 32-channel digital I/O, with NI 9923 (781503–01) 

terminal block

• Power supplies for each of the two motor drivers (24 V, >2.5 A) and for the NI 

cRIO chassis (NI PS-15 or 24 V/5 A) !CAUTION Care should always be 

exercised when handling power supplies that deliver high currents. Always 

disconnect all power before modifying wiring connections.

Software

• National Instruments LabVIEW programing environment (tested on LabVIEW 

2019 32-bit); packages: Mathscript/Mathscript Real-Time, LabVIEW FPGA and 

compactRIO

• National Instruments Linux real-time OS; packages: Network Streams

• Custom software: RobotNP LabVIEW project, including the Windows software 

user interface (UI) Main.vi, the RTOS software RTMain.vi and the FGPA 

software FPGA Main.vi (https://GitHub.com/mjwagner/haptic-for-mice)

Equipment setup

Minimum equipment requirements—For this device, the primary cRIO performance 

considerations are the available FPGA space and the RT-PC processing speed. At the time of 

writing, the cRIO-9053 is the most inexpensive cRIO system. On this minimal system, our 

code uses only a minority of the FPGA space, and the RT-PC reliably executes at the 

specified 1 kHz. Other cRIO systems, which are more expensive and feature higher 

specifications, should therefore also perform adequately. In addition, we have successfully 

tested similar versions of our code on the now-discontinued cRIO-9114, which has roughly 

one-fourth of the processing power of the cRIO-9053.

At the time of writing, there are no alternative cRIO motor control modules to the 9505. 

There are alternative modules that provide functionality similar to the 9403 module that we 

use. For our example code, all that is required is a module providing at least five 

bidirectional digital I/O channels, but researchers with differing digital I/O needs may 

consider other modules. In addition, some cRIO modules provide analog I/O, which may be 

useful for some studies.

We recommend using the specific DC motors described in this protocol. In principle, other 

customizations of the Maxon DCX22/ENX16RIO motor/encoders that have identical 

physical casing and form factor, and the same encoder resolution, as the part numbers that 

we recommend would be physically compatible with our design. At the time of writing, 

these motors provide the maximal torque in this form factor. If an experimenter deems such 

torques inadequate (e.g., for larger animals), a different form factor and therefore a redesign 

of the device would be necessary. Alternatively, if users desire lower peak torque motors, 
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they would need to ensure that any alternative is sufficient to counter the forces that mice 

typically produce during experiments, which we have not tested.

The standard PC code does not execute demanding computations or highly time-sensitive 

operations, and thus the requirements of the computer are minimal. We have tested our 

standard PC code on a range of Windows PCs, including an ~10-year old machine based on 

Pentium IV technology, without encountering limitations. LabVIEW is platform 

independent and is available for MacOS; however, we have not explicitly tested device 

control using MacOS, and users would need to confirm proper functionality.

Finally, while we have not extensively tested 3D-printing options, we have produced devices 

that operate for years using either the relatively higher-end Protolabs 3D-printing service 

recommended in this protocol or the inexpensive entry-level Stratasys OBJET30 standalone 

printer. Thus, we expect a wide range of printing materials and dimension tolerances to 

produce a properly functioning device.

Procedure

Manipulandum assembly

1 Use a 3D printer or 3D-printing service to produce the five plastic pieces from 

the provided CAD files (Supplementary Data 2): two upper arm linkages, two 

lower arm linkages and a handle. Optionally, also print the mouse body-

restraining tube. We print the linkages and handle using ProtoLabs material 

‘RenShape SL 7820 High-Resolution Stereolithography build in 0.002’ and 

‘High-resolution’. The restraining tube can be printed from the same stock, or in 

cases where a transparent tube is needed to visualize the animal’s body, we use 

the ‘Watershed XC 11122’ material, specifying ‘transparent finish’ in the notes 

section.

2 Use an 8–32 screw with a nut to affix the restraint tube from the side to Thorlabs 

aluminum post hardware.

3 Machine the mounting bracket in the provided CAD file (Supplementary Data 2) 

from aluminum stock, placing M3 taps in the three corresponding holes in the 

bracket. We use Protolabs CNC milling service from aluminum, specifying the 

three M3 holes to be tapped.

4 From the 2-mm stainless steel shaft stock, cut three pieces: two 12-mm pieces 

for the elbow joints and one 22-mm piece (or the length desired for the handle 

that extends to the animal) for the wrist joint and handle shaft. We typically use 

a Dremel for this step. Lightly grinding the corner can help with insertion.

5 Insert two of the 2 mm ball bearings into the pockets in the end of the female 

lower arm linkage (Fig. 2a). Insert the remaining lower arm linkage between the 

bearings (Fig. 2b), forming the wrist joint.

6 Insert two of the 2-mm ball bearings into the pockets in the end of each upper 

arm linkage (Fig. 2c). Insert the loose ends of the lower arm linkage assembly 
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between the bearings in each upper arm linkage (Fig. 2d), forming the two 

elbow joints.

7 Insert button head M2 screws into the loose end of the upper arm linkages and 

secure into thin hex nuts (Fig. 2e).

8 Insert 12-mm shafts into each elbow joint and the 22-mm shaft into the wrist 

joint and mount the plastic handle onto the wrist shaft (Fig. 2f).

9 Affix each motor to the mounting bracket via the three flat M2 screws (Fig. 2g).

10 Insert the M3 screws into the three tapped holes (Fig. 2g).

11 Insert the exposed motor shafts into the holes at the loose ends of the upper arm 

linkages, forming the shoulder joints. Secure the joints by tightening the M2 

button head screws (Fig. 2h).

NI installation

12 Per the NI guides, install the cRIO, placing the two NI 9505 modules in Slots 1 

and 2 and the NI 9403 module in Slot 4 (Fig. 3e). Connect the cRIO power leads 

(Fig. 3d,e).

13 Install the LabVIEW environment (including LabVIEW FPGA, LabVIEW Real-

time, MathScript Real-time and compactRIO packages) on a standard PC and 

connect to the cRIO via USB (Fig. 3d,e).

14 After installation, follow the NI instructions for using NI device manager to 

confirm communication between the PC and the cRIO.

15 LabVIEW software is also required on the cRIO RT-PC, including NI packages: 

compactRIO, LabVIEW Real-time and Network Streams. Follow the NI 

instructions for installing these through NI-MAX.

Electronics wiring

16 Note the following convention: we term the two motor/encoder units ‘left’ and 

‘right’ as shown in Fig. 5a. Connect the NI 9505 in Slot 1 to the left unit, and 

connect the 9505 in Slot 2 to the right motor/encoder unit. All software labels 

refer to the left unit as ‘1’ and the right unit as ‘2’.

17 Wire the encoders to the NI 9505 modules: following the pin-out of the Maxon 

encoder (https://www.maxongroup.com/medias/sys_master/8827190738974.pdf, 

p.12) and the pin-out of the NI 9505 encoder reader (http://www.ni.com/pdf/

manuals/374211h.pdf, p.17), match the Maxon outputs to the 9505 inputs (e.g., 

solder the Maxon wires to a DB9 connector, to match the DB9 input on the NI 

9505).

18 For each motor/NI 9505 module pair, connect the two leads from the motor to 

the two motor driver outputs on the NI 9505 (Fig. 3d,e). Follow the convention: 

red motor lead to the terminal labeled ‘−’.

19 Connect power leads to both 9505 modules (Fig. 3d,e).

Wagner et al. Page 13

Nat Protoc. Author manuscript; available in PMC 2020 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.maxongroup.com/medias/sys_master/8827190738974.pdf
http://www.ni.com/pdf/manuals/374211h.pdf
http://www.ni.com/pdf/manuals/374211h.pdf


!CAUTION Do not remove or insert motor lead wires when the power supplies 

to the 9505 modules are powered on.

20 Connect digital inputs and outputs to the NI 9403 (Fig. 3d,e). Our code provides 

inputs (Pin 9 and 10, Frame counters 1 and 2 (pulse counter); Pin 12, touch/lick 

sensor) and outputs (Pin 6, solenoid trigger for water reward delivery (timed 

digital pulse)).

FPGA software setup and first-time device calibration

21 Open the provided LabVIEW project ‘Robot_NP.lvproj’ (a project explorer will 

appear as in Fig. 5b).

22 Confirm that the LabVIEW project is communicating with the cRIO device by 

right-clicking the device in the project explorer (Fig. 5b) and clicking connect. 

The green circle should become bright.

▲CRITICAL STEP If the green circle does not become bright, exit LabVIEW 

and return to NI-MAX to follow the NI instructions for diagnosing 

communication issues.

23 Perform initial device calibration through the FPGA front panel by opening 

‘FPGA main.vi’ (Fig. 5b), which will open a panel shown in Fig. 5c. Run this 

program (it may compile first; ~15 min).

24 Confirm that the encoders are read correctly. For this test, it is easier to remove 

the plastic linkages from the motors (undo Step 11). Manually turn the left 

motor shaft clockwise while observing the number in ‘Encoder 1 Position’ (Fig. 

5c under ‘Position Controllers’). The number should decrease if the channels 

have been correctly wired in Step 17. If Encoder 2 Position changes instead, 

check the left/right motor convention in Step 16. Repeat for the right motor 

shaft/’Encoder 2 Position’.

25 Next, confirm that the FPGA can drive the motors. First click ‘Enable Drives’ in 

the ‘Drive Status’ box on the FPGA panel (Fig. 5c). Next, in the ‘PWM 

Generators’ box on the FPGA panel (Fig. 5c), make sure that 0 is entered into 

both ‘PWM 1’ and ‘PWM 2.’ Next, switch on ‘Manual PWM.’ Now, while 

observing the left motor shaft, type ‘100’ into the ‘PWM 1’ box and confirm that 

the left motor shaft is rotating counter-clockwise. If it rotates clockwise, check 

the motor lead convention in Step 18. Repeat for the right motor/’PWM 2’. If 

both are functioning, switch off ‘Manual PWM’.

26 Reattach the manipulandum linkages to the motors (as described in Step 11).

27 Confirm that the torque controllers are able to control the motor current. First, 

ensure that the ‘Desired Current 1’ and ‘Desired Current 2’ are both set to 0. 

Next, ensure that both ‘Position/Current mode 1’ and ‘Position/Current mode 2’ 

are switched on and then toggle on both the ‘Start new mode 1’ and ‘Start new 

mode 2’. Next enter ‘20’ into ‘Desired Current 1’. The handle will move. 
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Confirm that the ‘Actual Current 1’ reading is close to 20. Set ‘Desired Current 

1’ back to 0 and repeat for ‘Desired Current 2’.

28 Perform the final FPGA calibration step, which is to confirm that the Position 

Controllers operate correctly. First, switch off ‘Position/Current mode 1’ and 

‘Position/Current mode 2’. Then, toggle on ‘Start new mode 1’ and ‘Start new 

mode 2’. The handle should lock in place—press it lightly and check for 

resistance. Next, check for controller instability—lightly tap the handle. It 

should resist motion and remain near the home position. Finally, close ‘FPGA 

main.vi’. This will not typically be directly operated during normal device 

usage.

▲CRITICAL STEP In the unlikely event that the device oscillates unstably, 

press ‘Disable Drives’ under ‘Drive Status’. Return the motors to current mode 

with ‘Desired Current 0’ (Step 27). The controller needs to be calibrated.

? TROUBLESHOOTING

Behavioral software operation

29 Open ‘UI Main.vi’ and ‘RT Main.vi’ (Fig. 5b). RT Main produces an empty 

panel, while UI Main opens the primary user interface front panel (see Fig. 5d 

for a full description of all controls).

30 Press ‘enable drives’ (Fig. 5d) to activate the drive control in both NI 9505 

modules.

31 Press ‘Find home’ (Fig. 5d) to instruct the robot to search for the M3 mechanical 

stops and to move to the home position, where it will remain locked until 

instructed otherwise.

32 Select the ‘Trial list file’ folder icon button (Fig. 5d) to choose a ‘trial list’, in 

which each line specifies the parameters for a single trial. These parameters are 

listed in order on the front panel in the ‘current trial parameters’ cluster at the 

bottom of the window.

33 When setting up for the first time, choose the provided file ‘2D_0deg.csv’. This 

executes aiming trials with a target 8 mm ahead (Fig. 4f).

34 Press ‘Start block’. A trial will be read in from the trial list, and the appropriate 

parameters will update.

▲CRITICAL STEP The robot will release control of the handle—but only 

when it has detected that no external force has been applied for the preceding 

100 ms. At this point, the software waits until it senses handle movement, and 

then either waits for trial completion (either successfully or incorrectly) or 

terminates an incomplete trial after the ‘timeout’ period elapses.

35 Manually push the handle forward. When it has moved ≥8 mm radial distance, 

the robot will lock it in place to terminate the trial.
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36 For movements sufficiently close to straight ahead (‘Max Error’ trial parameter), 

the robot will deliver reward. To confirm, in the ‘Movement criteria’ box, ‘Last 

trial rewarded’ should be highlighted after a straight movement or not 

highlighted after a mistargeted movement off to the side. Check that highlighting 

takes place after correctly targeted movements.

37 Confirm that after trial termination and a delay, the software successfully returns 

the handle to the start position and advances to the next trial in the list.

Constrained trajectory trials and first-time calibration

38 Repeat from Step 33, this time loading ‘linear_0deg.csv’. This will load linearly 

constrained trials (Fig. 4b). Trajectories are constrained in the RT Main 

software, as described above. Variations in device assembly could result in 

different mechanical properties that require different controller parameters. To 

confirm, manually execute movements. The handle should feel constrained to 

linear motion. This completes all first-time calibration procedures and confirms 

that the robot is functioning correctly.

▲CRITICAL STEP In the unlikely event that unstable oscillations are felt, 

press, ‘STOP MOTORS’. The controller must be tuned.

? TROUBLESHOOTING

39 Experiment termination: after an experiment, prevent loading and initiating 

additional trials by pressing the ‘Stop Block’ button. At this point, all data 

remain in memory. Use the ‘write data’ button to empty the memory buffer to a 

data file on a hard disk. Once ready, press the ‘EXIT’ button to exit the program 

and write any remaining data in memory to disk.

Animal training

40 Acclimate mice. We acclimate our mice to ~1 ml of water per day for several 

days prior to training. In our experience, after 2 d of restricted water access, 

mice will begin performing the task; thus, this is the fastest way to begin 

training. However, motivation levels and thus basic task-learning rates are often 

higher after ~4–5 d of restricted water access, in circumstances where additional 

time is available.

41 Prior to a behavioral session, prepare the robot by homing the device, loading 

the desired trial list and confirming water delivery, so that the training session 

can begin as soon as the animal is head-fixed, to minimize the time the animal 

spends waiting on the rig.

42 Head-fix the animal by holding it by the tail with its head and forepaws directly 

behind the tube, which mice will naturally walk into. Then, grasp the head-

fixation bar on the cranium from the front to secure it to mounting bars.

? TROUBLESHOOTING
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43 Place the water reward spout just in front of the mouth (~1 mm below and 

anterior to the mouth), without touching the animal’s face.

? TROUBLESHOOTING

44 Place the manipulandum handle near the mouse. The software provides the 

ability to make small adjustments to the ‘home position’ of the handle (Fig. 5d). 

For larger adjustments, physically move the robot mounting base.

▲CRITICAL STEP In the earliest training sessions, it can be helpful to place 

the manipulandum handle significantly closer to the mouse’s body, to maximize 

the odds that the animal contacts it with the right forelimb by chance. As 

animals become proficient, it is more helpful to give more space between the 

body and the handle to make it easier to move the limb.

? TROUBLESHOOTING

45 For all tasks, begin training using forward-constrained movement tasks (example 

file: ‘linear_0deg. csv’). As described in Step 34, the only user step required to 

initiate a training session is to click ‘Start Block’, after which animals will be 

able to self-initiate and self-pace each trial in the sequence specified in the trial 

list that the user loaded, until the user terminates the block as described in Step 

39. Additional ways to make the task easier early on include: using a lower 

‘Rewarded length’, which we typically set to 7 mm in expert mice, but can be 

lowered to 6 mm initially; using a longer ‘Timeout’ period, which we typically 

set to 100 in expert mice (note: ‘Timeout’ of ‘0’ corresponds to no timeout and 

automatically toggles on the ‘wait for completion’ switch).

? TROUBLESHOOTING

▲CRITICAL STEP In this and the next step, the experimenter must choose 

when to advance the animal from easier task variations to more challenging 

variations. In general, we find that there is a tradeoff between permitting the 

animal to achieve greater proficiency on the simpler tasks and the subsequent 

difficulty of training the animal to ‘break’ its earlier habits to learn another task 

variation. Our general recommendation is to look for 2–3 d of consistent 

performance of ~150 trials in ~25 min on an easier task before advancing to a 

more complex task version.

? TROUBLESHOOTING

46 If appropriate, apply additional training procedures. For the aiming task, early 

on, allow rewards for substantially mistargeted movements via a larger ‘Max 

Error’ (defines the maximum lateral distance from the target direction vector at 

7-mm radial distance from the start position). Expert mice should be able to 

perform the task at 2-mm or 2.5-mm max error. This task should take ~1–2 

weeks to train. For the two-part turning movement sequence task, early on, 

deliver L-shaped constrained trajectories by using ‘Max Error’ of 0 mm. After 

several days, provide T-shaped trajectories by using ‘Max Error’ of, e.g., 3 mm. 

This task should take ~2–3 weeks to train. In all tasks, expert animals should be 
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able to perform on average ~150–250 trials in an ~25-min behavioral session, 

and animals should be trained once a day until proficiency (depending on task).

? TROUBLESHOOTING

Troubleshooting

For Step 28: FPGA position controller oscillation: in the unlikely event that the position 

controllers are unstable or oscillate (Step 28), the proportional-integral-derivative (PID) 

controller parameters need to be tuned. With the motors in ‘Current mode’ with ‘Desired 

current’ set to 0 (Step 27), first enter ‘0’ for the derivative constant, Dpos. Next, begin by 

setting the proportional constant, Ppos, to 1. Then, enable ‘Position mode’ (Step 28). The 

device should not oscillate. Next, begin slowly increasing Ppos (e.g., by 0.5 increments) to a 

level just below where instability appears. Now, begin incrementing Dpos (e.g., by 

increments of 5) to a level just below when instability appears. Repeat this procedure 

(incrementing Ppos and then incrementing Dpos) until the handle is stably held in place.

For Step 38: constrained trajectory controller oscillation: in the unlikely event that the 

constrained trajectories are unstable or oscillate (Step 38), the PID parameters must be tuned 

(‘Robot parameters’; P, I and D). With the robot disabled after pressing ‘Stop block’, set P to 

100 and D to 0. Click ‘Start block’ to initiate trials. Confirm that there is no oscillation. 

Repeat after incrementally increasing P to a level just below where instability appears. Then, 

increase D to a level just below where instability appears. Repeat these alternating 

adjustments of P and D until trajectories are constrained stably.

See Table 1 for troubleshooting guidance for behavioral issues.

Timing

The custom 3D-printed pieces as well as the custom-machined flange mount can be obtained 

from Protolabs in 2–3 business days typically, although it is also possible to specify faster 

production. Production time via, e.g., in-house CNC milling or 3D printing, will vary based 

on the specific devices used. The products from McMaster are typically available on the 

same day, while the National Instruments products generally have a 2–6-week lead time, and 

the motor-encoder units from Maxon typically have a 4–6-week lead time.

Robot assembly (Steps 1–11) should take several hours. Electronics assembly and wiring 

(Steps 12–20) should also take several hours. Software installation, setup and calibration 

(Steps 21–39) should take less than a day. Animal training (Steps 40–46) takes between 1 

and 3 weeks, depending on the task.

Anticipated results

Example results from four different tasks are shown in Fig. 4b–i. We provide trajectories 

from the simplest task, in which the animal’s motion is linearly constrained by a virtual 

track, in this case directed straight ahead, as in ref. 16. We also provide example trajectories 

from a task where the animal’s movement trajectory is constrained to a T-shaped track, such 

that it must push forward and subsequently push to the left or right, as in ref. 15. For this 
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turning movement sequence task, we show trajectories in which the animal made the correct 

motion, and we summarize the improvement in performance across 10 mice over several 

weeks in Fig. 3d,e.

We also provide example data from the aiming task, in which the animal can produce 

arbitrary two-dimensional trajectories but is rewarded only for those sufficiently close to a 

user-specified target direction (Fig. 4f). To provide a sense of the across-trial variability, we 

provide dot plots of the mouse’s maximal deviation in millimeters from the target movement 

axis during each trial, which we display for three mice (three left-most panels in Fig. 4g). To 

provide an illustration of across-day variability in an expert mouse, we provide performance 

dot plots for three consecutive days in one mouse (Fig. 4g, three right-most panels). The 

performance level across all trials from eight different mice is quantified in the histogram in 

Fig. 4h. The possibility of training animals to alternate between three different target 

movement directions in the aiming task is illustrated in Fig. 4i.

To give users a sense of the type of raw data to expect, we provide an example MATLAB 

file in Supplementary Data 1 that contains the x and y position, licking, solenoid opening 

and robot state data for the experiment displayed in Fig. 4f and the rightmost dot plot in Fig. 

4g.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1 |

Glossary of controls in the user interface software

• ‘Start/Stop block’ – initiates trials from the current trial list file

• ‘Enable drives’ – activates drive control modules

• ‘Trial list file’ – allows selection of a list of trial parameters

• ‘Find home’ – instructs the robot to execute a series of motions to locate the 

home position

• ‘Go home’ – sends the handle from the present position to the home position

• ‘X home’/’Y home’ – this sets the coordinates of the home position (default 

0, 57), and relative to the default, has an approximate range of ±1.5 mm in the 

y direction and ±3 mm in the x direction.

• ‘Only advance after reward’ – determines whether to repeat the same trial 

after a failed attempt

• ‘Wait for completion’ – if enabled, robot will not terminate trial (equivalent to 

timeout of ‘0’).

• ‘Hold position’ – locks robot at current position

• ‘Robot parameters’ – P, I and D specify the force parameters used for 

constrained trajectories.

• ‘Go to target’ – instructs the robot to move to the position specified in ‘X/Y 

target’

• ‘STOP MOTORS’ – disables robot

• ‘Rewarded length’ – sets the minimum movement length that yields reward 

(separate from and in addition to other potential reward criteria)

• ‘Viscosity’ (in Robot parameters box) – applies artificial friction to slow a 

mouse’s movements, if desired. A typical value is 0.4, and 0 disables this.

• ‘Reward’ – sets the duration of the TTL pulse, to control the duration of 

solenoid opening

• ‘Give reward’ – immediately delivers the solenoid TTL pulse

• ‘Data record file’ – specifies where to write data

• ‘Write data’ – immediately empties data in the memory buffer to disk

• ‘EXIT’ – first writes data in memory to disk and then terminates the program 

(preferred method to exit)
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Fig. 1 |. Actuated two-axis rodent manipulandum design and assembly.
a-d, Mechanical drawings of apparatus parts. a, Custom 3D-printed plastic manipulandum 

linkages and handle for the mouse forepaw. b, Custom aluminum machined mounting 

bracket to mount the motors. c, DC Motors with integrated high-resolution optical rotary 

encoders (Maxon Motors). d, Custom 3D-printed transparent plastic restraining tube for the 

mouse to stand inside. e, Complete assembly of behavioral apparatus including head 

restraint bars and Thorlabs mounting hardware. See Fig. 2 for assembly details. Full 3D 

rendering of assembly is available at https://grabcad.com/library/full-protocol-2. f, 
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Photograph of assembled manipulandum. g, Still image from a video of a mouse executing a 

skilled forelimb task while head fixed and body restrained by grasping and moving the 

manipulandum handle for water reward. The procedure used on the mouse followed animal 

care and biosafety guidelines approved by Stanford University’s Administrative Panel on 

Laboratory Animal Care and Administrative Panel on Biosafety in accordance with NIH 

guidelines.
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Fig. 2 |. Detailed manipulandum assembly.
a, For the lower linkage with pockets at one end, insert a ball bearing into each pocket, 

making sure to press firmly to insert fully. b, Insert the small end of the remaining lower 

linkage between the two bearings. When inserted correctly, the joint should rotate freely. c, 
For each (identical) upper linkage, insert a ball bearing into each pocket, making sure to 

insert fully. d, Take the free ends of the combined lower linkages and insert between the 

upper linkage ball bearings. e, Insert a button head M2 screw (from the outer side of linkage) 

into a thin M2 hex nut (pressed into the pocket in the inner side of the linkage) at the free 

end of each upper linkage. f, Insert one of the 12-mm cut shafts into each elbow joint and the 

22-mm cut shaft into the wrist joint. Press the plastic handle onto the top of the wrist joint 

shaft. g, Affix each motor to the bottom of the mounting bracket by matching the tapped M2 

holes on the motor to the M2 bores on the bracket and inserting a flat M2 screw into each. 

Also insert M3 screws into each tapped hole in the bracket to serve as the indexed 

mechanical stops for the manipulandum workspace. h, Press the holes of the free end of the 
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upper linkages onto the motor shafts. Secure each upper linkage by tightening the button 

head M2 screw.
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Fig. 3 |. Nested controllers used to operate the manipulandum behavioral experiments.
a, Low-level control and device communication are executed through the FPGA (see also 

Supplementary Fig. 1a). b, The RT-PC executes the bulk of the computationally intensive 

calculations at 1 kHz needed for real-time device control, including all custom force 

production and constrained trajectories (see also Supplementary Fig. 1b). c, The standard PC 

runs the user interface panel and executes high-level trial structure state transitions, such as 

loading trial parameters for each trial, instructing the RT-PC to execute the trial, delivering 

reward to the animal and logging data to the hard disk (see also Supplementary Fig. 1c). d, 
Wiring diagram. The standard PC, which runs the software ‘UI Main.vi’, communicates over 

USB to the cRIO. The cRIO requires power input (24 V, 5A; NI PS-15 shown in e). The 

cRIO houses a real-time PC, which runs the software ‘RT Main.vi’, and an FPGA that runs 

the software ‘FPGA Main.vi’. It also houses the three modules. Each 9505 module needs 

power input (24 V, >2.5 A) and communicates with a motor (‘M’) via two wires and with the 

integrated encoder (‘E’) via the DB9 input. The NI 9403 sends digital output to a reward 

delivery solenoid and also receives and samples input from a lick sensor and two frame 

clocks. e, Photograph of actual device wiring following schematic in d.
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Fig. 4 |. Example behavioral tasks, performance and learning.
a, General trial structure in our behavioral tasks. b, Example movement trajectories from a 

mouse executing the forward pushing task in a virtual linear track. c–e, For the forward-

turning movement sequence task, example trajectories (c) and learning over time (d and e). 

Mice nearly double the fraction of forward-turning movements that they execute correctly 

over learning (d; n = 7 mice, p = 0.003), and decrease the time taken to successfully 

complete each movement (e; p < 10−6; 19.3 ± 1 d between Day 1 and Expert, mean ± s.e.m.; 

Wilcoxon rank-sum tests comparing Day 1 to all Expert days). Adapted with permission 

from ref. 15. f–h, Aiming movement task, in which reward is delivered only for trajectories 

directed sufficiently close to a target region. f, Example trajectories from one mouse. g, Dot 

plots showing variability in performance (measured as the maximum lateral deviation from 

the axis connecting the home and target positions) across all trials for three single mice, and 

across three consecutive days for one mouse. h, Performance summarized across all trials 

from 8 mice on one day. i, Example trajectories for a multiple-target aiming task. Error bars 

denote mean ± S.E.M. All procedures used to obtain these results followed animal care and 

biosafety guidelines approved by Stanford University’s Administrative Panel on Laboratory 

Animal Care and Administrative Panel on Biosafety in accordance with NIH guidelines. 

Mice were mixed background male and female animals aged 6–16 weeks.
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Fig. 5 |. Custom LabVIEW software and user interface.
a, Top view of the manipulandum with linkages removed, illustrating our motor designations 

‘left’/’right’ (‘1’ and ‘2’ in all software labeling) for consistency. b, The ‘Project Explorer’ 

hierarchy showing all project components. c, FGPA main.vi front panel user interface (Steps 

23–28). d, UI Main.vi front panel user interface (Steps 29–39). A glossary of user interface 

controls is listed in Box 1.
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Table 1 |

Troubleshooting table

Step Problem Possible reason Solution

42 Animal walks so that body is out of 
restraining tube

Tube is too far posterior or at an uncomfortable height 
relative to head restraint

Adjust restraining tube anterior-
posterior location or height

43 Animal grasps spout Spout is too close to face Move spout farther away

Animal does not lick Spout is too far from face Move spout closer

44 Animal does not contact handle 
with paw

Handle is too far from natural range of paw positions Move handle closer to body

Animal grasps handle with wrong 
paw

Restraining tube left paw ‘hand rest’ is not positioned 
near natural left paw location. Device handle is too close 
to midline

Adjust position of the restraining 
tube and/or device handle

45 Animal terminates after a small 
number of trials

Insufficient prior water restriction or potentially 
administration of water droplets that are too large

Restrict water for more days or 
decrease reward duration/size

Movement of the handle appears 
difficult or unnatural for the animal

If the handle appears to ‘crowd’ the animal’s forelimb 
movement, it may be too close

Move handle ventrally and/or more 
anterior

46 Animal has a constant bias for one 
movement direction that does not 
improve with substantial training

Handle position may not be ‘neutral’ for the animal 
(e.g., if too close to the body, it may be difficult to push 
straight ahead)

Often, moving the handle farther 
ventrally and sometimes also away 
from the directional bias can yield a 
more neutral natural motion 
direction
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