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Abstract 

Purpose: To compare the prognostic value and reproducibility of visual versus AI-assisted 

analysis of lung involvement on submillisievert low-dose chest CT in COVID-19 patients. 

Materials and Methods: This was a HIPAA-compliant, institutional review board-approved 

retrospective study. From March 15 to June 1, 2020, 250 RT-PCR confirmed COVID-19 patients 

were studied with low-dose chest CT at admission. Visual and AI-assisted analysis of lung 

involvement was performed by using a semi-quantitative CT score and a quantitative 

percentage of lung involvement. Adverse outcome was defined as intensive care unit (ICU) 

admission or death. Cox regression analysis, Kaplan-Meier curves, and cross-validated receiver 

operating characteristic curve with area under the curve (AUROC) analysis was performed to 

compare model performance. Intraclass correlation coefficients (ICCs) and Bland- Altman 

analysis was used to assess intra- and interreader reproducibility.  

Results: Adverse outcome occurred in 39 patients (11 deaths, 28 ICU admissions). AUC values 

from AI-assisted analysis were significantly higher than those from visual analysis for both semi-

quantitative CT scores and percentages of lung involvement (all P<0.001). Intrareader and 

interreader agreement rates were significantly higher for AI-assisted analysis than visual 

analysis (all ICC 0.960 versus 0.885). AI-assisted variability for quantitative percentage of lung 

involvement was 17.2% (coefficient of variation) versus 34.7% for visual analysis. The sample 

size to detect a 5% change in lung involvement with 90% power and an  error of 0.05 was 250 

patients with AI-assisted analysis and 1014 patients with visual analysis. 

Conclusion: AI-assisted analysis of lung involvement on submillisievert low-dose chest CT 

outperformed conventional visual analysis in predicting outcome in COVID-19 patients while 
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reducing CT variability. Lung involvement on chest CT could be used as a reliable metric in 

future clinical trials. 
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Summary Statement 

AI-assisted analysis of lung involvement in patients with COVID-19 outperformed conventional 

visual analysis in predicting adverse outcome while reducing variability; AI-assisted 

quantification of lung involvement in COVID-19 could be used as a reliable metric in clinical 

trials. 

 

Key Points 

1. Area under the curve (AUC) values from automated AI analysis and AI analysis with manual 

correction were significantly higher than those from visual analysis for both semi-

quantitative CT scores and percentages of lung involvement (0.888 and 0.903 vs 0.760 and 

0.878 and 0.880 vs 0.774, respectively). Kaplan-Meier curve analysis using the identified 

cutoffs (CT score 7 and lung involvement percentage 12.0% for visual analysis, CT score 

8 and lung involvement percentage 19.8% for automated AI analysis, and CT score 8 and 

lung involvement percentage 20.5% for AI analysis with manual correction) showed that 

these values could be used to predict patient outcome (P<0.001 by log rank test for all 

analyses). 

2. Intra- and interreader agreement was significantly higher for AI-assisted analysis with 

manual correction when compared to visual analysis. 

3. Using an AI-assisted analysis can reduce the required sample size for clinical trials aiming to 

reliably detect a change in the extent of COVID-19 lung involvement by a factor of 4 (e.g., 

250 patients vs 1014 patients to detect a 5% change in the extent of lung involvement with 

a power of 90% and an  error of 0.05).  
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Introduction 

 Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is a novel enveloped 

RNA betacoronavirus belonging to the same family of viruses causing severe acute respiratory 

syndrome (SARS) and Middle East respiratory syndrome (MERS) (1). Patients with SARS-CoV-2 

infection can develop clinical coronavirus disease 2019 (COVID-19) which was declared a 

pandemic by the World Health Organization (WHO) on the 11th of March 2020 (2,3). The full 

spectrum of COVID-19 severity is still being clarified but appears to be wide, ranging from 

asymptomatic status or mild upper respiratory tract symptoms to severe viral pneumonia, 

multiple organ dysfunction and even death (4).   

 Chest computed tomography (CT) has emerged as an accurate tool for the initial 

diagnosis of patients with possible COVID-19 infection (5). Additionally, CT may represent a 

non-invasive tool for patient prognostication as the extent of lung involvement on chest CT 

appears to be an important prognostic marker (6,7). Multiple Artificial Intelligence (AI) software 

packages are currently being developed to aid radiologists in the quantification of lung 

involvement in COVID-19. However, little is known about the reproducibility of these software 

packages and how they may improve outcome prediction. We hypothesized that the use of 

semiautomated AI may both improve CT reproducibility and allow for more accurate patient 

prognostication. We assessed COVID-19 patients who underwent chest CT at our institution by 

conventional visual and AI-based quantification of lung injury. We also determined the impact 

of chest CT variability on sample size estimates that would be applicable in a clinical trial (e.g., 

to determine the potential response to novel antiviral therapies). The aim of this study was 
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therefore to determine reader and software variability in the measurement of lung injury in 

COVID-19 and assess its impact on patient prognosis. 

 

Materials and Methods 

 This retrospective study was compliant with the Health Insurance Portability and 

Accountability Act (HIPAA) and was approved by our institutional review board (Imelda 

Hospital, Bonheiden, Belgium). Informed consent was waived. From March 15th to June 1st 

2020, 250 consecutive patients with clinical suspicion of COVID-19 pneumonia were tested with 

both RT-PCR and CT within a 2-hour interval of hospital admission. Epidemiological, 

demographic, clinical, and laboratory data at admission were obtained from the electronic 

patient management system. Two PCR platforms (Aries system, Luminex, Austin, USA and 

Rotorgene Q, Qiagen, Hilden, Germany) were used to detect SARS-CoV-2 in nasopharyngeal 

swabs (eSwab, Copan Diagnostics, Brescia, Italy), both using the E-gene as target. Primers and 

probe sequences for the E-gene were provided by the Belgian National Reference Center 

(University Hospitals Leuven, Belgium). No cross reactivity for other human Coronaviruses, 

Influenza or Respiratory Syncytial Virus (RSV) has been shown for both platforms. Part of the 

patient population has been previously reported in studies assessing the accuracy of chest CT 

for COVID-19 diagnosis and the impact of gender on the extent of lung injury (5,8). 

 Adverse outcome was defined as death or intensive care unit (ICU) admission. In 

patients with multiple events, only the first event was considered for event-free survival 

analysis. Only patients with a final outcome (death or discharge) were included in the final 
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analysis. No patients were excluded from analysis after initial inclusion. No adverse event 

occurred from the chest CT exams. 

 

CT scan protocol 

 All patients underwent non-contrast low-dose chest CT by using a Somatom Definition 

AS 64-slice 0.6 mm detector scanner (Siemens Healthineers, Forchheim, Germany). We used 

vendor-supplied software (CareDose 4D and CarekV, Siemens Healthineers) to calculate size-

specific radiation dose estimates for the low-dose chest CT protocol which was adapted from 

the protocol used for lung cancer screening with reference values in an average patient of 100 

kVp and 20 mAs (9). We used a 0.5 second rotation time and a pitch of 1.2 to limit motion 

artifacts in dyspneic patients. Effective radiation dose was calculated by multiplying the dose-

length product (DLP) by 0.014 mSv/mGy · cm as the constant k-value for thoracic imaging (10). 

Reconstruction parameters were: 1 mm/0.7 mm slice thickness/increment with a standard 

lung-tissue kernel (I50f medium sharp) and 3 mm/3 mm slice thickness/increment with a 

standard soft tissue kernel (I31f medium smooth), sinogram-affirmed iterative reconstruction 

(SAFIRE) strength 3, 450 mm FOV and 512 x 512 matrix size. 

 

CT image analysis 

 Visual analysis of lung involvement was performed by using a semi-quantitative scoring 

system as previously described (5). In short, each lobe was scored from 0 to 5 with a total score 

ranging from 0 to 25: score 0, 0% involvement; score 1, <5% involvement; score 2, 5-25% 

involvement; score 3, 26-50% involvement; score 4, 51-75% involvement, score 5, 76-100% 
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involvement. Involvement was visually defined as any area of GGO, crazy-paving or 

consolidation and percentage was estimated by combining axial, coronal, and sagittal 

reconstructions. For the semi-quantitative score, a higher number indicated a higher ranking 

and involvement (e.g., a score of >7 indicates all scores from 8 to 25). 

 AI-powered analysis of lung involvement was performed at a dedicated workstation 

using CT pneumonia analysis v.2.0. (Siemens Healthineers, Forchheim, Germany). The algorithm 

uses non-contrast CT data to automatically identify and 3D-segment both the lung parenchyma 

and abnormal areas of ground-glass opacities (GGO) and consolidation (11). The software 

outputs a percentage of total lung involvement (both GGO and consolidation). This percentage 

was translated to the same semi-quantitative scoring system used for visual analysis. 

Segmentation errors were manually corrected by trained readers. In cases of bacterial 

pneumonia coinfection, the total area of GGO and consolidation was included. 

 The following outcome measures were thus evaluated by the readers:  

Semi-quantitative CT score (ranging from 0 to 25): CT scores from visual analysis, AI without 

manual correction (AI-auto), and AI with manual correction (AI-manual).  

Percentage of lung involvement (ranging from 0 to 100%): percentage scores of lung 

involvement (combined GGO and consolidation) from visual analysis, AI-auto, and AI-manual. 

 Both metrics of lung involvement are reported, because there is precedence for both 

approaches to assess the extent of lung involvement in COVID-19 (6,7). The truly quantitative 

approach with percentages of lung involvement is likely more accurate and will increasingly 

become available through the rapid development of multiple AI-based software packages for 

COVID-19. However, we opted to include the semi-quantitative approach as it has been used in 
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early COVID-19 studies with good prognostic value and may be only approach available to some 

institutions for the foreseeable future (6). Intra- and interreader reproducibility were assessed 

for both visual analysis and AI-based analysis with manual correction. Six radiologists (C.G., 

A.Da., L.J., Y.D.B., A.De., and R.S.) independently scored the lung involvement on a subset of the 

patient population. Two cardiothoracic radiologists (C.G. and R.S. with 8 and 7 years of 

cardiothoracic imaging experience, respectively) assessed reproducibility. One reader (R.S.) 

reread a random sample of 50 scans after 1 week to assess intrareader reproducibility. Fifty 

randomly selected cases first read by another reader were reread by C.G. after 1 week to assess 

interreader reproducibility.   

Statistical analysis 

 All statistical analysis was performed by using R v.4.0.0. (Foundation for statistical 

computing, Vienna, Austria). Data were tested for normal distribution with the Shapiro-Wilk 

test. Summary statistics for all continuous variables are reported as means  standard 

deviations (SD) or as medians with interquartile ranges (IQR), as appropriate. Summary 

statistics for categorical variables are reported as absolute numbers and percentages. For 

continuous variables, a threshold that balances sensitivity and specificity, as identified by the 

Youden index, was calculated from receiver-operating characteristic (ROC) curve analysis (12). It 

is important, however, to realize this is just one approach to cutting the ROC curve and future, 

larger studies are needed to determine optimal thresholds considering other predictors of 

adverse outcome. We assessed discrimination with the 5-fold cross-validated area under the 

ROC (AUROC), reported with corresponding 95% confidence intervals (13). Survival curves were 

estimated using the Kaplan-Meier method and compared by using the log-rank test. Cox-model 
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results were shown by hazard ratio (HR) estimates with 95% confidence intervals (CI). We 

checked the proportional-hazards assumption for each variable by testing Schoenfeld residuals 

and using the double-log plot method. In case of violation of the proportional-hazards 

assumption, the restricted mean survival time (RMST) was calculated as a measure of average 

survival from time 0 to a specified time point and estimated as the area under the survival 

curve (AUC) up to that point (14). Intra- and interreader agreement were assessed by using 

intraclass correlation coefficients (ICCs), Bland-Altman analysis with 95% limits of agreement 

(LOAs), Spearman rank correlation r, and coefficient of variation (CV) (15). A two-way model 

with measures of agreement was used to calculate the ICC values. ICCs of >0.75 and of 0.40–

0.75 indicate strong and average agreement, respectively. A difference between ICCs was 

considered to be statistically significant when there was no overlap between their respective 

95% CI limits. There were no missing data elements for the analyses. P<0.05 was considered to 

indicate a statistically significant difference. Sample size estimates were derived from the 

interreader SD of lung involvement as described by Machin and Altman (16,17). The sample size 

required by chest CT to show a change with 90% power and an  error of 0.05 was calculated 

by using the following formula: 𝑛 = 𝑓ሺ𝛼,𝑃ሻ.𝜎ଶ. 2/𝛿ଶ, 

where  is the significance level, P is the study power, f is the value of the factor for different 

values of  and P (f = 10.5 for a P of 90% and an  error of 0.05),  is the interstudy standard 

deviation,  is the desired percentage difference to be detected, and n is the sample size 

needed (18). Chest CT reproducibility and sample size were calculated for both a visual and an 

AI-assisted analysis, as defined above. 
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Results 

 Patient demographics, CT findings and dose parameters, and outcome data are 

summarized in Table 1. The mean age for all patients was 67 years  17 years (SD) with fever, 

cough, and dyspnea as the most frequent clinical symptoms at presentation. Median time from 

symptom onset and ER presentation with RT-PCR and chest CT was 7 days (IQR: 4-10 days). 

Median time between CT scan acquisition and report was 20 minutes (IQR: 12-42 minutes). 

Median time for automated AI analysis was 9 minutes (IQR: 8-9 minutes), which increased to 12 

minutes (IQR: 8-13 minutes) with manual correction. Manual correction was required in 154 

patients (65.6%). However, manual correction changed the percentage of lung involvement 

with more than 1% in only 33 patients (13.2%), when compared to the automated AI analysis 

(Figure 3F). 

 

CT radiation dose 

 Mean DLP for all patients was 43.2±24.9 mGy.cm, resulting in an effective radiation dose 

of 0.60±0.35 mSv (Table 1). 

 

Outcome prediction 

 Adverse outcome occurred in 39 patients (15.6%) with 28 ICU admissions and 11 deaths. 

Five patients (17.9%) died in the ICU (6 other deaths occurred in frail older patients who were 

not transferred to the ICU) (19). Median time of ICU admission was 18 days (IQR:14-25 days). 

AUROC analyses identified the following values as Youden index based cutoffs for predicting the 
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endpoint: a CT score of 7 (AUROC: 0.760, 95% CI: 0.680-0.841, P-value<0.001) and a lung 

involvement percentage of 12.0% (AUC: 0.774, 95% CI 0.693-0.854, P-value<0.001) for visual 

analysis, a CT score of 8 (AUC: 0.888, 95% CI 0.820-0.956, P-value<0.001) and a lung 

involvement percentage of 19.8% (AUC: 0.878, 95% CI 0.823-0.933, P-value<0.001) for 

automated AI analysis, and a CT score of 8 (AUC: 0.903, 95% CI: 0.836-0.969, P-value<0.001) 

and a lung involvement percentage of 20.5% (AUC: 0.880, 95% CI: 0.823-0.937, P-value<0.001) 

for AI analysis with manual correction (Figure 1). AUROC values from automated AI analysis and 

AI analysis with manual correction were significantly higher than those from visual analysis for 

both semi-quantitative CT scores and percentages of lung involvement (all P<0.001). Kaplan-

Meier curve analysis using the identified cutoffs showed that these values could be used to 

predict patient outcome (P<0.001 by log rank test for all analyses) (Figure 2). Visually, it was 

clear that most adverse events occur within the first week after chest CT, which was confirmed 

by analysis of Schoenfeld residuals with violation of the proportional hazards assumption (20). 

The restricted mean survival time (RMST) was estimated at 1 week, and the difference and ratio 

of RMST were estimated by bootstrap simulation (Table 2). For example, for AI analysis with 

manual correction a percentage of lung involvement of more than 20.5% resulted in an RMST 

difference of -2.5 days (95% CI: -3.2;-1.7 days) and a RMST ratio of 0.640 (95% CI: 0.539-0.760), 

which significantly favored the group with less lung involvement (both P<0.001). Additional 

Kaplan-Meier curves with groups based on quartiles of lung involvement are presented in 

Figure E1. 

 

Reader reproducibility 
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 Intrareader agreement was high for both visual and AI-assisted analysis with manual 

correction (Table 3). However, AI-assisted analysis resulted in significantly higher ICC values 

with lower CV for semi-quantitative CT scores (ICC: 0.986 vs 0.935, CV: 11.4% vs 24.9%) and 

quantitative percentage of lung involvement (ICC: 0.997 vs 0.958, CV: 9.7% vs 25.3%). No 

significant intrareader bias was observed with Bland-Altman analysis for both types of analysis 

(Online appendix, Figure E2). 

 Interreader agreement was also high for both visual and AI-assisted analysis with 

manual correction (Table 3). However, AI-assisted analysis resulted in significantly higher ICC 

values with lower CV for semi-quantitative CT scores (ICC: 0.960 vs 0.885, CV: 16.6% vs 25.6%) 

and quantitative percentage of lung involvement (ICC: 0.986 vs 0.925, CV: 17.2% vs 34.7%). No 

significant intrareader bias was observed with Bland-Altman analysis for both types of analysis 

(Online appendix, Figure E3). 

 

Visual analysis vs AI-assisted analysis reproducibility 

 For semi-quantitative CT scores, visual analysis demonstrated average agreement with 

AI-assisted analysis without and with manual correction (ICC: 0.670 and 0.682, respectively), 

whereas the agreement between both AI-assisted analyses was excellent (ICC: 0.990). Overall, 

no significant bias was observed with Bland-Altman analysis along the different types of CT 

analysis (Table 4, Figure 3). However, in patients with more extensive lung involvement, there 

was a tendency for visual analysis to yield higher semi-quantitative CT score when compared to 

AI-assisted analysis (Figure 3A-3B). 
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 For quantitative percentage of lung involvement, visual analysis demonstrated excellent 

agreement with AI-assisted analysis without and with manual correction (ICC: 0.873 and 0.871, 

respectively). Agreement between both AI-assisted analyses, however, was even better (ICC: 

0.997). No significant bias was observed with Bland-Altman analysis along the different types of 

CT analysis (Table 4, Figure 3). Example analyses are shown in Figures 4 and 5. 

 

Sample size estimation for clinical trials 

 On the basis of the interreader variability of chest CT, we estimated sample sizes 

needed to detect significant decreases in lung involvement during a clinical trial (Figure 6). For 

example, a clinical trial intended to show a change of 5% in lung involvement over time (i.e., a 

change from 20% to 15% in lung involvement) with a power of 90% would require 250 patients 

in each group for an AI-assisted analysis, whereas 1014 patients would be required in each 

group for a visual analysis. 

 

Discussion 

 The extent of lung involvement on chest CT in COVID-19 patients has important 

prognostic value and is associated with short-term clinical deterioration. Improved risk 

stratification of COVID-19 patients is crucial for cost-effective patient management by 

prompting safe hospital discharge of low-risk patients and prolonged in-hospital and follow-up 

surveillance of high-risk patients. The role of chest CT as a potential tool for COVID-19 diagnosis 

has been extensively studied with conflicting recommendations, ranging from using CT as a 

first-line screening modality to warnings against its overuse and a false sense of security 
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(21,22). Our results suggest that chest CT may be viewed as a risk stratification tool rather than 

a diagnostic tool per se. However, it is important to realize that chest CT should not be viewed 

as the sole prognosticator in COVID-19 subjects as multiple clinical and biochemical factors 

have been previously shown to be associated with adverse outcome (4,8,23,24). 

 Importantly, we found that an AI-assisted approach improved patient risk stratification 

and reduced variability over a conventional visual approach. These results are in line with 

previous studies showing superior performance of an AI-driven approach for several medical 

image segmentation applications, ranging from organ segmentation to segmentation of the 

vascular network of the human eye (25,26). This success can be attributed to its capability to 

learn representative and unique image features from large datasets, rather than relying on 

individually estimated features based on the subjective experience of human experts. Colombi 

et al. (7) previously found similar prognostic performance of visual and software-based 

quantification of lung involvement on chest CT. The superior performance of an AI-assisted 

approach in our study could be attributed to the recent developments within these software 

packages, whereas their software merely depended on a density-based approach. A density-

based approach works well in normal lungs. Conversely, in lungs with severe COVID-19 

involvement average density is increased and thus thresholding without further texture analysis 

leads to errors (27). 

 Another important advantage of an AI-assisted approach is a reduction in reader 

variability. Understanding variability in measurements of lung involvement on chest CT is crucial 

to interpret changes in lung involvement over time and accurately predict patient outcome. Our 

results suggest that the reproducibility of AI-assisted chest CT analysis is sufficient to accurately 
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monitor treatment response in clinical trials with reasonable sample sizes. However, using only 

a visual analysis resulted in a substantially larger sample sizes (by a factor of 4) and therefore is 

not recommended for future clinical trials. Interestingly, these excellent reproducibility results 

were obtained using low-dose scans with a mean effective radiation dose of 0.60 mSv  0.35 

mSv (SD), suggesting high performance of the AI algorithm even in the presence of substantial 

image noise. Using a low-dose approach for COVID-19 patients may results in important 

radiation dose reductions on a population level as CT scans are extensively being used in the 

diagnostic and prognostic work-up of possible COVID-19 patients. Furthermore, a low-dose 

approach is even more critical in clinical studies where CT is used for follow-up or therapy 

response assessment as these patients would receive multiple CT scans. However, it is 

important to note that during a public health crisis radiation dose consideration should not be 

the determining factor in deciding imaging strategies. 

 This study has several limitations. First, this study represents a single-center experience 

with one type of AI software. The software we used is freely available through the 

postprocessing software by one of the major CT manufacturers worldwide (Syngo.Via, Siemens 

Healthineers) and thus has the potential for broad clinical use. However, these results are only 

valid for the current version of the AI software (v.2.0.) and further research evaluating and 

comparing different AI-based software packages is warranted. Second, true interstudy 

variability was not assessed in our study as this requires a second CT scan within a very short 

time frame (likely within hours of the first scan due to the virulent nature of COVID-19). 

Previous studies, however, have suggested very low interstudy variability in lung volume and 

nodule assessment on chest CT exams (28,29). Therefore, interstudy variability can be 
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approached by using the interreader variability. Third, overall risk stratification of COVID-19 

patients should not solely rely on chest CT findings. Integration of clinical, biochemical, and 

radiological findings is essential for an optimal risk prognostication. Larger studies are needed 

to allow for a more comprehensive, multivariable risk stratification of COVID-19 patients. 

Finally, the use of advanced deep-learning based iterative reconstruction algorithms and state-

of-the-art hardware may result in better image quality at similar radiation doses and could 

theoretically further improve image segmentation (30). 

 In conclusion, AI-assisted analysis of lung involvement on submillisievert low-dose chest 

CT outperformed conventional visual analysis in predicting outcome in COVID-19 patients while 

reducing CT variability. Lung involvement on chest CT could be used as a reliable metric in 

clinical trials. 
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Table 1: Patient Characteristics, CT findings and Radiation Dose Parameters  
 

Physical examination and demographics All (n=250) 
Age (y)* 66.6±17.0 
Male sex 117 (46.8) 
BMI (kg/m2)* 29.1±6.0 
Time since symptom onset (d)† 7 (4-10) 
Clinical symptoms  
 Fever 142 (56.8) 

 Cough 139 (55.6) 

 Dyspnea 131 (52.4) 

 Chest pain 31 (12.4) 

 Myalgia 38 (15.2) 

 Anorexia 102 (40.8) 

 Diarrhea 39 (15.6) 

 Anosmia 11 (4.4) 
CT scan findings  
Ground-glass opacity 219 (87.6) 
Consolidation 127 (50.8) 
Crazy paving 59 (23.6) 
Bilateral involvement 210 (84.0) 
Lymphadenopathy 39 (15.6) 
Pleural effusion 18 (7.2) 
CT scan parameters  
Kilovoltage peak (kVp)  
 100 kVp 114 (45.6) 

 120 kVp 136 (54.4) 
Tube current-time product (mAs)* 22.2±11.4 

CTDIvol (mGy)* 1.39±0.77 
Dose-length product (DLP) (mGy.cm)* 43.2±24.9 
Effective dose (mSv)* 0.60±0.35 
Time between CT scan and result (min)† 20 (12-42) 
Time for AI analysis (min)† 9 (8-9) 
Time for AI analysis with manual correction 
(min)† 12 (8-13) 
Outcome  
Length of hospitalization† 6 (3-11) 
Adverse outcome 39 (15.6) 

 ICU admission 28 (11.2) 

 Death 11 (4.4) 
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Note: Unless otherwise specified, data are numbers of patients, with percentages in 
parentheses. Data are means  SD *. † Data are medians, with interquartile ranges in 
parentheses. 
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Table 2: Restricted mean survival time (RMST) difference, RMST ratio, and restricted mean time 

lost (RMTL) ratio for the different types of analysis. Arm 1 = semi-quantitative CT score or 

percentage of lung involvement higher than optimal cutoff. Arm 0 = semi-quantitative CT score 

or percentage of lung involvement lower than optimal cutoff. 

 
Visual analysis - Semi-quantitative CT score 

Between-group contrast  Estimate 95% CI P-value 
RMST (arm=1)-(arm=0) -0.998 -1.411;-0.584 <0.001 
RMST (arm=1)/(arm=0) 0.854 0.798;0.915 <0.001 
RMTL (arm=1)/(arm=0) 7.895 1.944;32.069 0.004 

Visual analysis - Percentage of lung involvement 
RMST (arm=1)-(arm=0) -1.053 -1.508;-0.599 <0.001 
RMST (arm=1)/(arm=0) 0.845 0.782;0.913 <0.001 
RMTL (arm=1)/(arm=0) 6.066 2.184-16.850 0.001 

    
Automated AI analysis - Semi-quantitative CT score 

Between-group contrast  Estimate 95% CI P-value 
RMST (arm=1)-(arm=0) -2.312 -3.114;-1.509 <0.001 
RMST (arm=1)/(arm=0) 0.656 0.548;0.785 <0.001 
RMTL (arm=1)/(arm=0) 9.379 4.652;18.909 <0.001 

Automated AI analysis - Percentage of lung involvement 
RMST (arm=1)-(arm=0) -2.395 -3.162;-1.629 <0.001 
RMST (arm=1)/(arm=0) 0.648 0.545;0.769 <0.001 
RMTL (arm=1)/(arm=0) 12.775 5.871;27.801 <0.001 

    
AI analysis with manual correction - Semi-quantitative CT score 

Between-group contrast  Estimate 95% CI P-value 
RMST (arm=1)-(arm=0) -2.437 -3.235;-1.639 <0.001 
RMST (arm=1)/(arm=0) 0.639 0.533;0.767 <0.001 
RMTL (arm=1)/(arm=0) 11.021 5.296-22.934 <0.001 

AI analysis with manual correction - Percentage of lung involvement 
RMST (arm=1)-(arm=0) -2.545 -3.214;-1.694 <0.001 
RMST (arm=1)/(arm=0) 0.640 0.539;0.760 <0.001 
RMTL (arm=1)/(arm=0) 14.384 6.297;32.854 <0.001 
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Table 3: Intrareader and interreader reproducibility for visual and AI-assisted analysis of lung 

involvement. 

 Semi-quantitative CT score 
Intrareader reproducibility ICC 95% CI CV Spearman rank correlation r 
Visual analysis 0.935 0.888-0.962 24.9 0.948 
AI manual correction 0.986 0.976-0.992 11.4 0.953 
Interreader reproducibility     
Visual analysis 0.885 0.806-0.933 25.6 0.845 
AI manual correction 0.960 0.931-0.977 16.6 0.957 

 Percentage of lung opacity 
Intrareader reproducibility ICC 95% CI CV Spearman rank correlation r 
Visual analysis 0.958 0.928-0.976 25.3 0.955 
AI manual correction 0.997 0.995-0.998 9.7 0.998 
Interreader reproducibility     
Visual analysis 0.925 0.872-0.957 34.7 0.912 
AI manual correction 0.986 0.976-0.992 17.2 0.98 
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Table 4: Reproducibility between visual analysis, automated AI-assisted analysis, and AI-

assisted analysis with manual correction. 

 Semi-quantitative CT score 

 ICC 95% CI CV Spearman rank correlation r 
Visual analysis vs AI automated 0.670 0.596-0.733 38.8 0.787 
Visual analysis vs AI manual correction 0.682 0.609-0.743 38.4 0.798 
AI automated vs AI manual correction 0.990 0.987-0.992 8.7 0.981 

 Percentage of lung opacity 

 ICC 95% CI CV Spearman rank correlation r 
Visual analysis vs AI automated 0.873 0.840-0.899 54.0 0.847 
Visual analysis vs AI manual correction 0.871 0.838-0.898 54.3 0.851 
AI automated vs AI manual correction 0.997 0.996-0.998 9.1 0.997 

 
 Semi-quantitative CT score 

 ICC 95% CI CV Spearman rank correlation r 
Visual analysis vs AI automated 0.670 0.596-0.733 38.8 0.787 
Visual analysis vs AI manual correction 0.682 0.609-0.743 38.4 0.798 
AI automated vs AI manual correction 0.990 0.987-0.992 8.7 0.981 

Percentage of lung opacity 

 ICC 95% CI CV Spearman rank correlation r 
Visual analysis vs AI automated 0.873 0.840-0.899 54.0 0.847 
Visual analysis vs AI manual correction 0.871 0.838-0.898 54.3 0.851 
AI automated vs AI manual correction 0.997 0.996-0.998 9.1 0.997 
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Figure 1: Cross-validated Receiver-operating characteristic (ROC) curve analysis for prediction 

of adverse outcome based on semi-quantitative CT score (A-C) or quantitative percentage of 

lung involvement (D-F). AI-assisted analysis without and with manual correction outperformed 

visual analysis for both types of assessment (B/C vs A and E/F vs D). 
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Figure 2: Kaplan-Meier curves showing the time to adverse outcome according to the cutoffs of 

semi-quantitative CT score (A-C) and quantitative percentage of lung involvement (D-F). AI-

assisted analysis improved outcome prediction with clear divergence of curves.  
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Figure 3: Bland-Altman plots show reproducibility between visual analysis, automated AI-

assisted analysis, and AI-assisted analysis with manual correction. No significant bias was 

observed with narrower limits of agreement for AI-assisted analysis without and with manual 

correction. 
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Figure 4: Example images from a 48-year-old female patient with RT-PCR confirmed COVID-19. 

CT scan was obtained 14 days after the start of symptom onset at ER presentation and show 

bilateral subpleural areas of consolidation in the lower lobes consistent with limited late-stage 

COVID-19 (arrows in A,B,C). AI-assisted analysis semi-quantitative CT score of 2/25 and 

quantitative lung involvement of 0.29%. No manual correction was required. Visual assessment: 

semi-quantitative CT score of 2/25 and quantitative lung involvement of 1%. 3D reconstruction 

highlights the areas of consolidation in the lower lobes (D). Window center, -600 HU; window 

width 1600 HU; slice thickness, 1 mm; and increment, 0.7 mm for all images. 
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Figure 5: Example images from a 68-year-old female patient with RT-PCR confirmed COVID-19. 

CT scan was obtained 7 days after the start of symptom onset at ER presentation and show 

bilateral extensive subpleural areas of ground-glass opacities and consolidation consistent with 

extensive COVID-19. Automated AI-assisted analysis (A,B) failed to detect small areas of 

ground-glass opacities in the left upper lobe and included part of the thoracic wall into the area 

of consolidation in the right upper lobe (arrows in A and B) (semiquantitative CT score 8/25, 
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percentage of lung involvement 23.60%). Reader manual correction added these small areas of 

ground-glass opacities and corrected the segmentation of the thoracic wall (arrows in C and D) 

(semiquantitative CT score 9/25, percentage of lung involvement 25.24%). Patient was 

admitted to the ICU 1 day later. Window center, -600 HU; window width 1600 HU; slice 

thickness, 1 mm; and increment, 0.7 mm for all images. 

 
Figure 6: Graph shows the estimated sample size required in each group to detect a change in 

percentage of lung involvement with 90% power and 0.05  error. The x-axis represents the 

desired detectable change in lung involvement and the y-axis the corresponding sample size 

needed for visual analysis (blue) and AI-assisted analysis with manual correction (red). 



In 
pre

ss

 31

 

Figure E1: Kaplan-Meier curves showing the time to adverse outcome according to quartiles of 

semi-quantitative CT score (A-C) and quantitative percentage of lung involvement (D-F). AI-

assisted analysis improved outcome prediction with clear divergence of curves.  
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Figure E2: Bland-Altman plots show intrareader reproducibility of semiquantitative CT score 

(A,B) and quantitative percentage of lung involvement (C,D) for visual (A,C) and AI-assisted 

analysis (B,D). No significant bias was observed for all types of analysis. AI-assisted analysis 

showed higher reproducibility with narrower limits of agreement. 
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Figure E3: Bland-Altman plots show interreader reproducibility of semiquantitative CT score 

(A,B) and quantitative percentage of lung involvement (C,D) for visual (A,C) and AI-assisted 

analysis (B,D). No significant bias was observed for all types of analysis. AI-assisted analysis 

showed higher reproducibility with narrower limits of agreement. 

 




