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A B S T R A C T   

The purpose of this work is to give a contribution to the understanding of the COVID-19 contagion in Italy. To 
this end, we developed a modified Susceptible-Infected-Recovered-Deceased (SIRD) model for the contagion, and 
we used official data of the pandemic for identifying the parameters of this model. Our approach features two 
main non-standard aspects. The first one is that model parameters can be time-varying, allowing us to capture 
possible changes of the epidemic behavior, due for example to containment measures enforced by authorities or 
modifications of the epidemic characteristics and to the effect of advanced antiviral treatments. The time-varying 
parameters are written as linear combinations of basis functions and are then inferred from data using sparse 
identification techniques. The second non-standard aspect resides in the fact that we consider as model pa-
rameters also the initial number of susceptible individuals, as well as the proportionality factor relating the 
detected number of positives with the actual (and unknown) number of infected individuals. Identifying the 
model parameters amounts to a non-convex identification problem that we solve by means of a nested approach, 
consisting in a one-dimensional grid search in the outer loop, with a Lasso optimization problem in the inner 
step.   

1. Introduction 

Mathematical models offer a precious tool to public health author-
ities for the control of epidemics, potentially contributing to significant 
reductions in the number of infected people and deaths. Indeed, math-
ematical models can be used for obtaining short and long-term pre-
dictions, which in turn may enable decision makers optimize possible 
control strategies, such as containment measures, lockdowns and 
vaccination campaigns. Models can also be crucial in a number of other 
tasks, such as estimation of transmission parameters, understanding of 
contagion mechanisms, simulation of different epidemic scenarios, and 
test of hypotheses. 

Several kinds of models have been proposed for describing the time 
evolution of epidemics, among which we distinguish two main groups: 
collective models and networked models. Collective models are char-
acterized by a relatively small number of parameters and describe the 
epidemic spread in a population using a limited number of collective 
variables. They include generalized growth models (Chowell, 2017), 
logistic models (Kermack & McKendrick, 1927), Richards models 
(Richards, 1959), Generalized Richards models (Chowell, 2017), 

sub-epidemics wave models (Chowell, Tariq, & Hyman, 2019), 
Susceptible-Infected-Recovered (SIR) models (Bailey, 1975; Di Giam-
berardino & Iacoviello, 2017; Franco, 2020; Garibaldi, Moen, & Pis-
sarides, 2020; Kermack & McKendrick, 1927), Susceptible 
-Infected-Recovered-Deceased (SIRD) models (Caccavo, 2020; Fernán-
dez-Villaverde & Jones, 2020), Susceptible-Exposed-Infectious 
-Removed (SEIR) models (Casella, 2020; Chowell, 2017), and the 
Susceptible-Infected-Diagnosed-Ailing-Recognized-Threatened-Healed 
-Extinct (SIDARTHE) model (Giordano et al., 2020). SIR, SIRD, SEIR, 
SIDARTHE and other similar models belong to the class of the so-called 
compartmental models (Brauer, 2017; Chowell, 2017). Networked 
models typically treat a population as a network of interacting in-
dividuals and the contagion process is described at the level of each 
individual, see, e.g., Keeling and Eames (2005), Nadini, Rizzo, and 
Porfiri (2020), Nowzari, Preciado, and Pappas (2015), Pastor-Satorras, 
Castellano, Van Mieghem, and Vespignani (2015), Pastore Piontti, 
Gomes, Samay, Perra, and Vespignani (2014), Pellis et al. (2015), 
Wertheim et al. (2014), Della Rossa et al. (2020), Zino, Parino, Porfiri, 
and Rizzo (2020), Della Rossa et al. (2020) and Di Bernardo et al. 
(2020). These models clearly provide a more detailed description of the 
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epidemic spread than collective models, but their identification is also 
significantly harder. A first reason is that they are typically character-
ized by a high number of parameters and variables, while data is usually 
noisy and limited in quantity, a situation that makes these models prone 
to overfitting. A second reason, perhaps more relevant, is that the 
network topology is unknown in most real situations and its identifica-
tion is an extremely hard task. In this paper, we focus on a collective 
approach which, thanks to its relative simplicity, can be more suitable 
for non-expert operators and public health authorities, and it can pro-
vide simple but reliable models, even under scarcity of data. 

Collective models are typically written in the form of differential 
equations or discrete-time difference equations describing the evolution 
in time of average quantities, and are characterized by a set of param-
eters that are not known a-priori and have to be identified from data. 
The identification of such parameters raises several issues, as discussed 
next. A first problem is that standard models like SIR, SIRD and SEIR are 
typically characterized by constant parameters. However, in a real 
epidemic scenario, parameter changes may occur, for example due to 
control measures applied by authorities, population behavioral changes 
and/or modifications of the epidemic characteristics. Time-invariant 
parametric models may not be able to capture the effects of such 
changes, thus providing poor prediction performance. Another problem 
is that an important variable in many epidemic models is the number of 
individuals that are infected at a given time. However, in a real epidemic 
scenario, only the number of infected individuals that have been 
detected as “positive” (e.g., after a swab test) is available, while the 
actual number of infected people remains unknown. A common 
assumption made in the literature is that the observed cases are the 
actual ones. Clearly, this assumption is unrealistic and may lead to 
wrong epidemiological interpretations and conclusions. Other issues 
stem from the fact that identification of epidemic models requires in 
many cases to deal with non-convex optimization problems. Indeed, a 
key feature of an epidemic model is to provide reliable results in long- 
term predictions, in order to allow analysis and comparison of 
different scenarios and design of suitable control strategies. Hence, 
identification has to be performed with the objective of minimizing the 
model multi-step prediction error. This typically requires solving a non- 
convex optimization problem, even when the model is linear in the 
parameters, with the ensuing relevant risk of being trapped in poorly- 
performing local solutions. Furthermore, the initial values of some 
model variables have often to be identified, in addition to the model 
parameters, and this also requires solution of a non-convex optimization 
problem. 

In this paper, we propose a parameter-varying modification of the 
SIRD model, developed in order to capture possible structural changes of 
the epidemic characteristics. The second contribution consists in a 
model identification and prediction framework that allowed us to 
overcome the mentioned problems in the modeling of the infection 
evolution of the present COVID-19 pandemics. The model identification 
approach is based on a simple yet practically effective scheme: a model 
structure is assumed, characterized by a set of parameters to be identi-
fied. The time-varying parameters are written as linear combinations of 
basis functions. A grid is defined for the single parameter on which the 
model has a nonlinear dependence. For each point of this grid, the other 
parameters are identified by solving a convex Lasso-type optimization 
problem. This produces an overall efficient methodology that is able to 
reach the global optimal solution of the identification problem. 

In general, this approach is expected to provide reliable parameter 
estimates. However, the resulting model may be not extremely precise in 
long-term predictions, since the optimization is focused on the mini-
mization of the one-step prediction error, but not on the minimization of 
multi-step prediction errors (this latter problem would be highly non- 
linear and non-convex in the unknown parameters). To partly over-
come this issue, we propose here to compute forward predictions based 
on a weighted average of the multi-step predictions performed by 
starting the simulation at all the available initial conditions. The 

weighted average indeed seems to provide a reduction of noise and error 
effects, possibly yielding significant improvements in the long-term 
prediction accuracy, as it can be noticed from the numerical analysis 
of the current COVID-19 epidemic in Italy presented in Section 5. This 
paper has been first submitted on July 1, 2020. The epidemiological data 
considered in this work cover the time span from Feb. 23, 2020 to June 
22, 2020. 

2. A continuous-time SIRD model 

In the following discussion by “infection” we shall mean the COVID- 
19 infection. We consider a geographical region, assumed as isolated 
from other regions, and within such region we define the following 
quantities:  

• S(t): the number of individuals susceptible of contracting the infection 
at time t;  

• I(t): the number of individuals that are alive and infected at time t;  
• R(t): the cumulative number of individuals that recovered from the 

disease up to time t;  
• D(t): the cumulative number of individuals that deceased due to the 

disease, up to time t. 

The dynamics of the infection can be described approximately by a 
variation of the Kermack-McKendrick equations, as given in Bailey 
(1975). Clearly, since the nature of the epidemic phenomenon changes 
with time, especially due to containment measures taken by govern-
ments, we shall not expect a constant-parameters model to be a good fit 
for all phases of the pandemics. For this reason, we first introduce a 
constant parameters model, and then discuss a more general 
parameter-varying version of this model in Section 4. The model we 
consider is described by the following equations 

Ṡ(t) = − β
S(t)I(t)

S(t) + I(t)
(1)  

İ(t) = β
S(t)I(t)

S(t) + I(t)
− γI(t) − νI(t) (2)  

Ṙ(t) = γI(t) (3)  

Ḋ(t) = νI(t), (4)  

where β is the transmission rate of the disease, γ is the recovery rate, and ν 
is the death rate. Underlying hypotheses in this model are that the 
recovered subjects are no longer susceptible of infection, and that the 
number of deaths due to other reasons (different from the disease under 
consideration) are neglected. Further, the region under consideration is 
assumed to be isolated from other regions, and this is a reasonable 
assumption when containment measures such as travel bans are 
enforced. 

The model is initialized at some conventional t = 0 with values S(0)
> 0, I(0) = I0 > 0, and R(0) = R0 ≥ 0, D(0) = D0 ≥ 0. We let C(t)≐R(t)
+D(t) denote the removed individuals (i.e., those individuals that are 
removed from the susceptible pool due to death or immunization), then 
the model is rewritten in the standard form 

Ṡ(t) = − β
S(t)I(t)

S(t) + I(t)
(5)  

İ(t) = β
S(t)I(t)

S(t) + I(t)
− ηI(t) (6)  

Ċ(t) = ηI(t), (7)  

where η≐γ + ν. Notice that it holds that 
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Ṡ(t) + İ(t) + Ċ(t) = 0, ∀t,

whence S(t) + I(t) + C(t) = N, ∀t, where N = S(0) + I(0) + C(0) repre-
sents the fraction of the total population which is affected by the 
contagion. It is important to observe that N is typically unknown, since it 
is unknown, for instance, the initial number S(0) of susceptible in-
dividuals. For these reasons, we shall consider N as one of the model 
parameters that need be identified from data. More precisely, we let N be 
proportional to the actual population Pop of the region of interest, and 
denoting by ω ∈ [0, 1] the (unknown) fraction, we have that 

S(t) + I(t) + C(t) = ωPop, ∀t ≥ 0  

whence 

S(t) = ωPop − I(t) − C(t) = ωPop − I(t) − (R(t) + D(t)) (8)  

2.1. Closed-form solution 

The system of ordinary differential Eqs. (5)–(7) has a closed form 
solution for t ≥ 0, see Bohner et al. (2018): 

S(t) = S0(1 + κ)ϱ
(1 + κexp((β − η)t))− ϱ

I(t) = I0(1 + κ)ϱ
(1 + κexp((β − η)t))− ϱexp((β − η)t)

C(t) = N − S0(S0 + I0)
ϱ
(S0 + I0exp((β − η)t))− ϱ

,

where κ≐I0/S0 and ϱ≐β/(β − η). 

2.2. Steady state 

The steady-state values reached by (1) depend on the initial condi-
tions and on the sign and value of ϱ. Indeed, letting S, I, and C be the 
steady-state values of S, I, and R, respectively, we have Ṡ = İ = Ċ = 0 for 
SI = 0, I = 0. Due to conservation S(t) + I(t) + C(t) = S0 + I0 + C0 = N,

∀t, we have that 

S + C = N,

where C = C0 + η
∫∞

0 I(t). The stationary values of S and C depend on the 
sign of ϱ as follows: 

ϱ > 0 ⇒ S = 0, C = N
ϱ < 0 ⇒ S = S0(1 + κ)ϱ

, C = N − S0(1 + κ)ϱ
.

Since D = D0 + ν
∫∞

0 I(t), we have that D = D0 + ν
γ+ν (C − C0), whence we 

obtain the asymptotic number of deaths 

D =

⎧
⎨

⎩

D0 +
ν

γ + ν (S0 + I0) if ϱ > 0

D0 +
ν

γ + ν (S0 + I0 − S0(1 + κ)ϱ
) if ϱ < 0.

Note that ϱ− 1 = 1 − η/β, hence ϱ > 0 ↔ η/β < 1. In this situation, the 
infection rate β is larger than the rate of removal η≐γ +ν, and the 
infection extinguishes due to complete depletion of the susceptible 
individuals. 

It will be shown in Section 5.1.1 that the early-stage, pre-lockdown, 
model indeed provides parameter estimates such that β > η, while the 
post-lockdown model yields β < η, thus showing that containment 
measures avoided the potential situation in which all susceptible in-
dividuals become infected. Also, the full model we develop in Section 4, 
with time-varying parameters, shows a similar behavior, with β(t) > η(t)
in the early part of the time evolution of the contagion, and β(t) < η(t) in 
the later stages. 

2.3. Detected vs actual infections 

In Eqs. (5)–(7) the number I(t) of infected individuals is intended to 

be the actual (real) one. However, the contagion tests (e.g., swabs) are 
performed only on a subset of the population, see, e.g., Mizumoto, 
Kagaya, Zarebski, and Chowell (2020), hence at any given time it is only 
possible to detect a number ̃I(t) of infected individuals which is smaller 
than the actual one. We here assume that ̃I(t) is a fixed (but unknown) 
fraction of the actual number I(t), that is, 

I(t) = αĨ(t), for some α ≥ 1.

If we make the reasonable simplifying assumption that the rate of re-
covery (as well as the rate of death) remains the same among detected 
and undetected infected individuals, then it follows that the number of 
recovered individuals is also related to the detected recovered as R(t) =
αR̃(t) and, similarly, that the deaths of detected patients are a fraction of 
the actual deaths caused by the infection, that is D(t) = αD̃(t). We 
further define S(t)≐αS̃(t). Plugging these into (5)–(7), we obtain that the 
following differential equations hold 

˙̃S = − β
S̃(t)̃I(t)

S̃(t) + Ĩ(t)

˙̃I = β
S̃(t)̃I(t)

S̃(t) + Ĩ(t)
− ηĨ(t)

˙̃C = ηĨ(t),

where the initial conditions are ̃I(0) and 

S̃(0) = qPop − Ĩ(0) − R̃(0) − D̃(0), q≐
ω
α. (9)  

In terms of R̃(t) and D̃(t), we have the equations 

˙̃S = − β
S̃(t)̃I(t)

S̃(t) + Ĩ(t)
(10)  

˙̃I = β
S̃(t)̃I(t)

S̃(t) + Ĩ(t)
− γĨ(t) − νĨ(t) (11)  

˙̃R = γĨ(t) (12)  

˙̃D = νĨ(t). (13)  

We notice that the model (10)–(13) in the observed (measured) quan-
tities is identical to the model in the actual quantities (1)–(4), with the 
only difference given by the scaled initial conditions in (9), where q ∈ [0,
1] is an unknown parameter that shall be identified from data. This 
model, in its discretized form, is the basis for identification of the un-
known parameters, which are β, γ,ν,q. 

3. Model identification 

3.1. Discrete-time model in regression form 

In the rest of this paper, we shall work with a discrete-time version of 
model (10)–(13). Taking a discretization period of duration one day, and 
letting t = 0, 1,… denote the discrete time instants, we substitute de-
rivatives with the incremental difference and obtain the following 
discrete-time version of the model: 

S̃(t + 1) = S̃(t) − β
S̃(t) Ĩ(t)

S̃(t) + Ĩ(t)
, (14)  

Ĩ(t+ 1) = Ĩ(t) + β
S̃(t) Ĩ(t)

S̃(t) + Ĩ(t)
− γ Ĩ(t) − ν Ĩ(t), (15)  

R̃(t+ 1) = R̃(t) + γ Ĩ(t), (16) 
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D̃(t+ 1) = D̃(t) + ν Ĩ(t). (17)  

A mean-field interpretation for these equations can be given as follows: 
under a flat prior, the probability that one random person from the 
population is susceptible is 

Psusceptible(t) =
S(t)

S(t) + I(t) + R(t)
≤

S(t)
S(t) + I(t)

.

Let E{c} denote the average number of contacts that one person may 
have with other persons during a day, and let ι denote the probability of 
contagion. Then, each infected individual, in one day, infects on average 
at most ιE{c} S(t)

S(t)+I(t) individuals. The number of newly infected in-

dividuals in one day is therefore upper bounded, on average, by β I(t)S(t)
S(t)+I(t),

where β≐ιE{c} is the transmission rate of the contagion. The last two 
equations in the model express the fact that, during each period and on 
average, a fraction γ of the infected recovers, while a fraction ν of them 
dies. 

Next, note that the dynamics (14)–(17) can be rewritten as 

⎡

⎢
⎢
⎣

S̃(t + 1) − S̃(t)
Ĩ(t + 1) − Ĩ(t)
R̃(t + 1) − R̃(t)
D̃(t + 1) − D̃(t)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
S̃(t)̃I(t)

S̃(t) + Ĩ(t)
0 0

S̃(t)̃I(t)
S̃(t) + Ĩ(t)

− Ĩ(t) − Ĩ(t)

0 Ĩ(t) 0

0 0 Ĩ(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
β
γ
ν

⎤

⎦.

Hence, defining the difference vector 

Δ(t)≐

⎡

⎢
⎢
⎣

S̃(t + 1) − S̃(t)
Ĩ(t + 1) − Ĩ(t)
R̃(t + 1) − R̃(t)
D̃(t + 1) − D̃(t)

⎤

⎥
⎥
⎦

we may express the model equations in regression form as 

Δ(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
S̃(t)̃I(t)

S̃(t) + Ĩ(t)
0 0

S̃(t)̃I(t)
S̃(t) + Ĩ(t)

− Ĩ(t) − Ĩ(t)

0 Ĩ(t) 0

0 0 Ĩ(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

β

γ

ν

⎤

⎥
⎥
⎦

= Φ(t; q)θ,

(18)  

where θ≐(β, γ, ν). Our objective is to identify the model on the basis of 
observed data. For a given time horizon T > 0, the observed data at t =
0, 1,…,T, are ̃I(t), R̃(t), D̃(t). From these data, we construct S̃(t) as 

S̃(t) = qPop − Ĩ(t) − R̃(t) − D̃(t), t = 0, 1,…,T.

The parameters to be estimated are q ∈ [0, 1], and the positive rates β, γ,
ν. Notice that the transition matrix Φ(t; q) depends on q nonlinearly, 
through the dependence of S̃(t) on q. 

We define a quadratic cost with forgetting factor w ∈ (0,1]

f (q; θ)≐
1
T
∑T− 1

t=0
wT − t‖ Δ(t) − Φ(t; q)θ ‖

2
2.

The estimation problem amounts to solving minq;θf(q; θ) under con-
straints that θ ≥ 0, q ∈ [0,1], and that S̃(t) ≥ 0 for all t = 0,1,…,T. This 
constraint is guaranteed to hold if 

q ≥ qmin≐ max
t=0,…,T

Ĩ(t) + R̃(t) + D̃(t)
Pop

.

We observe that, for fixed q, the minimization of f with respect to θ = (β,
γ, ν) can be done efficiently by solving a linearly constrained least- 
squares problem. We call this the inner step of the identification algo-
rithm. The dependency of f on q is instead non-convex, hence we 
approach this issue via an outer gridding, as detailed in the following 
algorithm.  

1. Grid n values qi of q in [qmin,1]. For each of these qi:  
2. Solve the constrained least-squares problem f∗i = minθ≥0f(qi; θ) and 

let θ∗i be an optimal solution.  
3. At the end of the loop, retain the qi value that yielded the minimal 

value of f∗i , and return this qi along with the corresponding θ∗i . 

4. SIRD model with time-varying parameters 

In this section we discuss how to modify our regression model so to 
include estimation of time-varying parameters while retaining the effi-
cient structure of the identification algorithm. To this end, we consider 
the following parameterized families of time functions for the 
parameters: 

q(t) = π0(t) + qπ(t) (19)  

β(t) =
∑n1

i=1
βibi(t) (20)  

γ(t) =
∑n2

i=1
γigi(t) (21)  

ν(t) =
∑n3

i=1
νimi(t), (22)  

where b1(t),⋯, bn1 (t), g1(t),⋯, gn2 (t), m1(t),⋯,mn3 (t), with n1, n2, and n3 

being the numbers of basis functions employed to represent β, γ, and ν,
respectively, are given time profiles, q ∈ [0, 1] is a scalar parameter, and 
β≐(β1,…, βn1

), γ≐(γ1,…, γn2
) and ν≐(ν1,…, νn3 ) are parameter vectors. 

To give an example, one may assume that β(t) follows a logistic profile: 

β(t) = β1b1(t) + β2b2(t)

= β1
exp( − (t − tℓ)/τβ)

1 + exp( − (t − tℓ)/τβ)
+ β2

1
1 + exp( − (t − tℓ)/τβ)

,
(23)  

where β1 has the practical meaning of infection rate in early stages on 
the infection (i.e., for t≪tℓ), β2 has the meaning of asymptotic infection 
rate, tℓ is the time at which lockdown measures become effective, and τβ 

tunes the rapidity of transition from the pre-lockdown rate to the post- 
lockdown rate. Similarly, the coefficient q(t) can be assumed to be of 
the form q(t) = π0(t) + qπ(t), with 

π0(t) =
1

1 + exp
(
−
(
t − tp

)/
τp
), π(t) =

exp
(
−
(
t − tp

)/
τp
)

1 + exp
(
−
(
t − tp

)/
τp
)

where tp is the time at which contagion tests over the population start 
increasing, and τp is their rate of increase. 

When some of the parameters, such as, e.g., τβ in (23), cannot be 
guessed using prior knowledge, we may include several possible values, 
say τ(1)β ,…, τ(r)β in an extended basis of the form 

β(t) =
∑r

i=1

(

β(i)
1

exp
(
− (t − tℓ)

/
τ(i)β

)

1 + exp
(
− (t − tℓ)

/
τ(i)β

)+ β(i)
2

1
1 + exp

(
− (t − tℓ)

/
τ(i)β

)

)

,

and let a sparse identification method select the useful components of 
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the basis, as discussed in Section 4.1.1. 

4.1. Regression model with time-varying parameters 

Let us define 

F̃(t) ≐
S̃(t)̃I(t)

S̃(t) + Ĩ(t)
,

B(t) ≐ [ b1(t) ⋯ bn1 (t) ],

G(t) ≐
[

g1(t) ⋯ gn2 (t)
]
,

M(t) ≐ [m1(t) ⋯ mn3 (t) ],

We rewrite the regression model (18) as 

Δ(t) =

⎡

⎢
⎢
⎣

− F̃(t)β(t) 0 0
F̃(t)β(t) − Ĩ(t)γ(t) − Ĩ(t)ν(t)

0 Ĩ(t)γ(t) 0
0 0 Ĩ(t)ν(t)

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

− F̃(t)B(t) 0 0
F̃(t)B(t) − Ĩ(t)G(t) − Ĩ(t)M(t)

0 Ĩ(t)G(t) 0
0 0 Ĩ(t)M(t)

⎤

⎥
⎥
⎦

⎡

⎣
β
γ
ν

⎤

⎦

= Φ(t; q)θ,

where θ = (β, γ, ν) is the augmented vector of model parameters. It is 
immediate to verify that the algorithm described in the previous section 
still works in the present context, that is, we solve the identification 
problem by an outer gridding on the scalar parameter q, and an inner 
loop in which we solve a constrained least-squares problem on the 
parameter vectors. 

4.1.1. Over-parameterization and sparse model identification 
The described approach lends itself to the following sparse identifi-

cation approach: if we are uncertain about the values of some parame-
ters of the time functions (such as, e.g., the time constants τβ and τp in the 
previous example), we can consider an expansion of the form (19)–(22) 
with many basis functions bi(t), gi(t),mi(t), e.g., one for each of the many 
assumed values of the time constants, and, correspondingly, a large 
number of coefficients βi, γi and νi to be estimated. The idea is then to let 
the identification algorithm single out which of the many basis functions 
is useful for the identification purposes, by seeking a solution with a 
sparse coefficient vector. A similar approach has been employed for 
instance in Calafiore, Ghaoui, and Novara (2015) in the context of 
posynomial identification problems. The described goal can be achieved 
by considering a modified cost function of the Lasso type: 

f1(q; θ)≐
1
T
∑T− 1

t=0
wT − t‖ Δ(t) − Φ(t; q)θ ‖

2
2 + λ‖ θ ‖1,

where λ ≥ 0 is a tradeoff parameter that weights the accuracy of the 
solution and its sparsity level. 

4.1.2. Guessing the shape of the basis functions 
In order to help guessing the shape of the basis functions B(t), G(t),

and M(t) that may be used to define the time profile of the model pa-
rameters in (20)–(22), it is possible to use a simple inversion of the 
nonlinear model. Namely, let us consider Eq. (18) and assume that the 
(scalar) parameters β, γ, ν may vary with time. For a given value of q, at 
each t we may invert Eq. (18) and obtain 
⎡

⎣
β̂(t)
γ̂(t)
ν̂(t)

⎤

⎦ = Φ†(t; q)Δ(t) (24)  

for t = 0,1,⋯,T, where Φ†(t; q) is the Moore-Penrose pseudoinverse of 

Φ(t; q). The values β̂(t), γ̂(t), and ν̂(t), t = 0,⋯,T, constitute a time- 
varying proxy for the parameters β, γ, and ν of the model. Plotting 
β̂(t), γ̂(t) versus t can provide the user with an idea of the basis functions 
to be used in B(t), G(t), and M(t). In case no useful information can be 
obtained from these plots, a standard generic basis (for instance, poly-
nomial) may be chosen for the parameters. 

4.2. Constructing predictions 

We propose a multi-simulation method for constructing forward 
predictions, once the model has been identified from data. Consider 
model (14)–(17) and assume that its parameters in (20)–(22) have been 
identified using data over the horizon 1,…,T, where 1 denotes the first 
day of the estimation period and T the last one. Let x(t, t0) denote the 
value at t ≥ t0 of the system’s state (S̃(t), Ĩ(t), R̃(t), D̃(t)) when the model 
starts at given initial conditions at t0. Observe that for t0 = 0, 1,…,T the 
value of the initial condition x(t0) = (S̃(t0), Ĩ(t0), R̃(t0), D̃(t0)) is known 
from observed data and from the estimated value of q. Then, at any t > T 
we compute the state prediction x̂(t) according to the exponentially- 
weighted average 

x̂(t)≐
1
2T x(t, t0) +

∑T

τ=1

1
2T+1− τ x(t, t0 + τ), t0 = 0, t > T. (25)  

It can be observed that the formula given in (25) is the result of appli-
cation of the following iterations: 

1: initialize x̂(t) as x(t, t0), with t0 = 0
2: for τ = 1 to T do
3: update x̂(t) as x̂(t)← 1

2 x̂(t) +
1
2 x(t, t0 + τ)

4: end for
Therefore, Eq. (25) is the result of a sequence of steps, each of which 

iteratively averages the current prediction x̂(t) with a new one built on 
the basis of new initial conditions. This averaged approach to prediction 
is intended to alleviate the effect of noise on the observed initial 
conditions. 

5. The COVID-19 contagion in Italy 

In this section we apply the described identification and prediction 
techniques to the modeling of various stages of the COVID-19 contagion 
in Italy. Our analysis considers both aggregated data over all Italy and 
region-specific data from the four most affected regions in Italy, that is 
Lombardia, Piemonte, Emilia-Romagna, and Veneto. We use the official 
data from Italian Protezione Civile, available at https://github.com/pc 
m-dpc/COVID-19. 

5.1. Analysis of aggregated data for Italy 

In order to better understand the evolution of the COVID-19 conta-
gion in Italy, we need to take into account the following key events and 
dates:  

• February 23, 2020: can be considered as the formal start date of the 
COVID-19 contagion in Italy, with the institution of a localised 
lockdown for certain municipalities in the Lombardia and Veneto 
regions.  

• March 8–9, 2020: first Decree of the Prime Minister (dpcm), 
extending the first localised measures to all national territory, with 
ban of people gathering and stop to sport events.  

• March 11, 2020: total lockdown on all national territory. The Prime 
Minister orders the shutdown of all commercial activities, with the 
exception of basic goods and necessities.  

• March 20, 2020: access is banned to parks and public gardens; open- 
air recreational activity is banned. 
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• March 22, 2020: all non-essential or non-strategic industrial pro-
duction activities are closed, till the end of the month.  

• April 1: lockdown is extended to April 13th.  
• April 10: lockdown is extended to May 3rd.  
• April 26: Decree of the Prime Minister ordering the initial release of 

some restriction measures, starting from May 3rd.  
• May 3, 2020: beginning of phase 2.  
• May 16, 2020: Decree of the Prime Minister phase 2, in effect from 

May 18th.  
• June 11, 2020: Decree of the Prime Minister authorising general 

opening, in effect from June 15th. Social distancing and other 
measures (e.g., wearing masks in closed places) remain in place. This 
is referred to as phase 3. 

Fig. 1 shows a plot of the daily deaths (national data for Italy) with 
black dashed line, and the scaled number of active infected individuals 
with solid red line. The scaling is performed in order to show the 
approximate proportionality between the daily deaths and the number 
of active infected, in the early stage of the contagion. This figure also 
highlight the key dates at which containment measures have been 
enforced or released. 

5.1.1. Constant parameter models 
In this section, we use the technique illustrated in Section 3.1 for 

identifying models for the COVID-19 contagion in Italy, assuming con-
stant parameters in the model. Two different models are determined, by 
fitting the parameters using data from two different time intervals. 

Early stage model: Data from February 24th to March 27th of the 
COVID-19 spread in Italy have been used to fit a model of its early stage 
using the procedure detailed in Section 3.1. The date of March 27th 
corresponds to 15 days after the full national lockdown; it is the date at 
which the containment measures begin to become visible in the data. 

Fig. 2 depicts the value attained by the objective function 
minθ≥0f(q, θ) for different values of the parameter q in the range [qmin,1]. 

The optimal parameter values obtained using the procedure given in 
Section 3.1 with qmin = 0.0014 and forgetting factor w = 0.9 are 

q= 0.011,β= 0.123,γ= 0.018,ν= 0.014.

Fig. 3 depicts the multi-simulation prediction — carried out as 
detailed in Section 4.2 — obtained by using the identified early stage 
model with the parameters given above. Model identification was car-
ried out using the data corresponding to the time interval from “Start 
day” to “End day”. 

As shown by Fig. 3, the early stage model overestimates in the pre-
diction the number of infected, recovered, and deceased individuals. 
This is essentially due to the fact that such a model does not account for 
the control measures that have been taken to reduce the spread of 
COVID-19, such as lockdown, social distancing, etc., since it has been 

Fig. 1. Overall evolution of the COVID-19 contagion in Italy. Daily deaths and scaled number of active infected individuals (national data for Italy). The I(t) scaling 
factor is 0.014. 

Fig. 2. Objective cost as a function of q in the early stage model.  
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trained only using the early-stage data. 
Late stage model: The data from March 27th to May 18th of the 

COVID-19 spread in Italy have been used to fit a model of its late stage, 
including the lockdown period, using the procedure detailed in Section 
3.1. The optimal parameter values obtained by using the procedure 
given in Section 3.1 with qmin = 0.0037 and forgetting factor w = 0.7 are 

q= 0.014,β= 0.012,γ= 0.038,ν= 0.002.

Fig. 4 depicts the multi-simulation prediction — carried out as 
detailed in Section 4.2 — obtained by using the identified late stage 
model with the parameters given above. 

As shown by Fig. 4, the late stage model is capable of predicting the 
evolution of the post lockdown spread of COVID-19 for a prediction 
period of 36 days forward with remarkable accuracy. 

On the other hand, using a single model with constant parameters for 
the whole period from February 24th to May 18th presents degraded 
prediction performance. In fact, the procedure detailed in Section 3.1 
has been used to fit a model on these data. The optimal parameter values 
obtained using the procedure given in Section 3.1 with forgetting factor 
w = 0.9 are 

q= 0.0137,β= 0.0142,γ= 0.0302,ν= 0.0025.

Fig. 5 depicts the multi-simulation prediction — carried out as detailed 
in Section 4.2 — obtained using the identified model. 

As shown by Fig. 5, the model with constant parameters, fitted over 
the whole period, shows somewhat degraded prediction performance in 
the number of infected individuals. 

5.1.2. Time-varying parameters models 
Motivated by the prediction performance of the model with constant 

parameters over the whole period from February 24th to May 18th, the 
main goal of this section is to show that, rather than using two models 
with constant parameters, it is possible to design a single model with 
time-varying parameters that is capable of representing the overall 
evolution of the contagion. A possible design approach is to use the lo-
gistic basis functions described at the beginning of Section 4, which 
essentially lead to piece-wise constant values of the model parameters 
with smooth transitions. However, the fitting performance with such 
shape functions resulted to be poorer than the one obtained by using 
alternative exponential and polynomial basis functions described below. 
Therefore, the functional form of the basis functions B(t), G(t), and M(t)
has been selected as a mixture of negative exponentials and polynomial 
functions, namely  

Fig. 3. Multi-simulation prediction with the early stage model (constant parameters).  

Fig. 4. Multi-simulation prediction with the late stage model (constant parameters).  

G.C. Calafiore et al.                                                                                                                                                                                                                            



Annual Reviews in Control 50 (2020) 361–372

368

Then, the procedure outlined in Section 4.1.1 has been used to deter-
mine the 45 entries of the vector θ and the parameter q so to fit the model 
to data. The tradeoff parameter λ in the Lasso has been fixed to λ = 10,
leading to ‖ θ ‖0 = 26, and the parameter shapes in Fig. 6 have been 

obtained. Inspecting the values attained by the parameter ϱ(t) = β(t)/
(β(t) − γ(t) − ν(t)), we obtained that ϱ(t) > 0 for t ≤ 58 and ϱ(t) < 0 for 
t ≥ 59, with t = 59 corresponding to April 22nd. The model then cap-
tures the transition from the expansive phase to the controlled phase on 

Fig. 5. Multi-simulation prediction with the full data model (constant parameters).  

Fig. 6. Identified shape of the parameters for national data. Time is expressed in days since Feb. 24, 2020.  
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the contagion, and predicts a nonzero steady-state value for S̃. 
Further, observe that the time behavior of the fitted parameters 

shown in Fig. 6 is consistent with their expected dynamics. In fact, the 
infection rate β is expected to decrease thanks to the employment of 
personal protection equipment, social distancing, improved personal 
hygiene, and to the detection and isolation of positive individuals. On 
the other hand, the recovery rate γ and the death rate ν are expected to 
increase and decrease, respectively, thanks to the use of more effective 
treatments for the disease. 

Fig. 7 depicts the multi-simulation prediction — carried out as 
detailed in Section 4.2 — obtained by using the identified time-varying 
model with the parameters given above. 

As shown by Fig. 7, a single time-varying model suffices to fit the 
COVID-19 contagion data in Italy both in its early stage and in its late 
stage. Furthermore, the time-varying model is capable of predicting the 
evolution of the post lockdown spread of COVID-19 for a prediction 
period of 41 days forward with remarkable accuracy. 

5.2. Analysis of regional data 

In this section, the analysis carried out in the previous section 
considering Italy as a single region is replicated with a focus on each of 
the four most affected regions in Italy, that is Lombardia, Piemonte, 
Emilia-Romagna, and Veneto. The same basis functions considered in 
the previous section have been used to fit a model for each region, using 
the regional data of COVID-19 spread from February 24th to May 13th. 

Fig. 8 depicts the parameter shapes identified using regional data and 
Fig. 9 shows the multi-simulation prediction — carried out as detailed in 
Section 4.2 — obtained by using the identified time-varying models. 

As shown by Fig. 8, the time behavior of the parameters for the 
regional models is qualitatively similar to the ones obtained from the 
national model. The only main difference between these behaviors is the 
non-monotone evolution of the recovery rate γ(t) in the Veneto region, 
which presents a minimum at March 21st. This might be linked with the 
stress over intensive care units at the end of March. However, such 

interpretations shall be taken with care, since specific behaviors might 
as well be just artifacts of the numerical identification procedure. By 
observing the time behaviors of the parameters, we can also identify the 
instants at which the contagion passes from the expansive phase 
(ϱ(t) > 0) to the controlled phase (ϱ(t) < 0), which resulted to be May 
1st in Lombardia, April 27th in Piemonte, April 16th in Emilia- 
Romagna, and April 16th in Veneto. 

Fig. 9 finally shows that the proposed time-varying model has quite 
good prediction capabilities in all regions. 

6. Discussion 

In this paper, a parameter-varying modification of the SIRD model 
has been proposed for describing and predicting the behavior of the 
COVID-19 contagion in Italy. Identifying the parameters of this model is 
a non-trivial non-convex problem, for the solution of which we proposed 
an approach based on two nested steps: a grid search in the outer loop, 
and a Lasso optimization problem in the inner step. This approach has 
been applied to modeling of the COVID-19 contagion in Italy, consid-
ering both aggregated national data and regional data from the most 
affected regions in Italy. In all the considered cases (national and 
regional), the identified parameter-varying models resulted effective in 
fitting the COVID-19 contagion data, both in the early and late stages, 
and in providing accurate predictions of the evolution of the post lock-
down epidemic behavior over a forward period of 41 days. Besides these 
results, the proposed identification approach allows us to have a more 
detailed understanding of the contagion mechanism with respect to 
standard time-invariant methods. Indeed, a first important conclusion 
that can be drawn from Figs. 6 and 8, is that the control measures 
imposed by the authorities seem to have been effective in reducing the 
key transmission rate parameter β. Another interesting observation is 
that the decrease of this parameter mainly occurs in the first 40 days of 
the epidemics, and the corresponding trend-inversion of the contagion is 
observed in the data with a delay of about 15 days, see Figs. 7and 9. 
Furthermore, a comparison of the different situations in the four 
considered regions can be made by looking at Figs. 8 and 9. It can be 

Fig. 7. Multi-simulation prediction with the time-varying model (national data).  
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seen that the epidemics decrease is at a more advanced stage in Veneto, 
Emilia Romagna and Piemonte, whereas Lombardia is still characterized 
by a relatively high number of infected. 

Figs. 6 and 8 show also that the recovery rate tends to increase with 
time, and the death rate to decrease: this phenomenon, which seems not 
directly related to the lockdown, can be attributed to different causes, 
among which a better understanding of the disease and consequent 
improvement in the effectiveness of the response from the national 
health system, and possibly a change in the nature, virulence and 
lethality of the virus. This phenomenon can also be observed directly 
from the raw data, considering the ratio between the number of in-
dividuals that needed Intensive Care in a given day, and the total 
number of active infected individuals in the same day, see Fig. 10. This 
ratio decreased from an initial figure of above 10% in the early stages of 

the infection to a figure below 1% in the later stages of the infection, 
showing that the clinical effects of the contagion have reduced greatly 
with time. 

In conclusion, the proposed COVID-19 modeling approach can be 
helpful for obtaining epidemic models that are able to describe different 
phases of the contagion. These models can give reliable short and long 
term predictions, and also provide useful insight about the contagion 
mechanisms. Given their time-varying structure, these models could also 
be effective for simulating different epidemic scenarios, testing various 
hypotheses, and also for designing suitable control measures by 
considering the time-varying parameters in the role of control inputs. 

Fig. 8. Identified shape of the parameters for regional data. Time is expressed in days since Feb. 24, 2020.  
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Fig. 9. Multi-simulation prediction with the time-varying model for regional data.  
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