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Abstract: Skull bone represents a highly acoustical impedance mismatch and a dispersive
barrier for the propagation of acoustic waves. Skull distorts the amplitude and phase information
of the received waves at different frequencies in a transcranial brain imaging. We study a novel
algorithm based on vector space similarity model for the compensation of the skull-induced
distortions in transcranial photoacoustic microscopy. The results of the algorithm tested on a
simplified numerical skull phantom, demonstrate a fully recovered vasculature with the recovery
rate of 91.9%.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photoacoustic imaging (PAI) is a promising recent technology, which works based on acoustic
detection of optical absorption from tissue chromophores, such as oxy-hemoglobin (HbO2) and
deoxy-hemoglobin (Hb) [1–8]. Photoacoustic microscopy (PAM) is one of the implementations
of PAI with micrometer spatial resolution. One of the fast-emerging applications for PAM has
been to study the brain in rodents [4–6,9–16]. Transcranial photoacoustic microscopy (TsPAM),
in particular, is of a great importance for longitudinal studies. Despite the thin skull in rodents
(i.e., 0.23 mm to 0.53 mm in mice [16,17] and 0.5 mm to 1 mm in rats [18]), due to the use of
high frequency transducers, TsPAM is challenging, and the photoacoustic (PA) pressure waves
are usually distorted and experience attenuation, dispersion, and longitudinal to shear mode
conversion [16,19–22]. Here, we used distortion and aberration interchangeably.
The findings about the effect of skull on acoustic pressure waves are as follows. Skull bone

represents a highly acoustical impedance mismatch and dispersive barrier for the propagation
of acoustic waves [23–25], that distorts the amplitude and phase of the received acoustic waves
[20,21]; the acoustic attenuation occurs due to the absorption and scattering of the skull tissue and
affects the magnitude of the acoustic waves [19,26,27]; the acoustic dispersion is the frequency
dependency of the speed of sound in the skull and it distorts the phase of the acoustic wave [26];
the degree of attenuation and dispersion are defined by the density, porosity, and thickness of
the skull [28]; frequency-dependent reduction of acoustic wave amplitude contributes to the
broadening of the received acoustic signal at the transducer [29]; the significantly higher speed of
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sound in the bone ( 2900 m/s [16]) as compared to brain’s soft tissue ( 1500 m/s [30]) makes the
acoustic waves travel faster through the skull and be detected earlier, leading to a different time
shift for individual frequency components, and contributes to broadening of the received acoustic
signal at the transducer [9,19–21]; skull-originated reverberations occur due to the reflection
of acoustic waves from the skull-tissue interface [9,20,21]; longitudinal to shear wave mode
conversion occurs when a wave encounters an interface between materials of different acoustic
impedances with the incident angle not being normal to the interface [22].

Several analytical and numerical compensation algorithms have been designed for correcting
the skull-induced aberrations in transcranial ultrasound wave propagation. These methods can be
broadly classified to ray-based [19,31] and wave-based [31–37]. Ray-based methods calculate
the correcting phases through ray tracing and numerical simulation. In the wave-based methods
such as time-reversal, the pressure waveform over time is recorded, reversed, and re-emitted to
focus on the location of the desired target, providing corrections for both phase and amplitude.
A review of phase correction methods can be found in [38]. In addition to the above methods,
recently, a deconvolution-based algorithm, was proposed by Estrada et al. for skull-induced
distortions correction in transcranial optoacoustic microscopy (OAM) [20].

The skull’s aberration correction methods implemented so far, are either fast but not accurate,
time consuming or require an axillary imaging modality to acquire the structural information
of the imaging target. On the other hand, among modern computational methods, although
used for improved image reconstruction [39–47], there has not yet been any study on machine
learning (ML) for skull’s aberration correction. Here, we introduce a novel algorithm based
on the vector space similarity (VSS) model, for the first time, in conjunction with a ray-tracing
simulation to correct for the skull-induced distortions for the images generated by a TsPAM. VSS
has been used, for the first time, in Cornell system for the mechanical analysis and retrieval of text
(SMART) in 1960s [48]; it has widely been used in intelligent information retrieval from search
engines [49] to big data platforms such as biomedical documents [50]. We employ a modern
take on of the VSS model in the context of matching between the extremum information in the
distorted skull-induced PA time-frequency domain signal and the reference signals generated by
our recently developed ray-tracing-based simulation [21,51–53]. Additional justification for the
application of VSS model is based on the successful use of it in PAM post-processing for tissue
vasculature classification [54], and quantification of tissue response to cancer treatment [55].

2. Methods

2.1. PA wave propagation model

For the purpose of the simulation of the PA initial pressure wave propagation from a point
source, a semi-analytical numerical acoustic solver is used that was recently developed by us
[21]. The solver is based on a deterministic ray-tracing approach in the time-frequency domain
that considers a homogenized single layer model for the skull, taking into account dispersion,
reflection, refraction and mode conversion between the skull surfaces. Attenuation of light due to
the skull or depth is ignored and it is assumed that sufficient initial pressure is generated at the
imaging target location, and the acoustic attenuation for the initial pressure traveling towards the
skull surface has been considered.
The imaging target is assumed to be a combination of many point sources. The impulse rays

propagated to the first fluid-solid interface, multiplied by the skull’s transmission coefficient and
propagated further. This procedure is repeated until all the rays reach the transducer’s surface.
The PA signal is produced by convolving each individual frequency component of the initial
pressure with its corresponding impulse response. When the skull is not present, the ray is simply
propagated through a free space and travels directly towards the transducer’s surface.
Figure 1 shows the 2-D illustration of the simplified numerical skull phantom that is used in

our simulations. The imaging target is a vessel represented by 27007 point sources. The diameter
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of the vessel varies between 30 µm and 150 µm, and the entire vessel is located at the averaged
depth of 5 mm. In this simulation the axial and lateral resolutions are considered 6 µm and 10
µm, respectively. We modeled every initial pressure point source as a sphere with the radius
of r0. The spherical point sources generate broadband spherical acoustic waves. A single layer
homogenized skull tissue with a thickness variation between 0.5 mm and 2.5 mm is considered.
The outer-skull surface considered to be flat but the inner-skull surface is quantized as locally-flat
surfaces. This is done to approximately study the effect of varying skull thickness on the resulting
image. The space between the skull and the target is modeled with the same acoustic properties
as the brain soft tissue [22,30]. A flat ultrasound transducer with an element diameter of 2rd,
30 MHz center frequency, and 100% bandwidth is used. The transducer is in contact with the
outer-skull surface through ultrasound gel. The acoustic properties of the skull, brain soft tissue,
and the ultrasound gel that are used in our simulations are listed in Table 1.

Fig. 1. 2-D illustration of a simple model of numerical skull phantom used in our simulations.
The initial pressure point source modeled as a sphere with the radius of r0 at a depth of
d from the outer-skull surface. A single layer homogenized skull tissue with a thickness
variation between 0.5 mm and 2.5 mm is considered. The solid acceptance angle of the
transducer is indicated by the dashed lines.

Table 1. Acoustic properties of skull, brain soft tissue, and the ultrasound gel used in the
simulations.a

Symbol (Unit) Brain soft tissue Skull Coupling medium (ultrasound gel)

ρ (kg/m3) 1000 [22] 1800 [16] 1000 [56]

cL (m/s) 1500 [30] 2900 [16] 1486 [56]

cS (m/s) — 1444 [16] —

α0L (Np/cm) 0.05 [30] 1.70 [22] 0.00 [56]

yL 1.18 [30] 0.93 [22] —

α0S (Np/cm) — 3.41 [22] —

yS — 0.93 [22] —

a—: Data is not available
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2.2. Vector space similarity model

Our proposed method is based on VSS model, in which no direct signal amplification or shift
will be performed, instead the compensated signal is reconstructed according to the similarity
between the skull-affected signal and the signals in the training dataset [49,57]. To describe the
VSS model, let’s suppose we have a numeric database, q = (fq1, fq2, . . . , fqn) , and the goal is
to find the most similar data from the training dataset, i.e., di = (f i1, f i2, . . . , f in), to the desired
query with the defined similarity features. Where, di is the ith data in the training dataset, q is
the desired query, and f ij and fqj are the jth feature vectors of di and q, respectively. The dot
product of each query feature vector in all corresponding feature vectors of the training dataset is
calculated, then the cosine similarity measure is used to find the minimum angle between query
and training dataset as indicated in Eqs. (1) and (2); “.” is the notation of the intersection or dot
product and “‖ ‖” is the notation of the norm of vector.

cos(f ij, f qj) =
f ij.f qj

‖ f ij ‖ . ‖ f qj ‖
=

Σnk=1fij,k.fqj,k√
Σnk=1f

2
ij,k.

√
Σnk=1f

2
qj,k

(1)

Similarity(f ij, f qj) = arccos(
Σnk=1fij,k.fqj,k√
Σnk=1f

2
ij,k.

√
Σnk=1f

2
qj,k

) (2)

2.3. Aberration correction algorithm

The aberration correction algorithm uses the PA signal extremum information in the time-
frequency domain as feature vector. The algorithm is as follow. The input to the algorithm is
“with skull” signals. The signals are initially decomposed to their time-frequency components
using the short-time Fourier transform (STFT) [58]. For the implementation of the STFT in this
study, the signals are discretized at a rate of 250 Megasamples per second and 32 frequencies are
modeled. Then for each frequency given, vectors of features, namely TimeVector and AmpVector,
are extracted as follow.

PA signal vector space (For real and imaginary parts individually)
For each frequency fi in the signal:
TimeVector:

Temporal delay
Time points at which minimum occurs (mnpt1,mnpt2,. . . ,mnptk)
Time points at which maximum occurs (mxpt1,mxpt2,. . . ,mxptk)

AmpVector:
Minimum peak amplitudes (mnpa1,mnpa2,. . . mnpak)
Maximum peak amplitudes (mxpa1,mxpa2,. . . ,mxpak)

Then, the dot product of the obtained feature vectors in each of the corresponding vectors of
the training dataset (di) are calculated and divided by the norms of the vectors to yield the cosine
of the angle between them. The similarity is then calculated via the arccos of the obtained value.
For each frequency, the overall similarity of each reference signal from the training dataset to the
query data (q) (the skull affected signal) is calculated as the mean of its feature vector similarity
(see Eq. (3)). The mean similarity is then calculated between similarities in all frequencies for
each two pairs and created a similarity metric vector.

Similarity(q, di) =
1
2
(Similarity(Ti,Tq) + Similarity(Ai,Aq) (3)

Where, Ti and Tq are the TimeVectors of di and q, respectively, and Ai and Aq are the AmpVectors
of di and q, respectively.
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Finally, the minimum of the similarity metric vector is used to select the best matched reference
signal. For each frequency, according to the temporal delay and maximum amplitude difference
between the input signal and the corresponding matched reference signal, the appropriate
amplification coefficients and time shifts are performed on the “without skull” signal (see
Algorithm (1)).

Input :ws - photoacoustic signal with skull.
ts - training dataset of with/without tuples

Output :cwo - compensated signal
Data: ws, cwo are time traces of photoacoustic signal. ts is a set of with-without tuples

decomposed by frequencies and represented by feature vectors namely TimeVector
(signal temporal delay and time points at which signal extremum occurs) and
AmpVector (signal extremum amplitudes). wsf is an array of complex values at
different times and frequencies between 12 MHz and 48 MHz with 1.16 MHz step
size.

Initialization :wsf [] ← STFT(ws)
wsff [] ← ExtractFeatures(wsf [])

foreach tuple tp in ts do
foreach frequency fi in wsff [] do

dotProduct← wsfTimeVector · tpTimeVector;
angleCos← dotProduct/(‖ wsfTimeVector ‖‖ tpTimeVector ‖);
timeAngle← arccos(angleCos)

dotProduct← wsfAmpVector · tpAmpVector;
angleCos← dotProduct/(‖ wsfAmpVector ‖‖ tpAmpVector ‖);
ampAngle← arccos(angleCos)

anglei ← 0.5 · (timeAngle + ampAngle);
end
Similaritytp = Average(anglei; i = 0 ... freqCount);

end
matchedPair← Minimum(Similaritytp; tp ∈ ts);
avgShift = AverageShift(matchedPair.with,ws);
avgAmp = AverageAmp(matchedPair.with,ws);
result = shift(amplify(matchedPair.without, avgAmp), avgShift);
RETURN result

Algorithm 1: Pseudo-code of the skull-induced aberration correction algorithm

2.4. Training dataset

We created a large training dataset of “without skull” and “with skull” signals (with different
skull thicknesses (from 0.3 mm to 2.5 mm with 0.1 mm step size), and different imaging depths
(from 0.1 mm to 25 mm below the skull surface with 0.5 mm step size)), and then extracted the
abovementioned features from the “with skull” signals, creating 1150 training dataset.
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3. Results

3.1. Skull-induced aberration compensation: investigation on time traces

Initially, we evaluated the compensation algorithm in correcting the induced aberration of the PA
signal produced from a 0.1 mm absorbing sphere and passes through a skull tissue. The tested
scenarios are as follows. (i) Skull thickness of 0.5, 1, and 2 mm, when the absorbing sphere is
located at the depth of 5 mm, (ii) skull thickness of 1 mm, when the absorbing sphere is located
at the depths of 2, 8, and 20 mm. The unaberrated (i.e., without skull), aberrated (i.e., with skull)
and compensated signals are shown in Fig. 2 and Fig. 3.

Fig. 2. Skull-induced aberration compensation of PA signals produced from a 0.1 mm
absorbing sphere passing through a skull tissue with the thickness of 1 mm located at depths
(a) 2 mm, (b) 8 mm, and (c) 20 mm. (i) Signal amplitudes and (ii) signal gradients. In this
simulation, there is a 5 mm layer of ultrasound gel between the ultrasound transducer and
the skull.

Fig. 3. Skull-induced aberration compensation of PA signals produced from a 0.1 mm
absorbing sphere located at the depth of 5 mm passing through a skull tissue with the
thicknesses of (a) 0.5 mm, (b) 1 mm, and (c) 2 mm. (i) Signal amplitudes and (ii) signal
gradients. In this simulation, there is a 5 mm layer of ultrasound gel between the ultrasound
transducer and the skull.
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We extracted the PA background noise, comprised of a combination of electronic noise and
system thermal noise from an experimental setup, and added that to our simulated signals to
evaluate the tolerance of our compensation algorithm to noise. The experimental setup was
as follow. An Nd:YAG laser (PhocusMobil, Opotek Inc., CA, USA) with a repetition rate of
10 Hz and a pulse width of 8 ns was used. For light delivery, we used a custom fiber bundle
(Newport Corporation, Irvine, CA, USA). For data acquisition, a Verasonics Vantage 128 system
was used. For PA signal detection, L22-14v linear array (Verasonics Inc., USA) ultrasound
probe with 128-elements and 18.5 MHz central frequency and 65% bandwidth was used. On
the imaging end, the transducer was placed and held perpendicularly to the sample. A 2 mm
diameter carbon lead phantom in water was imaged at 690 nm. The noise was extracted following
the deconvolution algorithm explained in [59]. We used 100 frames of data and modeled the
noise distribution. The noise signal was normalized, and two levels of noise were formed: 10%
and 20%. The noise signals were then added to some of the distorted signals in Fig. 2 and Fig. 3.
The compensation algorithm were applied to the noisy PA signals. The results of this experiment
are shown in Fig. 4.

In order to improve the accuracy of the compensation algorithm, we considered a pre-processing
step before compensation, where we thresholded low amplitude samples (< 5% of the signal
peak) to zero.

The results in Fig. 2 and 3 show that the signal distortion due to both time shift and amplitude
distortion have well been recovered. The gradient of the recovered signal and undistorted
signals are almost identical which suggest that both the depth of target and skull thickness
do not introduce phase distortions to the recovered signal. Figure 4 shows that with a noisy
distorted signal, the compensation algorithm still recovers the undistorted signal. The phase
information however is not affected unless there is a steep rise or fall in the signal; such distortion
is translated in displacement of the components of the imaging target in axial direction and slight
speckle-looking artifact in the image. Comparing the results in Figs. 4 a, b, c, and d, one can
conclude that the amplitude recovery of our proposed compensation algorithm is more sensitive
than time shift recovery.

To quantify the performance of the compensation algorithm, we defined a quantitative measure,
we called it: “recovery percentage”, calculated as:

recovery_ percentage (%) = (1 −
l2(| signalcomp | − | signalwithout |)

l2(| signalwithout |)
) × 100 (4)

Where, l2 norm is calculated as the square root of the sum of the squared signal sample values.
Table 2, shows the recovery percentage for the results showed in Figures (2–4).

Table 2. Recovery percentage calculated for compensated original signal, noisy signal with
10% noise and with 20% noise.

Recovery percentage (%)
Depth of target (d) = 5mm Thickness of the skull (h) = 1mm

h = 0.5mm h = 1mm h = 2mm d = 2mm d = 8mm d = 20mm

Original Signal 97.24 97.26 93.97 96.33 98.20 96.80

Noisy Signal (10% noise) 97.23 95.86 83.30 95.41 97.18 96.64

Noisy Signal (20% noise) 97.14 94.58 83.22 93.91 95.47 96.76

3.2. Skull-induced aberration compensation: investigation on synthetic TsPAM images

The compensation algorithm was then applied to aberrated signals collected from a synthetic
PAM experiment (see the setup and the imaging target in Fig. 1). The results are shown in Fig. 5.
A representative depth profile of the unaberrated, aberrated and compensated images (indicated
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Fig. 4. Skull-induced aberration compensation of PA signals produced from a 0.1 mm
absorbing sphere passing through a skull tissue. (a) Skull thickness is 2 mm and the target is
located at 5 mm depth (PA signal is contaminated with 10% background noise), (b) skull
thickness is 2 mm and the target is located at 5 mm depth (PA signal is contaminated with
20% background noise), (c) skull thickness is 1 mm and the target is located at 20 mm depth
(PA signal is contaminated with 10% background noise), and (d) skull thickness is 1 mm
and the target is located at 20 mm depth (PA signal is contaminated with 20% background
noise). (i) Signal amplitudes and (ii) signal gradients. In this simulation, there is a 5 mm
layer of ultrasound gel between the ultrasound transducer and the skull.
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with green dotted lines in the images in Fig. 5(a)) are plotted in Fig. 5(b). As can be seen in
Fig. 5(b), the axial profile has been almost perfectly recovered, in terms of both amplitude and
phase. The recovery percentage calculated for the compensated image was 91.9%.

Fig. 5. Aberration correction of TsPAM images. (a) Synthetic TsPAM image acquired from
the experimental setup depicted in Fig. 1, (i) unaberrated image, (ii) aberrated image, (iii)
compensated image. (b) A representative depth profile, indicated with green dotted lines in
images in (a), of the unaberrated, aberrated and compensated images.

Using the same method explained in the results section (a), we created two noisy aberrated
TsPAM images, one with 10% and one with 20% noise (see Fig. 6(ii)). We then compensated
the images, the results are shown in Fig. 6(iii). The recovery percentage calculated for these
compensated images are 90.60% and 87.95%, respectively.

3.3. Execution time analysis

Both the signal simulator [21] and the compensation algorithm were implemented in Java
openJDK 13. All the signal processing were conducted in MATLAB R2016a. Utilizing a
hexa-core Intel Core i7 CPU with 6 cores, 32 GB of RAM, and 3.60 GHz, the compensation
algorithm, took 24 ± 2 ms for one task of compensation; with the current code, the compensation
is done offline. By implementing the compensation algorithm in graphical processing unit (GPU)
or in field programmable gate array (FPGA), hundreds or thousands fold speed-up is achievable,
that could make the real-time compensation of the signal in the data acquisition line feasible.

3.4. Non-flat skull aberration compensation: preliminary results

We evaluated our compensation algorithm to correct aberrated PA signal produced from a 0.1
mm spherical absorber and passed through an angled skull tissue when the absorbing sphere was
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Fig. 6. Aberration correction of noisy TsPAM images, reproduced from the TsPAM in
Fig. 5, (a) with 10% noise, and (b) with 20% noise. (i) Unaberrated image, (ii) aberrated
image, and (iii) compensated image.

located at the depth of 5 mm from the outer-skull surface. The pressure wave travels a longer path
when passes the angled skull; the larger the angle, the longer the travel time. Table 3, shows the
preliminary results for skull thickness variation (i.e., ∆h), the percentage of the signal transmitted,
and the recovery percentage of the distorted signal after compensation at angles θ = 5◦ to 30◦
relative to the transducer axis. Since the critical angle for the fluid-solid interface is about 31◦
[22], we reported simulation results for angles up to 30◦ only.

Table 3. Non-flat skull aberration compensation. Skull thickness variation (∆h), transmitted signal
percentage, and recovery percentage of the distorted signals generated with non-flat skulls with

angles from 5◦ to 30◦ versus the transducer axis.

θ (◦) ∆h (µm) Transmitted signal (%) Recovery percentage (%)

5 7.64 99.13 91.99

10 31 95.72 72.76

15 71 88.66 89.29

20 128 81.73 90.94

25 207 72.58 95.29

30 309 58.87 94.80
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4. Discussion

We study a novel algorithm based on VSS model for quasi real-time compensation of the
skull-induced distortions in transcranial photoacoustic microscopy. Although VSS is an effective
and efficient similarity measurement algorithm, it is not the only similarity algorithm that is
explored in the literature. There are other similarity metric such as Pearson Correlation Coefficient
(PCC) [60] that works based on similar principle but with a heavier computational complexity.
Both VSS and PCC have trouble in distinguishing different importance of features. To deal
with this problem, many variations of similarity measurement including weighting approaches,
combination measures, and rating normalization methods have been developed [61].

The skull-induced aberration compensation algorithm described here is designed for TsPAM
imaging. The proposed compensation method is based on the longitudinal PA waves generated
from a single point source which is placed in the axis of the point detector and the effect of
other adjacent sources on the PA signal is neglected. Therefore, the transducer receives waves
with only small incident angle with almost no shear wave component. The consideration of the
point source can be accurately assumed if the lateral resolution of the image is governed by the
diffraction-limited size of the focused light beam. The simulated numerical phantom results
(Figs. 5 and 6), confirmed the ability of the proposed algorithm to accurately compensate for the
four previously explored skull-induced acoustic distortions [20], including the signal amplitude
attenuation, time shift, signal broadening, and multiple reflections (Figs. 2 and 3); due to the
high attenuating effect of the skull, the multiple reflections cannot be visualized in simulated
aberrated signals. In Fig. 3(a), only one peak can be visualized after the main peak which is
because of the strength of the first reflection at the skull surface when the thickness of the skull
was 0.5 mm. With thicker skulls, the attenuation induced by the skull makes the reflected signals
too weak such that they cannot be visualized. The noise tolerance of the compensation algorithm
was also tested. It was shown that the recovery rate is only slightly affected with the presence of
10% and 20% noise; the error appears as a mild speckle-looking artifact in the image that can
easily be removed by median and mean filters. We also observed that the amplitude recovery of
our proposed compensation algorithm is more sensitive than the time shift recovery.
The main feature of the algorithm is its simplicity and fast execution time that are translated

in its light computation. Introducing more parallelism to the implementation of the algorithm
is possible in various ways. One possible way is to convert the code from currently used
CPU-based multi thread execution to GPU accelerated execution. There are two independent
anchor points within the compensator code that can be utilized for this purpose: (i) using 32
cores in parallel to calculate similarity of a given signal against the training dataset through
evaluation of feature-vector angles in which 32 is the number of frequency channels used, and
(ii) employing a GPU/many-core system with each core responsible to check similarity with
one or a predefined subset of the dataset. Obviously, use of the first method would decrease the
computation time for a single A-line by a factor of 32 while the latter can decrease the entire
end-to-end compensation time with a factor equal to the number of cores; this can be up to 7000
for modern GPUs. The fact that our method can easily be segregated amongst parallel threads
argues for a FPGA-based hardware implementation to be plausible which can be integrated into
the transducers, outputting aberration compensated image in real-time.
The proposed method is independent from the skull anatomy. This is a valuable feature of

our proposed algorithm because in a TsPAM experiment, the anatomy of the skull as well as the
spatial characteristics of the skull are not available. In this preliminary work, we assumed that
the skull is flat and perpendicular to the transducer axis.

Although the compensation algorithm is based on preparing a training set, it is not considered
a machine learning algorithm, mainly because it does not have a layered kernel to yield the
compensated signal from the input aberrated signal.
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The aberration compensation proposed algorithm has several limitations: (i) the skull is
considered as a homogenized single layer bone with smooth surfaces and no curvature; (ii)
the brain is considered as a homogenized soft tissue with constant acoustic properties; (iii)
attenuation of light due to the skull or depth is ignored and it is assumed that sufficient initial
pressure is generated at the imaging target location; (iv) PA signal is assumed to be generated
from a single point spherical source and the effect of other adjacent sources on the PA signal
is neglected; (v) the simulation framework and wave propagation model could be extended to
simulate a line-shaped absorbing source to account for a realistic shape of the optical absorption
source in the tissue.
In a real-world application after we acquire raw data from a TsPAM system, we will use our

proposed algorithm as explained in Section 2.3, with only one change which is, adding more data
to the VSS training dataset. So far we have trained the VSS algorithm only with flat skulls. In the
future, by using finite-element method the skull surface will be segmented into very small regions
(that are comparable to the acoustic wavelength). These small regions can each be approximated
as a layer with a flat surface but angled versus the axis that connects the transducer (defined as a
point detector) and the absorbing target (defined as a point source). Our simulator [21] will then
generate data with different angles of the flat skull (see Table 3 representing preliminary data
related to angled skull transmission) to determine how much of the incident signal is diffracted
and how much of it received by the transducer; such data will be added to the VSS training
dataset.

5. Conclusion

We developed a skull-induced aberration compensation algorithm based on vector space similarity
model and ray-tracing-based simulations. The main feature of the algorithm is its simplicity and
fast execution time. We demonstrated the effectiveness of the algorithm tested on numerical
phantoms with a recovery percentage of 91.9%; i.e., 91.9% of the distorted signal due to the
amplitude attenuation, time shift, and signal broadening were retrieved. By adding noise to the
aberrated signals, the noise tolerance of the algorithm was evaluated; the recovery percentage
was decreased to 90.60% (adding 10% noise) and 87.95% (adding 20% noise). Using GPU and
FPGA for parallel implementation of the code, considering more sophisticated skull and tissue
models, and taking into account the effect of the fluence, are the future plans of the current study.
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