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Abstract: An optical fiber interferometer-based ballistocardiography (BCG) monitoring system
aided with the IJK complex detection algorithm is proposed in this paper. A new phase modulation
method based on a moving-coil transducer is developed to address the problem of signal fading
in the optical fiber interferometer and keep the system in quadrature by the closed loop controller.
As a result, a stable BCG signal without baseline drift can be obtained. This BCG monitor based
on optical fiber interferometer using phase modulation method owns the advantages of compact,
low-cost, portable, and user-friendly. In addition, an end-to-end modified U-net is developed to
conduct pixel-wise classification in the BCG signal. This network can achieve high accuracy
and shows its capability to segment IJK complex and body movement in the BCG signal. In
conclusion, the proposed BCG monitoring system with IJK complex segmentation algorithm is
potential and promising in healthcare applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the modern aging society, health caring has always been the major concern, especially in some
developed countries. Vital signs monitoring, which can help to assess the health condition of
human body, are significant in many healthcare applications. Among them, heartbeat monitoring
is particularly important as cardiovascular diseases (CVDs) have become the leading death cause
among various fatal diseases in the world [1]. For heartbeat monitoring, long-term service
is essential no matter in clinic or home usage. To achieve long-term heartbeat monitoring,
various methods or standards were proposed to characterize the heartbeat signal, such as
electrocardiography (ECG) and photoplethysmography (PPG). ECG signal is the record of the
electrical activity with heart pumping blood and it has been widely accepted as the main method
to diagnose CVDs. During ECGmonitoring, multiple electrodes are required to attach on specific
positions of body and each pair of electrodes is called the lead. The 12-lead ECG is widely
used in clinic [2]. Other than ECG, PPG is the biological signal measured via optic method,
which can obtain the plethysmography of organs by placing a pulse oximeter on the finger [3].
PPG signal is based on the blood flow change and thus can be collected from the variation in
the intensity of transmitted light (or reflected light) on the skin. Both PPG and ECG signals
collection requires skin contact, which are developed as wearable devices. The wearable devices
will inevitably discomfort the users, especially for heartbeat monitoring in the long-term way.
Therefore, for long-term heartbeat monitoring, non-invasive and non-wearable heartbeat monitors
will be preferred and may become popular in near future.

Ballistocardiography (BCG), which is the measurement of body recoils produced by heart
ejection during every cardiac cycle, can be used to monitor cardiac activities in an unobtrusive
way. A completed BCG signal is composed of multiple peaks, including H, I, J, K, L peak,
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and these peaks own corresponding physiological significance. For instance, the amplitude
of major wave J peak is related to the aortic pulse pressure [4]. The BCG signal was firstly
observed by Gordon in 1877 [5], and Isaac Starr et al. developed an instrument to measure this
signal in a scientific manner in 1939 [6]. However, due to some limitations on measurement
methods, BCG-related technology was not developed further and gradually replaced by ECG.
Nowadays, BCG regains the spotlight with evolved sensing techniques and signal processing
methods. In recent years, various BCG detection methods have been proposed. For example,
O. T. Inan et al. proposed a standing BCG monitor based on a modified commercial bathroom
scale in 2009 [7]. The obtained BCG recording matched well with the synchronously measured
Doppler echocardiography. In addition, J. Alametsa et al. built a sitting position monitor based
on electromechanical film (EMFi) sensor to measure BCG signal and demonstrated its better
performance than acceleration sensors [8]. M. Liu et al. developed a low-power piezoelectric
film sensor to track BCG signal in both sitting and standing positions [9]. However, these BCG
detection approaches are based on the electronic sensing technology, which owns the intrinsic
disadvantages of low-sensitivity and incapability for severe applications, such as vital signs
monitoring in magnetic resonance imaging (MRI) with electromagnetic interference. Moreover,
to remove the baseline drift during BCG detection, which is caused from ambient factors, multiple
filters need to be introduced in the hardware system. It may lead to the signal distortion and
degrade the further disease diagnosis performance.

Optical fiber sensor-based vital signs monitors have attracted much attention among researchers
due to their intrinsic merits such as high sensitivity, immunity to electromagnetic interference
and low cost. For example, a fiber Bragg grating (FBG) strain sensor was proposed to acquire
BCG and respiration signals of patients during the MRI survey and the high accuracy was
proved by the Bland-Altman analysis [10]. In addition, a micro bending optical fiber sensor was
demonstrated to measure breath/heartbeat rate (BR/HR) and BCG waveform [11]. However, the
demodulation devices of FBG sensors are bulky and quite expensive, which is not suitable for
practical applications. The sensitivity of micro bending-based sensors is limited, which may lose
the BCG details. To overcome these drawbacks, our group focus on the phase-sensitive optical
fiber interferometer schemes and several vital signs monitors have been demonstrated [12–14].
However, optical fiber interferometers are subject to the signal fading effect, which also makes
the sensor unsuitable for long-term monitoring. Although many modulation and demodulation
technologies can be utilized to address the signal fading problem, such as 3× 3 coupler-based
signal demodulation [15] and piezoelectric transducer-based (PZT) phase modulation [16], they
are also exposed to some limitations for specific BCG monitoring. For example, piezoelectric
cylinders are bulky and cannot be integrated into a compact BCG monitoring system. Therefore,
in this paper, we propose a BCG monitoring system utilizing a new phase modulation method
based on the moving-coil transducer to realize the long-term and stable heartbeat monitoring.
The proposed transducer is compact and low-cost, which can be easily integrated into the sensing
system without any bulk component. The phase modulation method can keep the interferometric
output signal in quadrature by the closed loop controller and transducer.
Since BCG signal can be interfered and distorted by the motion artefact and ambient noise

during the measurement, effective individual heartbeat signal extraction in the BCG signal is
a crucial task for further HR analysis and CVDs diagnosis. Currently, many signal processing
methods are proposed to locate J peak or IJK complex in the BCG signals. Among them, template
matching is a common method based on the correlation between a fixed heartbeat template and
the obtained signal [17]. Other than that, the dispersion-maximum algorithm is also adopted to
detect J peak and calculate the HR [18]. In addition, machine learning algorithm, such as k-means
clustering and support vector machine (SVM), are proposed to classify different peaks and thus
extract J peak from BCG signals [19–20]. Also, a composite method consisting of convolutional
neural network (CNN) and extreme learning machine (ELM) is used to detect the IJK complex
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[21]. However, these methods are limited on some points. For example, template matching
method depends heavily on the fixed individual heartbeat template while the waveforms of BCG
signal are variable, which results in low robustness. Traditional machine learning algorithms,
which is commonly used in classification tasks, need to design and extract features. The process
is time-consuming and largely depends on the expert knowledge. Although the deep learning
algorithm, which can directly extract features, is used in [21], the ECG is necessary to assist
in segmentation of BCG signal to find the approximate location of J peaks. Therefore, in this
paper, based on the collected signal, we propose an end-to-end deep learning algorithm based
on modified U-net to segment IJK complex and body movement signal in high-resolution from
the BCG. The features can be learned by the network during training without another features
engineering. More importantly, the BCG signal can be directly fed into the network without
much processing, such as removing body movement signal, which largely simplifies the signal
processing. In conclusion, in our work, we demonstrate a BCG monitoring system based on an
optical fiber interferometer adopting a new phase modulation method, which can remove the
baseline drift to realize stable and accurate BCG signal collection. For signal processing, we
propose an end-to-end modified U-net to segment the IJK complex and body movement signal
with high accuracy. This BCG monitoring system can be an effective method to monitor cardiac
activity in non-invasive and long-term way, which owns great potential in healthcare applications.

2. BCG monitoring system

The BCG monitoring system is shown in Fig. 1. It consists of the Mach-Zehnder interferometer
(MZI)-based BCG monitor, phase shifter and proportional-integral-derivative (PID) controller,
the detailed introduction of which are presented in the subsequent section. The MZI and phase
shifter are fixed on a plastic substrate, which can be packaged as a smart cushion to achieve
non-invasive BCG monitoring. The sensing area for BCG signal detection of sitting subjects is
highlighted as yellow dotted box. The light source is a DFB laser operating at 1550 nm while the
receiver is a low-speed photodetector (PD). The arms of MZI, including the sensing arm and
reference arm, are fixed in the parallel form. The phase shifter is placed outside the sensing
area, which is used to maintain the interferometer system in quadrature by a PID controller. The
received signal in the PD will be divided into two channels. Channel 1 (CH1) is the raw data and
channel 2 (CH2) is obtained results through a low-pass filter (LPF), which will be fed into the
PID controller. The controller can compensate the phase drift to make sure the system works in
the quadrature point through the phase shifter. The raw data from CH1 is collected by a DAQ
card (National Instrument, USB6001).

2.1. Mach-Zehnder interferometer-based BCG monitor

The BCG monitor is based on the highly sensitive optical fiber MZI. The optical fiber MZI
contains two 3 dB couplers, which work as optical splitter and optical coupler to form interference.
A PD is used to convert the BCG related variational optical intensity signal to the electrical
signal. The output optical intensity I can be expressed by

I = I1 + I2 + 2
√

I1I2 cos(ϕ), (1)

where I1 and I2 are output optical intensities from two arms and ϕ is the optical phase difference
within these two arms, which can be given by

ϕ =
2πn
λ
(L1 − L2) =

2πn
λ
δL, (2)

where λ is the central wavelength of laser and n is the refractive index of standard optical fiber.
L1 and L2 are the length of two arms while δL is their length difference. In MZI design, the
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Fig. 1. The BCG monitoring system.

two arms of the interferometer are about 40 cm long and their length difference is 5mm. These
two arms are bent side by side without overlap in a semicircle form and packaged on a plastic
substrate integrated into a cushion. When the subject sits on the cushion, the body recoils resulted
from heartbeats introduce phase difference in the interferometer and the corresponding intensity
variation can be used for BCG signal extraction.

For MZI, the signal fading effect is a common problem, in which the bias point will shift, and
the sensitivity will change accordingly. Finally, it can lead to BCG signal distortion. There are
many phase modulation methods to solve this problem, such as active homodyne and passive
homodyne. Our proposed phase modulation method is based on active homodyne method, in
which a moving-coil transducer is used as the phase shifter to keep the system in quadrature
(ϕ= π/2). The phase shifter with a compact size can be easily integrated into the smart cushion
without any bulk component.

2.2. Phase shifter based on moving-coil transducer

In the BCG monitoring system, we use a compact moving-coil transducer as the phase shifter,
the size of which is 18(Length)×12(Width)×3(Height) mm. Compared with bulky PZT, the
moving-coil transducer can be easily integrated into the cushion type BCG monitor. In addition,
unlike PZT-based method, additional bending loss will not be introduced by the transducer since
the optical fiber is directly fixed on the transducer instead of coiling. As shown in Fig. 2(a), the
transducer is embedded in the plastic substrate and the reference arm of MZI is tightly fixed
on the surface of transducer. Figure 2(b) is the sketch of the moving-coil transducer, in which
the coil is placed in the magnetic field. When the driven current changes, a tiny displacement,
which is perpendicular to the fixed optical fiber, is introduced by the transducer resulted from the
electromagnetic induction, as shown in Fig. 2(b). The relationship between the displacement x
and driven current I can be given by

x =
BILN

k
, (3)

where B, L, N, and k are magnetic field intensity, length of coil in the magnetic field, number of
turns in the coil and the elastic coefficient of spring, respectively. Therefore, the strain will be
introduced in the optical fiber by the tiny displacement derived from the transducer, and thus the
phase can be modulated and controlled by the transducer.
The output intensity of MZI presents a cosine waveform with the increasing driven current

from -100mA to 100mA on transducer, as shown in Fig. 3. Then, the induced phase change
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Fig. 2. (a) Integrated MZI with transducer. (b) Sketch of moving-coil transducer.

under driven current can be calculated as 0.22 rad/mA. Therefore, by altering the driven current
of transducer, the phase drift will be compensated, and the system can be kept in quadrature.

Fig. 3. The relationship between resultant output cosine signal in the MZI (a) and driven
current (b).

2.3. Compensation method

To maintain the MZI system in quadrature, we use a PID controller to control the moving-coil
transducer-based phase shifter. The MZI, phase shifter and PID controller form a closed loop
control system. The PID controller consists of the proportional, integral and derivative terms and
the detailed principle is described in Fig. 4(a). The set point (SP) and process variable (PV) are
the desired value and the feedback value, respectively. Error is the difference between SP and PV.
Based on the error obtained from the subtractor, the PID controller outputs the control variable
(CV) according to the following equation:

U(t) = KP

(
e(t) +

1
TI

∫
e(t)dt + TD

de(t)
dt

)
, (4)

where U(t) and e(t) represent CV and error at time t, and KP, TI and TD are the coefficients of
proportional, integral and derivative controller [22]. The phase shifter will work to compensate
the phase drift and output PV accordingly, and the PID controller will work after receiving PV
and calculate the error to update the CV in the closed loop control system according to Eq. (4).
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Fig. 4. (a) Principle of the closed loop control system with PID controller. (b) Variation of
optical intensity toward driven current. (c) Electrical signals in the time domain.

The detailed compensation process is shown in Fig. 4(b) and (c). Figure 4(b) represents the
variation of output optical intensity toward driven current and Fig. 4(c) is the electrical signals
from PD in the time domain. In our BCG monitoring system, SP is the quadrature point (ϕ= π/2),
which is set as half of peak-to-peak value in output waveform. PV is the filtered signal in CH2,
and CV is the driven current of phase shifter. The error at time tx is the value of SP minus PV, as
shown in Fig. 4(c), which can be obtained by the PID controller. Based on the calculated error
and Eq. (4), the PID controller will adjust the phase shifter, in which the moving-coil transducer
works based on Eq. (3) to eventually keep the MZI system in quadrature. When the error is less
than 0, as shown in the area 1 and area 3 of Fig. 4(b), CV will decline accordingly to keep the
system in quadrature. Inversely, in the area 2 and area 4 of Fig. 4(b), the error is large than 0, and
CV will increase to pull the bias point back to the quadrature point. In consequence, the bias
point will be kept in the quadrature point of the rising edge. Prior to data collection, the system
need calibration. A manual mode is set in the system, in which the phase shifter is triggered to
generate cosine waves, and SP is obtained as the half of peak-to-peak value. As presented before,
the dynamic range of phase shifter is 44 rad. In addition, to keep the system up, a CV reset
method is introduced and the driven current will be reset to 0mA when the driven current reaches
the limit of ±100mA. Therefore, according to this compensation way, the BCG monitoring
system can always work in the quadrature point of rising edge with stable performance and the
BCG signal can be obtained with desired waveform.

2.4. BCG result

When the subject sits on the smart cushion, vibration signals from body recoils in reaction to
heartbeat can be caught, and the BCG signal is recorded by DAQ card. To compare the results
collected using our proposed phase modulation method or not, we directly collect the signal from
CH1 firstly and then activate the closed loop control system for continuous new data collection.
The summarized results are shown in Fig. 5. In the first 7-second duration marked with red
background, only part of BCG can be obtained due to the aforementioned signal fading effect
and these signals are distorted as the result of bias point deviation. In contrast, when the closed
loop control system is activated, signal fading effect is mitigated and the system keeps working
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on the quadrature point. The collected new BCG signal is shown in the last 13 second. It can be
seen that the baseline drift introduced by ambient noise is removed and desired BCG signal with
specific peaks, including I, J, K peaks, can be obtained successfully and continuously, which
demonstrates that our proposed phase modulation and compensation method can realize the
long-term BCG monitoring. In BCG-related healthcare applications, I, J, K peaks play important
roles for specific vital signs measurement and even disease diagnosis. Therefore, their extraction
with high accuracy and stable performance becomes necessary. According to this, we proposed
an IJK complex and body movement segmentation algorithm and present it as follows.

Fig. 5. Raw data of BCG signals.

3. End-to-end IJK complex segmentation algorithm

3.1. Modified U-net

U-net [23] is a widely used high-resolution segmentation algorithm and it has been demonstrated
with excellent performance in the task of biomedical image segmentation. U-net can perform
pixel-wise classification, which means each pixel is assigned to one type of class. U-net is based
on the CNN, consisting of the contracting path and expansive path. In the contracting path, the
size of feature map will be reduced by the pooling operation, and in contrast, the output resolution
can be increased by the upsampling operation in the expansive path. Therefore, the segmentation
map in the output layer will have the same size with input segment, and it can give the prediction
of the input segment in pixel level, which is a pixel-to-pixel mapping.

BCG is a flexible signal and varies from person to person. The U-net is modified to extract the
location information of IJK complex and body movement signal, which can be used for beat-wise
BCG analysis. The architecture of modified U-net is shown in Fig. 6, in which three contracting
and expansive stages are included. The left part is contracting path, each stage in which consists
of repeated two 15×1 1-D convolutional layers with ReLU [24] activation function followed by a
2×1 max pooling layer with stride 2 to halve the size of feature maps. The number of filters (nf)
in the convolutional layer doubles at each downsampling stage, as shown in Fig. 6. The right
part is expansive path, and at each stage, a upsampling layer followed by a 2×1 convolutional
layer is used to double the size of feature map and halve the number of feature channels. The
feature map in the corresponding contracting stage is directly duplicated and combined to the
upsampled feature map in the expansive path. The combined feature map is followed by two
15×1 1-D convolutional layers with ReLU and the filter number of convolutional layer halved at
each upsampling stage, as shown in Fig. 6. Compared with the conventional U-net, since we
use same padding instead of valid padding in the convolutional layer, cropping is no need in the
concatenation process. Finally, a convolutional layer with softmax activation function, the kernel
size and filter number of which are 1×1 and 3, is used in the output layer to predict the class of
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each sampling point, including IJK complex, body movement signal and background (non IJK
complex). In total, the network consists of 18 convolutional layers.

Fig. 6. The architecture of modified U-net. nf is the number of filters in 1-D convolution
layer.

The raw data is collected from different subjects in healthy condition and the sampling rate is
500Hz. During data collection, the subjects are required to sit on the smart cushion and remain
still for several minutes. To collect uniform body movement data, subjects are asked to move
for multiple times. All the raw data are segmented with the same data length of 2048 and one
of these segments lasting for 4.096 second with both heartbeat and body movement signal is
shown in Fig. 7(a), in which the intensity is normalized. The background, IJK complex and body
movement signal are labelled as 0, 1 and 2 in the corresponding sampling point and we can get
the label with the same size as input data, as shown in Fig. 7(b).

Fig. 7. A BCG segment (a) with corresponding label (b).
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To train the network, we totally collect 1147 segments, in which 4948 individual heartbeat
(IJK complex) and body movement signal are included. The ratio between the training set and
validation set is 8 to 2. Adam optimization method [25] with default parameters (learning rate:
0.001, beta-1: 0.9, beta-2: 0.99) is used as the optimizer. The cross-entropy loss is adopted as
loss function. In addition, mini-batch gradient descent is adopted and the batch size of which is
16. During the training stage, when higher accuracy of validation set is achieved, the parameters
of network will be saved.

3.2. Segmentation result

To test the modified U-net, we use 511 BCG segments from 7 subjects as test set, including 2107
individual heartbeat (IJK complex) and body movement signal. These test data were collected in
different days and 3 subjects did not participate in the data collection of training set. To evaluate
the segmentation performance of the network, three metrics including pixel accuracy (PA), mean
pixel accuracy (MPA) and mean intersection over union (MIOU) [26] are adopted. PA is the
percentage of the correctly labeled pixels to total pixel, which can be given by

PA =
∑

i nii∑
i
∑

j nij
, (5)

where nij means the number of pixels in class i are assigned to class j. MPA represents the mean
of pixel accuracy in each class, which can be described as

MPA =
1

ncl

∑
i

nii∑
j nij

, (6)

where ncl is the number of different classes. MIOU is a commonly used metric in the task of
segmentation, which represents the similarity between the predicted region and actual region.
MIOU can be given by

MIOU =
1

ncl

∑
i

nii∑
j nij +

∑
j nji − nii

. (7)

Since the BCG signal is one-dimension data, the number of pixels in the above equation can be
replaced by the number of sampling points in the data.

Figure 8(a) shows the confusion matrix of test set in the pixel-wise classification task. We can
calculate the PA, MPA and MIOU through the confusion matrix, which is 99.66%, 99.59% and
99.18%, respectively. In addition, to verify the accuracy of I-K intervals in the predicted IJK
complex, we calculate the mean absolute error (MAE) between predicted and actual I-K intervals
in the test set and the result of which is 1.75ms. The scatterplot of predicted versus actual I-K
intervals is shown in Fig. 8(b). The results show the modified U-net performs well on the task of
IJK complex and body movement segmentation in the BCG data.
Figure 9 shows five kinds of segmentation results of BCG signal, the red line of which is the

classification result. Figure 9(a) is a BCG segment from one of subjects, in which we can find
that there are six heartbeats during 4.096 second (82 bpm) and the position of each IJK complex
can be predicted by the network accurately. Also, to confirm the feasibility of IJK complex
detection for subjects with different HRs, we select two sets of BCG segment from another two
subjects with the lower HR (67 bpm) and the higher HR (97 bpm) shown in Fig. 9(b) and (c),
respectively. In addition, though the 7 subjects in the experiment are all in health condition, we
also find some BCG segments with occasional sinus arrhythmia from one subject, which may be
caused by nervous, as shown in Fig. 9(d), and the IJK complex can also be segmented accurately.
Apart from IJK complex, the network can also implement segmentation of body movement signal.
A BCG segment recording the body movement on the chair is shown in Fig. 9(e), and the IJK
complex and body movement signal can be segmented perfectly by the network. In summary,
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Fig. 8. (a) Confusion matrix of test set. (b) The scatterplot of predicted versus actual I-K
interval.

compared with many existing algorithms, our modified U-net is an end-to-end algorithm and it
can accurately detect the location information of IJK complex and body movement in the BCG
signal without much processing, which is time-saving for BCG signal analysis.

Fig. 9. BCG segmentation results based on modified U-net: (a) BCG signal with HR of 82
bpm; (b) BCG signal with HR of 67 bpm; (c) BCG signal with HR of 97 bpm; (d) BCG
signal with occasional sinus arrhythmia; (e) BCG signal with body movement.
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4. Conclusion

In this paper, we propose a BCG monitoring system based on optical fiber interferometer with a
low-cost and easily integrated phase shifter. The proposed moving-coil transducer-based phase
shifter can maintain the optical fiber interferometer system in quadrature by the PID controller.
The signal fading problem can be solved successfully and the BCG signal with good quality
can be obtained. On the other hand, we develop an end-to-end modified U-net to segment IJK
complex and body movement signal in the BCG. We test our network on 7 healthy subjects and
the PA, MPA and MIOU are 99.66%, 99.59% and 99.18%. The MAE of predicted IK interval
is 1.75ms. The result shows that our proposed network owns good performance in the task of
IJK complex and body movement signal segmentation. The proposed BCG monitoring system
aided with the IJK complex detection algorithm can implement a long-term and stable BCG
monitoring for users, which has the tremendous potential in future healthcare applications.
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