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Abstract

When combined, molecular simulations and small-angle scattering experiments are able to provide 

molecular-scale resolution of structure. Separately, scattering experiments provide only 

intermingled pair correlations between atoms, while molecular simulations are limited by model 

quality and the relatively short time scales that they can access. Their combined strength relies on 

agreement between the experimental spectra and those computed by simulation. To date, 

computing the neutron spectra from a molecular simulation of a lipid bilayer is straightforward 

only if the structure is approximated by laterally averaging the in-plane bilayer structure. However, 

this neglects all information about lateral heterogeneity, e.g., clustering of components in a lipid 

mixture. This paper presents two methods for computing the scattering intensity of simulated 
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bilayers with in-plane heterogeneity, enabling a full treatment of both the transverse and lateral 

bilayer structure for the first time. The first method, termed the Dirac Brush, computes the exact 

spectra including spurious artifacts resulting from using information from neighboring periodic 

cells to account for the long-range structure of the bilayer. The second method, termed PFFT, 

applies a mean-field treatment in the field far from a scattering element, resulting in a correlation 

range that can be tuned (eliminating correlations with neighboring periodic images), but with 

computational cost that prohibits obtaining the exact (Dirac Brush) spectra. Following their 

derivation, the two methods are applied to a coarse-grained molecular simulation of a bilayer 

inhomogeneity, demonstrating the contributions of lateral correlations to the resulting spectra.

Graphical Abstract

1. INTRODUCTION

The molecular structure of cellular membranes remains a central problem in biophysics. The 

lateral distribution of membrane constituents has spawned an enormous literature, motivated 

by the raft idea of Simons and co-workers,1,2 which posits that lipids and proteins conspire 

to colocalize signaling partners for functional ends. Thus, the thermodynamic behavior of 

well-defined mixtures of phospholipids and cholesterol has been extensively studied3–12 as a 

model for the plasma membrane to discern whether such mixtures might mimic a raftlike 

organization. Phase diagrams of ternary mixtures that include cholesterol as a component 

reveal a region of composition space in which two distinct fluids coexist.9 Coexistence of 

liquid-ordered (Lo) and liquid-disordered (Ld) phases has been observed by fluorescence 

microscopy,9,13 NMR10 and EPR spectroscopies,14–17 distributions of FRET donor–acceptor 

pairs,16 and X-ray18 and neutron scattering.19

While significant progress has been made in classifying the phase regions of 

multicomponent lipid mixtures, far less is known about the lipid distributions within 

individual phases. The Lo phase is enriched in sterol and lipids with higher chain-melting 

temperatures (e.g., sphingomyelins), resulting in more ordered hydrocarbon chains,10 a 

smaller area per lipid,20 and a thicker bilayer than the Ld phase.21 Atomistic simulations 

indicate that the distribution of phospholipids and cholesterol within the Lo phase is also 
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heterogeneous, comprising regions of hexagonally packed substructures of a few nanometers 

in size, interspersed with more disordered regions.21,22 Much more complex mixtures of 

lipids and proteins obtained by swelling large vesicles directly from living cells also phase 

separate into coexisting fluid phases,23–25 suggesting that simpler lipid mixtures remain a 

useful model for the plasma membrane.

Given that signaling events at the membrane often entail the encounter of two or more 

partners, the lateral organization of lipids on the 5–10 nm length scale is of particular 

interest. Experimental measurements capable of revealing features on this length scale 

therefore warrant special consideration. While some fluorescence-based methods are useful 

for this purpose,26–28 scattering methods offer a complementary approach that does not 

require the introduction of bulky spin or fluorescent labels that may perturb lipid phase 

behavior.13,29,30 Neutron scattering is especially powerful, by virtue of the neutron’s short 

wavelengths, compared to visible light, and the large difference in coherent scattering length 

between hydrogen’s stable isotopes protium (1H) and deuterium (2H). It has been used 

alongside molecular dynamics simulation (MD) for over 15 years to uncover the details of 

transverse membrane structure.31–35 More recently, the joint refinement of force-field 

parameters against neutron and X-ray scattering data has led to significant improvements in 

lipid models.36–38

Recent work has focused on lateral structure. A judicious choice of deuteration scheme 

readily reveals features of lateral organization down to about 5 nm, as shown recently by 

Heberle et al. using small-angle neutron scattering (SANS) to detect nanoscale domains in 

unilamellar vesicles.39 A similar approach was used to infer the presence of nanoscopic 

domains in the membrane of B. subtilis.40 However, detection of lateral structure in the 5–10 

nm range by SANS alone is nontrivial. First, the range of deuteration schemes is 

complicated by the incoherent background of the protium in the sample, which makes the 

detection of small signals challenging. Second, and more importantly, the scattering from 

isotropic aqueous liposome dispersions mixes the desired signal arising from in-plane 

contrast (i.e., domains) with that arising from the transverse contrast normal to the plane of 

the bilayer—as well as from the size and shape of the vesicle. To a great extent, prior SANS 

experiments and concomitant analysis exploited the variation in contrast in the transverse 

direction, from solvent, to hydrocarbon, and back to solvent. It is reasonable to consider only 

transverse contributions to the scattering signal if the sample is laterally homogeneous on 

the length scale of interest. This approach fails, however, if the goal is to identify lateral 

structure on 5–10 nm length scales. For this purpose, a method that allows direct calculation 

of the SANS intensity from an MD simulation—without any assumptions about lateral 

averaging—would be of great value.

Here, we introduce new methods for computing the SANS intensity directly from MD 

simulations (all-atom or coarse-grained) of planar bilayers. The problem of incorporating 

scattering correlations between a target region (i.e., a nanoscopic region of the bilayer) and 

the surrounding material is analogous to treating a protein solvated in water. A number of 

software approaches make distinctions between the water layer near the protein and the bulk 

water whose structure and density are uncorrelated to the configuration of the protein.41–43 

This approach is viable due to the finite size of the protein, but it is not easily extended to 
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bilayers which are effectively simulated as infinite sheets. Typical all-atom simulation sizes 

are 10–20 nm, a length scale that is sufficient to capture the local structure described above. 

However, a naïve approach that includes only contributions from correlations within the 

simulation box fails to accurately predict the SANS intensity in a way that allows 

meaningful comparison with experimental data. Here, we describe two methods that resolve 

the finite-size issue in different ways. The Dirac Brush method (whose name is derived from 

a hairbrush-like two-dimensional array of Dirac delta functions in Fourier space) is based on 

replication of the central box. It is relatively straightforward but includes periodic boundary 

condition artifacts that result from including correlations with neighboring cells, which, 

unlike for a fluid or protein, is generally necessary when considering a system with long-

range correlations like a bilayer. The second approach, which we term the Particle-Far-Field 

Transform (PFFT) method, uses direct particle–particle correlations for near-field 

contributions and a laterally averaged continuum for the far-field contributions. Using a 

variable cutoff between full discrete scattering and a mean-field model, PFFT allows a range 

of correlations to be systematically investigated.

Both the Dirac Brush and PFFT methods differ significantly from existing approaches, such 

as implemented in SimToExp44 and SASSENA,45 as applied to bilayers. SimToExp first 

averages the atomic scattering length densities in the plane of the membrane to produce a 

one-dimensional profile that accounts for contrast only in the transverse direction, which is 

then followed by a one-dimensional Fourier transform to compute the scattering intensity. 

This is typically the dominant portion of the scattering intensity and is often sufficient to 

infer agreement with the simulated structure. In SASSENA the orientational averaging is not 

performed in closed form as can be done following laterally averaging (shown below). This 

results in an expensive calculation, especially for a high-symmetry system, such as a lipid 

bilayer with periodic boundary conditions. In contrast, both the Brush and PFFT methods 

compute the SANS intensity for the periodically replicated system with closed-form 

orientational averaging. These methods therefore solve the problem that we stated above: i.e, 

the prediction of scattering intensities directly from simulations of bilayers with lateral 

structure.

The paper is structured as follows. A description of neutron scattering and how the behavior 

of nuclei as “point-scatterers” of neutrons translates to the relatively simple SANS signal at 

the detector is provided in the Supporting Information. In section 2 the process by which 

internal correlations produce an interference pattern at the detector is explained, beginning 

with an isolated system (section 2.2) and then moving to an infinite two-dimensional slab 

(section 2.3). Two mathematical formalisms useful for computing intensities, the Fourier 

transform and the Debye scattering formula, are explained in section 2.2. These formalisms 

form the basis for the two complementary approaches explained in Methods (section 3): first 

the “Brush” method (section 3.1), which uses the full correlations manifest in periodic 

boundary conditions by orientationally averaging the Fourier transform of the scatterers, and 

second the PFFT method (see section 3.3), which uses the Debye formula and a continuum 

approximation for far-field correlations.

To demonstrate how in-plane correlations affect the scattering signal, a simple molecular 

system was constructed using the coarse-grained Martini force field. In section 3.3 we 
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describe how the system was constructed from two lipid species that separate into a majority 

and minority domain with sizes limited artificially by periodic boundaries. In Results 

(section 4), the PFFT, Brush, and laterally averaged intensities are presented, showing the 

presence or absence of lateral correlations of the coarse-grained systems.

2. BACKGROUND

2.1. Small-Angle Scattering Reports the Internal Structure of a Sample.

Neutron waves interact with the nuclei of the sample atoms and continue to travel until they 

are absorbed by the detector (although this discussion focuses on neutrons, the approach is 

general to X-rays, which are scattered by the electron cloud). The detector consists of a two-

dimensional array of small elements, which detect neutrons and produce an electronic 

signal. The internal structure of the atomic scatterers yields a specific interference pattern of 

the scattered waves. If the sample consists of randomly oriented particles (i.e., powder 

samples, including lipid bilayer vesicles in solution), the intensity measured at the detector 

will manifest as concentric rings with no angular dependence. For such samples, the 

intensity signal is reduced to a one-dimensional graph by reporting only the angularly 

averaged intensity, IΩ(q), for each radial distance from the center of the detector.

Analytical models for the scattering intensity start with an idealized configuration for a 

SANS experiment, shown in Figure 1. The coordinate system is chosen such that the path of 

the incoming beam of neutrons is along z, the unit vector along the positive z axis. The 

phase relevant to interference at the detector can be computed from two paths. First, from 

the neutron source to particle r1 the neutron accumulates phase eik ⋅ r1 before it scatters 

(relative to a particle at the origin). It then undergoes elastic scattering with the same 

magnitude of momentum, but in a new direction k′, with |k′| = |k|. The scattered neutron 

travels to the detector, accumulating phase eik′ ⋅ rD − r1  (the sign is now flipped because 

with the origin at the sample, the detector is in the direction opposite to that of the neutron 

source). The scattering direction k′ is determined by where the neutron registers at the 

detector, rD. The observable, I(q), depends only on the difference q = k − k′.

The amplitude of the scattered wave depends on the identity of the particle from which it 

scattered. Each type of nucleus has an empirically measured coherent scattering length, b, 

and these scattering lengths are tabulated for the different elements.46 Multiple internal 

nuclear states, uncorrelated with position, lead to incoherent scattering. This work considers 

only coherent scattering, in which each atom has a single average scattering length. The 

scattering observed from a typical sample is the sum of the waves scattered from each atom 

in the sample, and the magnitude of the squared neutron wave function at the detector 

decays as rD
−2 Rather than carry this factor through every calculation, we define

I(q) = rD
2 |ψ(rD(q))|2 (1)

where each vector q maps to a single point on the detector rD.
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Figure 2 demonstrates the effect of lateral lipid inhomogeneity on a SANS signal (see 

section 3.3 for details). Viewed from above (in Figure 2a), the inhomogeneity has a lateral 

extent of approximately 6 nm. In Figure 2b, the SANS intensity is computed using lateral 

averaging, as well as the Dirac Brush and PFFT methods developed here. The difference 

between the existing and new methodologies is due to the lateral correlations (leading to 

overlaid “interference patterns”) that are taken into account by the Dirac Brush and PFFT 

approaches.

The intensity of the scattered signal is described by eq 2. When generalized to a continuum 

model, the scattering length is replaced with a scattering length density, β, and the summed 

contributions from all points in the sample are then represented by an integral, as shown in 

eq 3:

I(q) = ∑
i

bie−ıq ⋅ ri
2

(particle representation) (2)

I(q) = ∫ d3rβ(r)e−ıq ⋅ r
2

(continuum representation) (3)

where β(r) is given by the relation in eq 4:

β(r) = ∑
i

biδ r − ri (4)

The absolute square can be expanded as

I(q) = ∑
ij

bibje−ıq ⋅ (ri − rj)
(5)

I(q) = ∫ d3r1∫ d3r2β r1 β r2 e−ıq ⋅ r1 − r2 (6)

We will make use of both of these forms below.

2.2. Internal Structure of an Isolated System: The Debye Scattering Formula.

The orientationally averaged scattering of a single molecular configuration of a finite system 

can be computed using the Debye scattering formula. Replacing (ri − rj) = rij in eq 5 yields

I(q) = ∑
i, j

bibje−ıq ⋅ rij
(7)

Orientational averaging is performed by sweeping the scattering vector, q, over the spherical 

polar angles, θ and ϕ. Each term in the summation can be integrated independently, so the 
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coordinate system can be freely chosen such that rij always coincides with ϕ = 0, and 

therefore q·rij = qrij cos(ϕ). Integrating over the solid angle yields

IΩ(q) = ∑
i, j

bibj
1

4π∫0

2π
dθ∫

0

π
dϕsin(ϕ)e−ıqrij cos(ϕ)

= ∑
i, j

bibj
sin qrij

qrij

(8)

Equation 8 has no dependence on absolute particle positions and only takes into account the 

distribution of pairs of particle separations, rij, for a single configuration. Given an ensemble 

of system configurations sampled at temperature T, this distribution, B, of scattering-length-

weighted pair separations can be recorded as shown in eq 9.

B(r) = ∑
i, j

bibjδ(rij − r) (9)

The intensity can now be computed as

IΩ(q) = ∫ drB(r)sin(qr)
qr (10)

For periodically replicated simulated systems, B(r) is replaced by its per-simulation-box 

average, B(r). The current standard approach to computing simulated scattering intensities, 

where the bilayer is laterally averaged, will be derived in the next subsection both with and 

without the use of B(r).

2.3. Internal Structure of Infinite, Laterally Averaged 2D Fluid.

Below we describe two mathematical approaches for obtaining the orientationally averaged 

scattering of an infinite flat surface. The first is a “direct” method that performs the 

orientational averaging explicitly, whereas the second “distribution” method first defines a 

weighted pair distribution function and then applies the Debye scattering formula for 

orientational averaging. The first derivation illustrates a challenge that we address using the 

Dirac Brush method: i.e., the coherent scattering is dominated by one orientation of the 

bilayer, in the infinite surface limit contributing as a δ function. The second derivation poses 

a challenge that we will address with the PFFT method: i.e., how to account for long-range 

uncorrelated density by constructing a weighted pair distribution.

2.3.1. Orientationally Averaged Scattering from a Laterally Averaged Bilayer, 
Computed Using the Fourier Transform.—Rather than a discrete set of scatterers 

{bi}, consider instead a density of scatterers that are laterally uniform but vary along z—this 

is the assumption that underlies existing methods for interpreting the scattering intensity 

from lipid bilayers.
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The laterally averaged density βLA(z) is computed from a full 3D scattering length density 

as

βLA(z) = 1
LxLy∫−Lx/2

Lx/2
dx∫−Ly/2

Ly/2
dyβ(r) (11)

that can then be computed from a collection of discrete scatterers by using the β(r) 

substitution from eq 4:

βLA(z) = 1
LxLy

∑
i

biδ(z − zi) (12)

For an ensemble average, eq 12 is equivalent to eq 11. In computing the scattering intensity, 

the one-dimensional Fourier transform of βLA(z) is a useful intermediate quantity:

βLA(qz) = ∫
−∞

∞
dz′e−ıqzz′βLA(z′) (13)

In the limit Lx → ∞, Ly → ∞, the three-dimensional Fourier transform is

βLA(q) = ∫−Lx/2

Lx/2
dx′e−ıqxx′∫−Ly/2

Ly/2
dy′e−ıqyy′βLA qz (14)

where βLA(qz) is from eq 13. When orientationally averaging in the limit L → ∞, first 

consider that

∫
−L/2

L/2
dr′e−ıqr′ = 2q−1sin(Lq/2) (15)

In the limit of large L

L−1 2q−1sin(Lq/2) 2 = 2πδ(q) (16)

This follows from a definition of the δ function in terms of the limit, as Є goes to zero, of

ηЄ(q) = Є−1η q
Є (17)

that yields

lim
Є 0∫−∞

∞
dqηЄ(q)f(q) = f(0) (18)

In this case
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η(q) = (2π)−1 2q−1sin(q/2) 2
(19)

and L = Є−1. The straightforward conditions on ηЄ(q) to yield δ(q) in this manner are given 

in ref 47, p 34. They are essentially that, in the Є → 0 limit, integration over ηЄ(q) must 

yield a constant if zero is in the integration limit and zero otherwise. As Є → 0, the function 

ηЄ(x) has its increasing amplitude bunched around x = 0 and so samples only f(0). From eq 

3, the (laterally averaged) scattering intensity is the absolute square of the three-dimensional 

Fourier transform. Therefore, in the large Lx and Ly limit, the scattering intensity is

ILA(q) = Lx
−1 2qx−1sin Lxqx/2 2Ly

−1 2qy−1sin Lyqy/2 2|βLA qz |2 (20)

= [2πδ qx ][2πδ qy ]|βLA qz |2 (21)

where here the intensity is divided by Lx and Ly, as in eq 16, yielding the intensity per unit 

surface area.

The intensity can then be orientationally averaged by computing

ILA, Ω(q) = 1
4π∫ dΩ[2πδ(qx′ )][2πδ(qy′)]|βLA(qz′)|

2
(22)

where qx′, qy′, and qz′ are primed because as dummy integration variables they are not 

explicitly components of q as would be consistent with our notation. The orientational 

average is performed by integrating over qx′, qy′, and qz′, while selecting q = qx′2 + qy′2 + qz′2

with δ q − qx′2 + qy′2 + qz′2 . The integration strategy is detailed in the Supporting Information 

for the Dirac Brush method. Following integration over qz′, eq 22 becomes

ILA, Ω(q) = 1
4π∫−q

q
dqx′∫− q2 − q′x2

q2 − q′x2

dqy′
1

qqz
[2πδ(qx′ )]

× [2πδ(qy′)](2|βLA(qz)|2)
(23)

where qz = q2 − qx′2 − qy′2, a factor of q−2, is introduced by integrating over the q′ volume 

with δ q2 − qx′2 − qy′2 − qz , and q/qz is the Jacobian (needed to integrate a hemisphere over 

its projection into the xy-plane). The upper and lower hemispheres each contribute one term, 

resulting in |βLA qz |2 + |βLA −q2 |2. Since βLA is real and therefore βLA is even, the integral 

evaluates to

ILA, Ω(q) = 2πq−2|βLA(q)|2 (24)

2.3.2. Orientationally Averaged Scattering from a Laterally Averaged Bilayer 
Using B(r).—The scattering intensity can also be derived using the intermediate quantity 

BLA(r) from eq 9, with the subscript LA used to indicate lateral averaging. Working in 
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spherical polar coordinates {r, θ, ϕ} for the displacement between two points in the laterally 

translationally invariant bilayer (one with coordinate z, the other with coordinate z + r 
cos(ϕ)), the laterally averaged planar scattering length density defined by βLA(z) yields the 

distribution

BLA(r) = 2πr2A∫
0

π
dϕ∫

−∞

∞
dzβLA(z)βLA(z + rcos(ϕ))sin(ϕ) (25)

Using the Fourier space autocorrelation relation (see the Supporting Material), i.e.,

∫
−∞

∞
dzβLA(z + Δz)βLA(z)

= (2π)−1∫
−∞

∞
dq′e−iq′Δz|βLA q′ |2

(26)

where Δz = r cos (ϕ) results in

BLA(r) = r2A∫
−∞

∞
dq′|βLA q′ |2∫

0

π
dϕe−ıq′r cos(ϕ)sin(ϕ)

BLA(r) = 2r2A∫
−∞

∞
dq′|βLA q′ |2sin q′r

q′r

(27)

Inserting BLA(r) into eq 10 and using the Fourier identity

∫
0

∞
drsin(qr)sin q′r = π

2 δ q − q′ − π
2 δ q + q′ (28)

we get the expression

ILA, Ω(q) = 2A∫
−∞

∞
dq′|βLA q′ |2∫

0

∞
drsin q′r

q′
sin(qr)

q (29)

which reduces, upon averaging per unit area, to

ILA, Ω(q) = 2πq−2|βLA(q)|2 (30)

2.4. Comparing Scattering from Flat and Spherical Samples: The q Dependence of the 
Scattering Intensity.

At low q, βLA(q) in eq 24 and eq 30 can be replaced by the scattering length per unit area, b, 

that is, a two-dimensional approximation. At low q, the scattering of a vesicle will reflect its 

shape (radius), and so the planar and spherical geometries cannot be compared directly. 

Rather, the scattered intensity can only be compared at q values where both systems can be 

considered planar. While in this work the primary goal is to model the orientationally 

averaged three-dimensional scattering intensity, an approximation has recently been 
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proposed relating the in-plane (two-dimensional) scattering of spherical and planar systems.
48 The relations below briefly describe the form of scattering from a thin sphere at low q to 

establish the regime where planar and spherical systems can be compared.

SANS experiments of lipid membranes are usually applied to a sample of vesicles of a given 

radius, R. Consider a spherical shell with β(z) = b
Є  and thickness Є. To compute the SANS 

intensity in the Є → 0 limit using eq 9, one can determine the distribution of point-to-point 

distances on the sphere. As the points on the sphere are equivalent, consider for convenience 

the point r0 at ϕ = 0. The distance between two points on the sphere, separated by a central 

angle ϕ, is given by 2R sin(ϕ/2). The count, or weight, for this distance is 2πR sin(ϕ)b2. This 

therefore defines the distribution necessary to resolve eq 9

lim
Є 0

BSph(2Rsin(ϕ/2)) = 2πARb2sin(ϕ) (31)

and so computing the per-area intensity yields

IΩ(q) = b2∫
0

π
dϕ2πR2sin(ϕ)sin(q2Rsin(ϕ/2))

q2Rsin(ϕ/2) (32)

= 4πb2q−2sin(qR)2 (33)

The intensity in eq 33 oscillates rapidly, with period 2π
R . The average intensity over an 

interval of many periods, however, is

IΩ, thin shell(q) = 2πq−2b2
(34)

For a sample containing a sufficiently broad distribution of vesicle sizes, the oscillations of 

the signals will cancel, and the intensity will average to this value. Compare this to the 

planar case, with per-area intensity 2πq−2|βLA(q)|2. The average of βLA(z) over the thickness 

of the bilayer is βLA(0) = b. Thus, for low q where the thickness feature of the sample is 

negligible, the intensity is approximately

IΩ, planar simulation(q) = 2πq−2b2 for q ≪ 1
a (35)

where a is the thickness of the bilayer. This correspondence thus serves as a convenient 

normalization procedure for comparing planar simulations to experiments on large vesicles; 

if there is a regime of q where q is greater than 1
R  but much less than 1

a , the samples can be 

compared by weighting using Ab2. Note that it is the NSLD per unit area, b, that is taken into 

account in the case of a phase-separated mixture, as normalization depends on the NSLD per 

unit area of the phases.

Dorrell et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. METHODS

Both the Dirac Brush and PFFT methods model the scattering from a simulation of a 

laterally infinite sheet with finite thickness. In contrast to previous methods, which use the 

lateral averaging approximation, the scattering from these methods includes contributions 

from lateral correlations.

The challenges for capturing lateral correlations are (i) extending the system to infinity and 

(ii) accounting for orientational averaging. Consistent with previous work, orientational 

averaging was demonstrated for finite systems using the Debye formula (eq 8) and for 

laterally averaged infinite bilayers with (section 2.3.2) and without (section 2.3.1) the use of 

an intermediate weighted pair distribution.

As mentioned, the Dirac Brush method models scattering including the full periodicity of 

the system. The scattering profile includes periodic artifacts that appear systematically in the 

scattered intensity. The derivation follows that in section 2.3.1. On the other hand, the PFFT 

method models scattering at long length scales using the laterally averaged scattering 

density; this is a mean-field approximation. Orientational averaging is accomplished by 

constructing a weighted pair distribution (akin to eq 25) to be used in conjunction with the 

Debye scattering formula. The derivation follows that in section 2.3.2.

3.1. Full Periodicity: The Dirac Brush Method.

The orientationally averaged scattering intensity of the simulated system, with its z images 

(above and below the bilayer) replaced with a uniform solvent density, can be computed 

exactly.

Consider “copying-and-pasting” the system boxes laterally to build up the infinite system, 

where duplicated scatterers’ coordinates are shifted by rrep:

β(r) = ∑
i

biδ(r − ri) + ∑
i

biδ(r − ri − rrep) (36)

Each replicated simulation box contributes a phase term (e−ıq ⋅ rrep) according to the q value 

under consideration:

∫ d3rβ(r)e−ıq ⋅ r = ∑
i

bie−ıq ⋅ ri + ∑
i

bie−ıq (ri + rrep)

= (1 + e−ıq ⋅ rrep)∑
i

bie−ıq ⋅ ri
(37)

The sum of exponential terms can be reduced into closed form as a partial sum of a 

geometric series. For example, applying M replications along the positive x-axis and M 
replications along the negative x-axis, with a box width of Lx, yields
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eıMqxLx + ⋯ + eıqxLx + 1 + e−ıqxLx + ⋯ + e−ıMqxLx

= ∑
m = − M

+M
e−ımqxLx (38)

= sin (M + 1/2)qxLx
sin qxLx/2 (39)

where qx is the x-component of q. Increasing the number of replicates causes the 

contributions from angles close to the z-axis to increase while simultaneously becoming 

localized to a shrinking region around the z-axis (i.e., consistent with the behavior of a delta 

function). For noncrystalline systems, the periodic replications introduce nonphysically 

perfect periodicity to the system that creates artifacts in the scattering intensity, discussed 

below. Extending the replicated system infinitely in both lateral directions reduces the sum 

of exponentials to a (one-dimensional) periodic Dirac delta function, also known as a Dirac 

comb, III(q), written as

lim
M, N ∞

1
(2M + 1)(2N + 1) ∑

m = − M

+M
e−ımqxLx

2
∑

n = − N

+N
e−ınqyLy

2
=

( 2π
Lx

III2π/Lx(qx))(2π
Ly

III2π/Ly(qy))
(40)

Here the comb selects wavevectors compatible with the periodicity of the simulation box, 

e.g., Lx. In the limit M → ∞, the integral of the periodic function (the square of eq 39)

L
4πM∫

a

b sin (M + 1/2)qxLx
2

sin qxLx/2 2 (41)

is unity if the interval between a and b contains zero and is zero otherwise, with |a | , | b | < π
L . 

Briefly, the denominator sin Lxqx/2 2 can be replaced with Lxqx/2 near zero, which in the 

limit of large M dominates the integral, as was the case in eq 16. This behavior repeats every 
2π
Lx

. The product of two Dirac combs in perpendicular dimensions yields a hairbrush-like 

two-dimensional array of Dirac delta functions, termed a “Dirac Brush”. The orientational 

average over the Dirac combs can be reduced analytically (see S3.2 of the Supporting 

Information for details), resulting in the following expression:

IΩ(q) = π
LxLy

× ∑
m = − mlimit

mlimit
∑

n = − nlimit

nlimit I1 qx, qy, qz + I1 qx, qy, − qz
qqz

(42)
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where I1(qx, qy, qz) is the solvent-adjusted intensity as defined in eq 43, 

qx = 2πm/Lx, qy = 2πn/Ly, qz = q2 − qx2 − qy2, mlimit = qLx/2π  (i.e., the greatest integer less 

than qLx/2π), and nlimit = Lyq/2π 2 −
Ly
Lx

m
2

. With both the replications and the 

orientational average handled analytically, this expression is not computationally intensive to 

evaluate. All abrupt system–vacuum discontinuities are completely removed as periodic 

boundary artifacts are introduced. For membrane systems, the solvent–vacuum 

discontinuities can be handled using the solvent adjustment explained in the Supporting 

Information

I1 qx, qy, qz

= |∑
i

bie−ıq ⋅ ri − βwV sinc Lxqx
2 sinc Lyqy

2 sinc Lzqz
2 |

2
(43)

where Lx, Ly, and Lz are the x-, y-, and z-dimensions of the simulation box, and V = LxLyLz 

is its volume.

3.2. Mean-Field Treatment of Long-Range Structure: The PFFT Method.

Lateral averaging neglects all lateral correlations, while the Dirac Brush method 

exhaustively includes them, including the long-range order resulting from periodic boundary 

conditions. A typical modeling target of a simulation will have short-ranged order but, as is 

meant to be modeled by periodic boundary conditions, the exclusion of long-range 

correlation. Our proposed Particle-Far-Field-Transform technique, or PFFT, bridges the gap 

between lateral averaging and the Dirac Brush method by employing a mean-field model for 

far-field correlations.

The scattering intensity represents correlations of scattering length density that are described 

by

IΩ(q) = ∫ d3r1∫ d3r2β(r1)β(r2)sinc(q |r1 − r2|) (44)

Instead of squaring the Fourier transform (e.g., eq 2), the PFFT method uses the Debye 

scattering formula (eq 44) that sums over pairs of scatterers. The fundamental concept 

behind PFFT is the decomposition of the β(r1)β(r2) products used to represent pairs of 

scatterers with either particle or continuum models. If the lateral distance between scattering 

elements is within a cutoff rc, then the particulate model of the scattering length density is 

used (βpart(r)). The lateral cutoff forms a cylindrical region around each scattering element, 

with the cylinder oriented orthogonal to the plane of the bilayer. If, however, the lateral 

distance is greater than the cutoff (i.e., one scattering element is positioned outside of the 

other element’s cylinder), then a laterally averaged continuum model is used instead 

(βLA(z)), thus preserving the transverse bilayer structure but omitting the undesirable long-

range lateral structure. Additionally, the continuum model is convenient for other 

mathematical constructions, where there is no lateral information, since it is equivalent to the 

particulate model in those circumstances.
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Special consideration is necessary for the bulk solvent regions above and below the 

simulation box. The direct approach is to assign the solvent scattering length density to the 

region outside of the simulation box. The solvent scattering length density can then be 

subtracted from all space without affecting the scattering intensity, which brings the 

scattering length density to zero outside of the simulation box, while maintaining a smooth 

transition across box boundaries. Since the integrand is zero outside of the simulation box, 

these regions can be excluded from the scattering integrals, simplifying the necessary 

computations. Furthermore, since the simulated system is periodic in the x- and y-directions, 

each box contributes equally to the total scattering. The scattering intensity per simulation 
box can be expressed by constraining one of the integration domains to a single box. 

However, the second integration domain must remain infinite because the pairwise scattering 

contributions between different boxes on the periodic lattice are not identical.

With these considerations, the scattering integral can be rewritten as

IΩ(q) = ∫
box

d3r1∫z2 ∈ box
d3r2 βsys rl − βw βsys r2 − βw

× sinc q|r1 − r2|
(45)

With rΔ = r2 − r1, we will rewrite the r2 integration in terms of rΔ. Moreover, the cross-

terms are expanded and handled separately as

IΩ(q) = ∫
box

d3rI∫zΔ + z1 ∈ box
d3rΔ βsys rI βsys rΔ + rI

I
−

βwβsys(rI)
II

− βwβsys(rΔ + rl)
III

+ βw
2

IV
)sinc(qrΔ)

(46)

Each term corresponds to a specific correlation between two regions.

• I Correlations between a single simulation box and the infinite bilayer model 

(both particulate and continuum models contribute to this term).

• II Correlations between a single simulation box and the infinite solvent 

background.

• III Correlations between a single box of solvent background and the infinite 

bilayer model.

• IV Correlations between a single box of solvent background and the infinite 

solvent background.

Term I correlations are illustrated in Figure 3. The calculation is performed using the 

intermediate quantity B(r), as in section 2.3.2. The B terms are labeled with Roman 

numerals corresponding to those in eq 46:

B(r) = BIa(r) + BIb(r) + BII(r) + BIII(r) + BIV(r) (47)
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Formally, the particle–particle near-field contribution (Ia) can be written as

BIa rΔ = 2πrΔ
2 ∑

i ∈ box
bi∫ϕ−

ϕ+
dϕH rc − rΔsin(ϕ) βpart

× rΔ + ri sin(ϕ)
(48)

where the Heaviside step function, H(r), excludes any contribution from the above r = rc:

H(r) = 0 r < 0
1 r > 0 (49)

The ϕ integration bounds have been chosen to comply with both constraints on the 

integration domain and include only points inside the upper and lower boundaries of the 

simulation box ϕ− < ϕ < ϕ+ . As performed in a computer, this is simply a sum over 

particle pairs with a separation r and lateral separation less than rc. Furthermore, the 

calculation is discretized, with a bin width 1
2Å (discretization error at this tiny length scale is 

irrelevant at practical values of q). The continuum piece of the system–system interaction is 

computed as

BIb rΔ = 2πrΔ
2 ∑

i ∈ box
bi∫ϕ−

ϕ+
dϕH rΔsin(ϕ) − rc βLA

× rΔcos(ϕ) + zi sin(ϕ)
(50)

where ϕc corresponds to r sin(ϕc) = rc, that is, the minimum angle that exceeds the rc cutoff. 

The bounds exclude all points outside the rc cylindrical cutoff (rΔ sin(ϕ) >; rc, which implies 

ϕc < ϕ < π − ϕc). This contribution to B(r) records the distribution of scattering pairs with r 

greater than rc using the laterally averaged continuum model of the system’s scattering 

length density. The remaining terms account for the solvent background, which must be 

subtracted from the total scattering, i.e.

BII rΔ = BIII rΔ = − 2πLxLyLzβwrΔ∫
z−

z+
dz1βLA z1 (51)

BIV rΔ = 2πLxLyLz
2βw

2 rΔ (52)

Computing the scattering intensity requires performing the integral in eq 10 to infinite R. For 

an infinite two-dimensional system, the integrand oscillates (according to the sin(qr) term) 

around an approximately fixed magnitude (here, B(r) goes as r). At very large r, B(r) can be 

replaced by its limiting form

B(r) ≈ 2πr × b2(for large r) (53)

and the integral can be computed in two pieces, as follows:
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IΩ(q) = ∫
0

rc
dr B(r) − 2πrb2 sin(qr)

qr + ∫
0

∞
dr2πrb2

sin(qr)
qr

(54)

∫
0

∞
dr[2πrb2] sin(qr)

qr

= 2πb2

q2 [1 − lim
r ∞

cos qr ] ≈ 2πb2

q2

(55)

where the average value of cos(qr) (zero) is used for the limit of large r. This is appropriate 

for a collection of large objects whose size difference is much greater than q−1.

The inclusion of short-range particulate scattering captures local lateral structure, but the use 

of long-range continuum scattering prevents anomalous periodicity artifacts, as 

demonstrated using systems described in the following section.

Source code for the PFFT and Brush methods is available on GitHub.49

3.3. Construction of an Example Bilayer with Lateral Substructure.

There are well-studied lipid systems that have nanometer-scale substructure. For example, 

mixtures of DSPC, DOPC, POPC, and cholesterol exhibit nanometer-scale domains over 

specific compositional ranges.50 Additionally, simulations indicate that the liquid-ordered 

phase has nanometer-scale substructure defined by the clustering of saturated lipid chains.21 

Both the Dirac Brush and PFFT methods are designed to predict the scattering signature of 

such nanoscopic lateral structure in lipid mixtures. In order to show how lateral correlations 

are captured by the Dirac Brush and the PFFT methods, a simple lipid mixture is first 

considered, with lateral structure that is amenable to the simulated length scale and for 

which the length scale of the lipid domain is easily tunable, e.g., by changing the mole 

fraction of each lipid type.

Lateral spatial correlations are indicated by deviation from the predicted scattering obtained 

through lateral averaging. However, even a single component fluid membrane still has 

nanoscale spatial correlations, for example from thickness fluctuations.51 To control for 

these, and to demonstrate the scattering signature of lateral inhomogeneity most effectively, 

the bilayers simulated here each have nearly equivalent laterally averaged scattering profiles, 

β(z). This is accomplished by choosing Martini52 lipids with the same bonding structure and 

pseudodeuteration scheme regardless of the chemistry of the underlying lipid segment (see 

Figure 4) and then simulating each bilayer at the same fixed projected area. The principle of 

coarse-graining is that fine-level detail, presumed to be irrelevant to many questions, is 

averaged out to improve performance. Fluctuations in this fine detail will lead to changes in 

the scattering intensity at high q, as was demonstrated, for example, in the difference 

between continuum and molecular resolution of water in scattering.53
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Nanometer-scale lateral inhomogeneity arises naturally in the Martini coarse-grained model 

by mixing lipids with gradually increased unsaturation content in their two (chemically 

identical) tails: i.e., the Martini approximations of dipalmitoylphosphatidylcholine, 

16:0/16:0 (DPPC), dioleoylphosphatidylcholine 18:1/18:1 (DOPC), 

dilinoleoylphosphatidylcholine, 18:2/18:2 (DIPC), and 

dioctadecatrienoylphosphatidylcholine, 18:3/18:3 (DFPC). With this version of Martini, 

there is no difference between an 18:0 and 16:0 chain; it is below the resolution of the 

coarse-graining. These lipids are the matrix lipids; they are mixed with 25% DPPC, causing 

a small DPPC domain to form in the disordered matrix that surrounds it (when chain 

unsaturation differs enough to cause demixing). Regardless of its chain identity, the 

scattering lengths of the matrix lipid’s sites are equivalent. We refer to this as a “pseudo-

deuteration” scheme in analogy with the classic strategy to create contrast in SANS. Two 

beads in each chain are pseudodeuterated.

For convenience, each Martini system is named by its majority, matrix lipid type (the 

minority lipid type is always DPPC). The first system is a special case, but the other three 

systems will be called DOPC, DIPC, and DFPC. Since the first system is a pure DPPC 

bilayer, we relabel 75% of the lipids as the majority lipid type, even though in this case the 

majority and minority types are equivalent. Consequently, we identify the first system as 

DPPC.

3.4. Simulation Parameters.

Simulations were performed using GROMACS version 5.1.4,54 with Martini lipids version 

2.0,52 in the constant surface area ensemble at 323 K, for 1 μs. Pressure was controlled with 

a Parinello–Rahman barostat with τp = 12.0 and a compressibility of 3 × 10−4 bar−1 and a 

reference pressure of 1 bar. The time step was 20 fs. Electrostatics were computed using the 

reaction-field method with rCoulomb = 1.1 nm. Van der waals forces were computed with the 

cutoff scheme (rvdW = 1.1 nm). Each simulation included 10 000 Martini water beads. 

Scattering lengths for computations are provided in a table in the Supporting Material.

4. RESULTS: PFFT AND DIRAC BRUSH METHODS PREDICT THE 

SIGNATURE OF NANOSCOPIC HETEROGENEITY

Figure 5 shows top-down views of the four bilayer mixtures described above, confirming 

that the Martini systems do exhibit the expected lateral inhomogeneities. Trivially, Figure 5a 

shows that the DPPC system has no lateral inhomogeneities. Importantly, the 

pseudodeuteration scheme does not affect the force-field parametrization, so the arbitrarily 

assigned majority and minority lipid labels are uniformly mixed. However, even this trivial 

case includes the effect of correlated pseudodeuteration because the atoms of a single 

pseudodeuterated lipid are colocalized by chemical bonding.

Proceeding to the cases with gradually increased unsaturation, the DOPC, DIPC, and DFPC 

systems show increasing segregation of the unsaturated minority lipids, i.e., Figures 5b and 

5c. The extra unsaturation of DIPC increases the chain disorder to the point that DPPC lipids 
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weakly prefer the local environment of other DPPC lipids. While some separation is clear 

from visual inspection, these small inhomogeneities do not coalesce or grow over time.

In the case of DFPC, with three double bonds per acyl chain, only then do the lipids exhibit 

full separation into a single two-dimensional “droplet”. In this case, and as expected, the 

DPPC lipids strongly prefer the environment of other DPPC lipids, leading to significant 

demixing that is visible in Figure 5d. The separation is much more significant than in the 

DIPC system, with almost every DPPC lipid participating in the same cluster. The edge-on 

view in Figure 2a reveals measurable differences between the bilayer thickness inside and 

outside the cluster. Note that in a larger system with more lipids of each type the droplet 

would be larger— here, the nanoscopic size of the droplet is artificially enforced by the 

system size.

The range of Martini simulations thus confirmed the differing degrees of lateral structure, 

including a single nanoscopic domain. These methods capture the lateral structure in the 

resulting neutron scattering intensity graphs that will be shown later on.

By simulating all four systems at constant area, and by using the same pseudodeuteration 

scheme for the matrix lipids, we expect that each system will have approximately the same 

laterally averaged scattering density. Figure 6a shows the results of computing the laterally 

averaged scattering intensities for all four systems, and it can be observed that the intensity 

patterns are nearly identical for all systems. Small differences between them can be 

attributed to differences between the simulations, such as in the transverse distributions of 

lipid density due to differing amounts of chain order, as well as suppressed height 

fluctuations due to differences in tension. Nevertheless, these systems are practically 

indistinguishable from each other.

The lateral averaging approximation uses a density-based intermediate β(z) that eliminates 

the particle-based nature of the scattering. For example, for a uniform (i.e., ideal gas) 

distribution of atomic scatterers with scattering length b, the resulting intensity will be 

uniform in q with magnitude ∑b2. In contrast to the atomic distribution, for a continuous 

scattering length density the scattering is zero. The lateral averaging approximation, as 

specified here, can be adjusted by adding in ∑b2, normalized according to the total intensity 

(e.g., per unit surface area). This yields the most direct comparison to PFFT and Brush, 

which naturally include the term by virtue of the atomic-based methodology. Only if this 

correction is made can the incoherent scattering be properly accounted for, which on a per-

atom basis, is ⟨b2⟩ − ⟨b⟩2, where the angle brackets indicate averaging over the internal 

states of the atom’s nucleus.

The Dirac Brush method directly captures all lateral and transverse scattering via an 

analytical solution to the scattering intensity expression. Figure 6b shows the results of 

analyzing the Martini simulations with the Brush method. The DPPC, DOPC, and DIPC 

intensities are similar, but the DFPC curve differs substantially near q = 0.14 Å−1, indicating 

excess scattering. The extent of this separation reflects the lateral structure known to exist in 

these simulations. The depth of the mid-q valley near q = 0.14 Å−1 can be interpreted as 
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follows: A shallower mid-q valley indicates the presence of lateral structure, while similar 

mid-q and high-q valleys indicate little or no lateral structure.

The sharp spike artifacts are Bragg peaks caused by the perfect periodicity of the simulated 

system (as a result of the periodic boundary conditions). To demonstrate this, we can use the 

system dimensions (13 nm by 13 nm) to predict the locations of the Bragg peaks and 

compare them to the computed scattering intensity. Figure 7 shows the scattering intensity 

for the DFPC system (without pseudodeuteration), showing the low-order Bragg peaks 

marked with their indices and higher order Bragg peaks (blue dots) aligning exactly with the 

artificial Bragg peaks.

The Bragg artifacts can be avoided by using the PFFT method. PFFT has most of the same 

advantages as the Brush method but avoids long-range periodic correlations. For 

demonstration purposes, the cutoff was chosen to be 30 Å. Figure 6c shows the scattering 

intensities of each Martini simulation, computed using the PFFT method. Comparing 

Figures Figure 6b and c, it is clear that the same conclusions can be drawn using the two 

different methods, but PFFT does away with the artificial Bragg peaks. We can also notice 

an additional difference between the curves. Specifically, in the case of the PFFT method the 

crest of the DFPC curve is shifted to a lower q. A range of cutoff choices are shown in 

Figure 8, where 30, 50, 70, and 90 Å are shown to be nearly equivalent.

5. DISCUSSION AND CONCLUSIONS

This work described two methods for computing the contribution of spatially correlated 

lateral scattering from a surface to the neutron scattering intensity. Previous works laterally 

averaged the scattering and, in doing so, removed all in-plane correlations but reduced the 

data to a single one-dimensional Fourier transform. Although this provides a convenient way 

to determine bilayer transverse structure, it neglects all lateral structural information.

We presented two different methods to account for lateral contributions to the scattering 

signal. The first, the Dirac Brush method, is an exact computation of the intensity. However, 

by making use of the periodically replicated simulation boxes to simulate planar bilayers, 

the method introduces spurious artifacts that complicate comparison to experiment. The 

second method, PFFT, uses the Debye scattering formalism to separate pairs between a 

particle–particle contribution and a particle–continuum contribution in the far-field. By 

doing so, long-range correlations are neglected and no periodic artifacts are introduced.

The methods were applied to bilayer simulations of the coarse-grained Martini force field, 

which allowed for convenient simulation of artificially nanoscale domains. By mixing 

saturated DPPC lipids in a matrix of lipids whose tails gradually became more unsaturated, 

we were able to explore a range of degrees of lateral inhomogeneity. By tuning the scattering 

length of the coarse-grained matrix lipids (pseudo-deuteration), the laterally averaged 

scattering of each simulation was made to be nearly equivalent. This allowed the lateral 

scattering contribution to be isolated and compared. The signal increased dramatically when 

the DPPC coalesced into a single domain.
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The methods share a similar goal with a simpler approach applied recently to bilayers with 

lateral structure.55,56 In these works, the in-plane (two-dimensional) structure factor 

S(q) ∝ |∑ieıq ⋅ r|2 is computed by projecting all the structure into the bilayer plane. 

Equivalently, qz is set to zero. Upon this dimensional reduction, orientational averaging 

comprises only rotation in the plane of the bilayer. The issue of the special orientation (qz = 

0) contributing dramatically to scattering never arises because all orientations have qz = 0. 

Thus, the spurious artifacts at q orientations that are both compatible with the periodic 

boundary conditions and have qz = 0 do not arise. While the in-plane S(q) does report lateral 

substructure, it does not report the full three-dimensional, orientationally averaged intensity. 

This approach will be most successful when the scattering density is uniform across the 

bilayer, a chemically challenging problem. However, Heberle et al. were able to match the 

scattering length density of the headgroup, acyl chain, and solvent regions of a quaternary 

mixture such that a well-mixed system (high temperature) had minimal scattering.39 Even in 

this case, upon demixing, this property may no longer hold for the demixed regions 

independently (at lower temperature). Alternatively, if a multilamellar bilayer stack can be 

properly oriented with the neutron beam, scattering can be restricted to those orientations 

with qz = 0.57

With even more highly coarse-grained force fields, it is possible to simulate large lipidic 

objects (like vesicles) without periodic boundary conditions.58 This simulation paradigm 

offers the opportunity to probe both short and long correlation lengths. The PFFT and Dirac 

Brush methods can be applied to both all-atom and coarse-grain resolution simulations of 

planar bilayers and compared with such a large length-scale model.

Due to the finite correlation radius, the PFFT method as described here is likely not the 

proper choice to capture correlated lateral inhomogeneity with long-wavelength undulations 

of the bilayer. Where PFFT assumes the surrounding bilayer is on average flat, if the 

inhomogeneity prefers a particular curvature, it will be more likely to be found on a 

fluctuation that is compatible. In fact, simulations indicate59 that simple ordered phases have 

a positive curvature preference. The challenge then is to simulate a sufficiently large bilayer 

to capture this correlation and to have a method that includes correlations of very large 

structures. We anticipate that the PFFT approach will be modified in conjunction with 

continuum models that include the physics of how nanometer-scale inhomogeneities are 

expected to redistribute on fluctuating bilayers.

The methods described here can also be applied to complex mixtures of lipids mimicking 

the plasma and organelle membranes of cells. Although few direct cases of macroscopic 

lipid phase separation have been observed in living cells,40,60 nanoscopic complexes of 

lipids are expected to have unique mechanical properties.59,61 MD simulations, in 

combination with SANS and the data simulation methods presented here, offer a way to 

model the intensity of complex bilayers to determine their difficult-to-observe nanometer-

scale structure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of a SANS experiment. Not shown is the possibility of the sign of the scattered 

wave flipping by 180° due to scattering (e.g., in the case of hydrogen).
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Figure 2. 
Demonstration of the influence of a roughly circular lateral inhomogeneity on a SANS 

signal. The interior structure of the lipid bilayer is shown from two perspectives (a), by first 

hiding the foreground quadrant and second by cross section. DFPC lipids are shown in blue, 

while DPPC lipids are shown in red. Transparent gold lines indicate edges of the hidden 

quadrant in the first view and illustrate the bilayer thickness variation in the second view. 

The SANS intensities computed by PFFT (green) and lateral averaging (red) are compared 

to show the effect of lateral structure (b, in which the intensity near q = 0.14 Å−1 is increased 

relative to higher q).
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Figure 3. 
Illustration of the PFFT cutoff system, including the terms Ia and Ib. When computing the 

scattering, every particle (for illustration purposes, one headgroup particle was arbitrarily 

chosen and marked with bright magenta) sees full particulate detail within a cylindrical 

region centered on its position, shown as a white rectangular region in the center of the 

figure. This region has a radius equal to the PFFT cutoff and vertically spans the entire 

simulation box (that is depicted as a black rectangle, labeled “Periodic box”, with periodic 

images depicted by dotted gray lines). The Ia term represents the scattering between the 

selected (magenta) particle and the other particles within the cylindrical region (one such 

particle is illustrated in light pink). Outside of this region, the particle sees only a laterally 

averaged continuum, illustrated as broad colored stripes. Term Ib represents the scattering 

between the selected particle and all of the volume elements of this continuum (also 

illustrated using a light pink dot). This process is iterated over all other particles in the 

simulation box. The spatial scattering length density correlations are used to numerically 

compute the weighted pair distribution function for all distances, up to some cutoff, depicted 

by the large black circle in the graphic.
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Figure 4. 
(a) Matrix and (b) domain lipid. Yellow Martini “beads” are assigned scattering length 4.152 

fm, while cyan tail beads are assigned −3.332 fm, providing contrast between the matrix and 

domain lipids. Choline (blue), phosphate (gold), and glycerol (pink) are assigned scattering 

lengths of −5.158, 26.72, and 18.888 fm, respectively.
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Figure 5. 
Top views of the four Martini systems. The boundaries of the simulation box are drawn in 

transparent gold. The minority lipid is shown in red and is always DPPC. The majority lipid 

is shown in blue, with the lipid type indicated in the subfigure captions. In Figure 5a, where 

all lipids are DPPC, a random subset is chosen to represent the majority lipid in order to 

compare to the other systems.
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Figure 6. 
Scattering intensity of the inhomogeneous systems using lateral averaging (a), the Dirac 

Brush method (b), and the PFFT method (c). In each panel, the red curves represent the pure 

DPPC system, the green curves the DOPC/DPPC mixture, the blue curves the DIPC/DOPC 

mixture, and the purple curves the DFPC/DOPC mixture. Notice that the red, green, and 

blue curves are similar. The purple curve indicates significant lateral structure through the 

much shallower valley, a leftward-shifted local maximum, and the absence of the second 

local minimum near q = 0.33 Å−1.
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Figure 7. 
Spurious peaks due to periodic boundary conditions that arise from the fully correlated 

laterally averaged scattering when using the Dirac Brush method. A selection of peaks have 

been labeled with the periodicity indices from which the peaks originate. Bragg peaks are 

infinitely tall but are shown here with finite heights due to numerical sampling limitations. 

Red and blue dots indicate the predicted locations of Bragg peaks. The horizontal positions 

of the markers are computed analytically from the simulation dimensions, while the vertical 

positions are arbitrarily chosen to visually fall on the curve.
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Figure 8. 
Scattering signal varies according to the choice of the PFFT cutoff. The black curve 

represents the intensity resulting from lateral averaging. The red curve uses a cutoff of 10 Å. 

The gold, teal, blue, and purple curves use increasing cutoffs of 30, 50, 70, and 90 Å, 

respectively. The inset chart shows the intensity difference obtained by subtracting the 

laterally averaged curve from each of the colored PFFT curves, illustrating the lateral 

contributions to the intensity which are captured by PFFT but absent from the lateral 

averaging technique. Note how increasing the cutoff shifts the first local maximum to lower 

q in the inset to the figure.
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Table 1.

Notation Used in This Work

symbol meaning

bi coherent scattering length for atom i

i, j, k, ... labels individual atoms

k, k (neutron) wavevector and its magnitude

q, q wavevector difference and its magnitude

qx, qy, qz Cartesian components of q

r, r point in 3D real space and its distance to the origin

x, y, z Cartesian components of r

I(q), I(q) intensity at detector, intensity per unit area

IΩ(q) orientationally averaged intensity at detector

ı −1

rD, rD position of detector relative to sample; distance to detector

f Fourier transform of real-space function f

ψ(r) neutron wave function

βLA(z) laterally averaged scattering length density, units length−2

b total transverse scattering per unit area, ∫ dzβ(z)

β(q) Fourier transform of β(z), units length−1

β(r) instantaneous scattering length density

βw bulk solvent scattering length density

B(r) scattering-length-weighted distribution of pair separations

B(r) scattering-length-weighted distribution of pair separations, per unit area

⟨···⟩Ω orientational average

A area of a bilayer patch

Lx, Ly, Lz dimensions of a simulation box
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