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Chronic alcohol consumption is linked to the development of alcohol-associated liver disease (ALD).
This disease is characterized by a clinical spectrum ranging from steatosis to hepatocellular carcinoma.
Several cell types are involved in ALD progression, including hepatic macrophages. Kupffer cells (KCs)
are the resident macrophages of the liver involved in the progression of ALD by activating pathways
that lead to the production of cytokines and chemokines. In addition, KCs are involved in the pro-
duction of reactive oxygen species. Reactive oxygen species are linked to the induction of oxidative
stress and inflammation in the liver. These events are activated by the bacterial endotoxin, lipopoly-
saccharide, that is released from the gastrointestinal tract through the portal vein to the liver. Lipo-
polysaccharide is recognized by receptors on KCs that are responsible for triggering several pathways
that activate proinflammatory cytokines involved in alcohol-induced liver injury. In addition, KCs
activate hepatic stellate cells that are involved in liver fibrosis. Novel strategies to treat ALD aim at
targeting Kupffer cells. These interventions modulate Kupffer cell activation or macrophage polariza-
tion. Evidence from mouse models and early clinical studies in patients with ALD injury supports the
notion that pathogenic macrophage subsets can be successfully translated into novel treatment options
for patients with this disease. (Am J Pathol 2020, 190: 2185e2193; https://doi.org/10.1016/
j.ajpath.2020.08.014)
of Veteran’s Affairs Biomedical
ent Service VA Merit awards
H.F.), and 5I01BX000574 (G.A.);
Digestive and Kidney Diseases

15184, DK054811, DK076898,
(all to F.M., S.G., H.F., and G.A.);
Abuse and Alcoholism grants
and G.A.); The Hickam Endowed
and Hepatology, Department of
Medicine; the Indiana University

HealtheIndiana University School of Medicine Strategic Research Initia-
tive; PSC Partners Seeking a Cure (F.M. and G.A.); the Central Texas
Veterans Health Care System (Temple, TX); Richard L. Roudebush VA
Medical Center (Indianapolis, IN); and Department of Medical Physiology,
College of Medicine, Texas A&M University (College Station, TX).

The views expressed in this article are those of the authors and do not
necessarily represent the views of the Department of Veterans Affairs.

Disclosures: None declared.
E.S. and L.B. contributed equally to this work.

stigative Pathology. Published by Elsevier Inc. All rights reserved.

mailto:mengf@iu.edu
mailto:mengf@iu.edu
https://doi.org/10.1016/j.ajpath.2020.08.014
https://doi.org/10.1016/j.ajpath.2020.08.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajpath.2020.08.014&domain=pdf
https://doi.org/10.1016/j.ajpath.2020.08.014
http://ajp.amjpathol.org
https://doi.org/10.1016/j.ajpath.2020.08.014


Slevin et al
Alcohol-associated liver disease (ALD) is a major cause of
chronic liver injury,1 which has a wide clinical spectrum.
This ranges from the accumulation of lipids in the liver
(steatosis), steatosis with inflammation (steatohepatitis),
fibrosis, cirrhosis, and an increased risk of hepatocellular
carcinoma.2 Despite alcohol abuse, only 35% of heavy
drinkers develop ALD.1 This suggests there are additional
factors influencing ALD development, such as sex, weight,
drinking patterns, as well as other genetic and metabolic
factors.1 Women tend to drink less alcohol than men. How-
ever, they are more susceptible to the hepatotoxic effects of
alcohol.3 Binge drinking, defined as a pattern of drinking
alcohol that brings blood alcohol concentration to �0.08%,
or �0.08 g of alcohol per deciliter, which corresponds to
consuming of five or more alcoholic drinks for males or four
or more alcoholic drinks for females on the same occasion
within about 2 hours on at least 1 day in the past month by
the National Institute on Alcohol Abuse and Alcoholism, and
heavy drinking (�8 drinks a week for women and �15
drinks a week for men) are the particularly concerning
drinking patterns. They exacerbate liver injury and increase
immune system activation, intestinal permeability, and
oxidative stress.3 Alcohol-induced liver injury is mediated
through several processes, including the generation of
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harmful metabolites and reactive oxygen species (ROS),
increase of intestinal permeability, and an increase of
endogenous mediators.4

There are multiple ethanol catabolic routes leading to
toxic effect in ALD: i) the oxidation of ethanol to acetate, ii)
the microsomal ethanol-oxidizing system, and iii) peroxi-
somal catalase. The oxidation of ethanol to acetate is a
two-step process performed by the enzymes alcohol dehy-
drogenase (ADH) and aldehyde dehydrogenase (ALDH)
that use NADþ as a cofactor (Figure 1).5 This process re-
sults in the accumulation of NADH lowering the ratio of
NADþ/NADH in the mitochondria,5 resulting in a reduction
of b-oxidation.5 The change in ratio results is the accumu-
lation of lipids in the liver, resulting in fatty liver. This is the
first stage of ALD, known as steatosis. Although this con-
dition seems reversible after abstinence,2 if neglected it can
progress to inflammation and liver fibrosis.5

The microsomal ethanol-oxidizing system (Figure 2) is
activated after high alcohol consumption, and cytochrome
P450 (CYP2E1) converts alcohol to acetaldehyde.5,6

CYP2E1 plays a major role in oxidative stress, and
ethanol-induced fatty liver7 and chronic alcohol exposure
can lead to CYP2E1 activation in small intestine as well as
in Kupffer cells (KCs)8,9 with production of significant
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Human liver develops a significant innate immune response during alcohol-associated liver injury. Kupffer cells increase in number and produce inflammatory
cytokines that inhibit b-oxidation of fatty acids. Elimination of Kupffer cells improves mRNA involved in the b-oxidation of fatty acids. Heavy ethanol use
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KCs in Alcohol-Associated Liver Injury
amounts of ROS, which is exacerbated by hypoxia, bacterial
translocation, and the release of proinflammatory
cytokines.10

Several liver cell types then play a role in alcohol-induced
liver injury, including hepatic stellate cells (HSCs), hepa-
tocytes, hepatic dendritic cells, biliary epithelial cells (ie,
cholangiocytes), and sinusoidal endothelial cells. However,
Kupffer cells, the hepatic macrophages, play an important
role in triggering the inflammatory and fibrotic processes
leading to end-stage liver injury.

In this review, we describe the specific contribution of
KCs in the progression of injury during ALD.

The Kupffer Cells

KCs, first described at the end of the 18th Century as cells of
endothelial origin, were lately more correctly identified as
liver resident macrophages.11 KCs make up approximately
80% of the total macrophages of the body.12 Their strategic
localization in sinusoidal spaces allows KCs to behave not
only as an important immunologic barrier against pathologic
components deriving from the gut but also to provide to
The American Journal of Pathology - ajp.amjpathol.org
senescent red cells removal and iron recovery. However, their
activities may undergo relevant changes comparing healthy
or diseased conditions. In fact, although KCs are immuno-
logically regarded as cells maintaining a tolerogenic status
during normal circumstances,13 their response may some-
times enhance liver injury, such as during ethanol abuse.14

This observation is not surprising as KCs mirror the char-
acteristic functional plasticity shared by the components of
the macrophage family.15 Macrophages are in fact able to
express several functional patterns, which may also change
during time if the stimulating trigger is maintained. Finally,
important changes occur according to the surrounding
microenvironment so that KCs are largely different from
alveolar macrophages or microglial cells.15 In the immuno-
logic human liver environment, at least two well distinct
populations of resident macrophages were identified by using
single-cell RNA sequencing.16 One is supposed to participate
in inflammatory response; the other has immune-modulatory
properties. In a simplistic view, these two subsets give origin
to a different M1 or M2 response. The details of this process,
also with regard to ethanol injury, will be reviewed below
(M1/M2 Kupffer Cells Unbalance during ALD).
2187
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Role of Kupffer Cells in ALD

KC contribution to alcohol-induced liver injury was
clearly demonstrated in research using the selective KC
blocking agent, gadolinium chloride, in rat models.6 The
inactivation of KCs prevented ethanol-induced liver
damage, confirming the important KC involvement in
tissue injury. KC-induced secretion of proinflammatory
cytokines has been largely demonstrated after ethanol
exposure.17 Tumor necrosis factor (TNF), for instance, is
a major mediator of alcohol-induced damage in the
liver,17 it interacts with TNF receptors on hepatocytes,18 it
increases free fatty acid released from peripheral adipo-
cytes and de novo lipogenesis, and it inhibits b-oxida-
tion.19 In this respect, the lipid accumulation in
hepatocytes is the liver’s first response to alcohol abuse.
However, several hits are needed for the progression from
fatty liver toward chronic inflammation and fibrosis dur-
ing ethanol abuse. The important role of KCs in this
multistep process is discussed in detail in the following
paragraphs.
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The Working Model Linking Kupffer Cells to the
Inflammatory Response during ALD

The liver is chronically exposed to gut-derived bacteria and
bacterial components, such as lipopolysaccharide (LPS).20

In this way, a gut-liver axis is established. LPS is nor-
mally circulating in blood at a low concentration, peaking
around 0.45 EU/mL without significant consequences.21

However, the total LPS content in the gut is 1000 times
higher than its lethal dose in blood.22

When excess LPS is presented to toll-like receptors
(TLRs) on KCs, this results in the production of proin-
flammatory cytokines, including TNF-a, interleukins (IL-1b
and IL-6), chemokines (IL-8 and CCL2), and ROS.18 TNF-
a is the principal mediator of the inflammatory response in
mammals, and has a role in the development of acute septic
shock as well as a variety of inflammatory diseases,
including ALD.23 Activated KCs trigger signaling cascades
that include CD14, MyD88, MD-2, mitogen-activated
protein kinases [c-Jun N-terminal kinase (JNK)], and NF-
kB.18 In addition, Kupffer cells produce nitric oxide (NO)
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KCs in Alcohol-Associated Liver Injury
and nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, which further contributes to ALD.

When the canonical cascade of events following the
interaction between LPS and KCs is examined in detail, the
first step is represented by the interaction of LPS with
TLR4, and with its coreceptors, CD14 and MD-2. TLRs are
involved in cytotoxicity and effector responses,19 which
recognize signature motifs, often referred to as pathogen-
associated molecular patterns.24 CD14 facilitates the trans-
fer of LPS to the TLR4/MD2 receptor complex and
modulates LPS recognition25 (Figure 3). MD2 is non-
covalently associated with TLR4 and binds LPS directly
also in the absence of TLRs.25 LPS binding protein (LBP),
in this system, facilitates the association between LPS and
CD14.25 The TLR4/CD14 receptor complex recognition of
LPS then originates the following molecular steps. The LPS/
TLR4 transduction pathway may in general progress
through a MyD88-dependent or MyD88-independent [TIR
domain-containing adapter-inducing interferon-b (TRIF)e
mediated] route.26 Because reduction of inflammatory
alcoholic damage was not observed in rodents after MyD88
disruption,27 this type of liver injury is thought to mainly
progress through the TRIF/MyD88-undependent pathway.
The three, TRIF-regulated, downstream inflammatory acti-
vators are finally represented by NF-kB, MAPK, and
IRF3,28 responsible for the cascade of events characterizing
the inflammatory immune response to alcoholic damage.

However, the increased concentration of LPS in blood
(so-called endotoxemia) is a crucial step in eliciting liver
inflammation, during ethanol abuse.25 In fact, since the late
Figure 4 M1/M2 Kupffer cells (KCs) unbalance during alcohol-associated liver d
from the precursor cells in the bone marrow, which further develop to blood mon
namely Kupffer cells. In the liver, during alcoholic liver damage and bacterial t
polarization and alternative activation/M2 polarization, which exhibit proinflamma
and M2 polarization of KCs contributes to the pathogenesis of ALD. ROS, reactive
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1980s, data on rats under alcoholic diet demonstrated that
for progression from simple steatosis to liver inflammation,
administration of LPS was required.29 Moreover, a linear
relationship between plasma endotoxin levels and histologic
liver necrosis and inflammation was also demonstrated in
rats under ethanol administration.30 These observations
recall our attention on the possible failure of the physio-
logical mechanisms limiting or preventing endotoxemia in
the course of chronic alcohol exposure. Conditions that have
been linked to LPS blood increase in this setting include
defective removal of gut-derived products by KCs31 and
intestinal bacteria dysbiosis/overgrowth.32 However, the
evidence of a so-called leaky gut in humans, affected by
ALD, supports the important role of an impaired intestinal
barrier at the base of endotoxemia during alcohol abuse.33,34

Increased gut permeability in this setting is likely related to
cellular adherens and tight junction damage by acetalde-
hyde.35 Leaky gut may occur and support injury also in
other liver and nonliver diseases; however, possible treat-
ments for this condition have not been identified so far.36

Specific Pathologic Aspects

M1/M2 Kupffer Cells Unbalance during ALD
Macrophages, including KCs, can widely modulate their
phenotypic properties according to environmental immuno-
logic signals.37 In this perspective, a categorical classification
of these cells denotes important limits as this pool may
evolve in a continuum of phenotypes, switching one in the
other according to environmental condition and stimuli.38
isease (ALD). Kupffer cells, the resident macrophages in the liver, originate
ocytes. Blood monocytes migrate into liver and produce liver macrophages,
ranslocation, Kupffer cells can polarize in two ways: classic activation/M1
tory and anti-inflammatory effects, respectively. The imbalance between M1
oxygen species; TNF-a, tumor necrosis factor-a.
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Table 1 Relationship between miRNA and Cytokines Related to Kupffer Cells

miRNAs Cytokines Function References

miR-155, miR-125b,
miR-146a

TNF-a* Positive regulation on the release of TNF-a and mRNA stabilization; miR-125b acts
as a post-transcriptional repressor of TNF-a; miR-146a acts as a negative
regulator

48e50

miR-146a IL-6* Suppresses IL-6 production, targeting IRAK1, IRAK2, and TRAF6 during LPS
tolerance

51

miR-16, miR-142-3p,
miR-223, miR-365

IL-6* Reduction of endotoxin-induced mortality by restricting TLR signaling through a
feedback mechanism.

52e54

miR-146a IL-1b* Suppresses IL-1b production, targeting IRAK1, IRAK2, and TRAF6 during LPS
tolerance

55

miR-223 IL-1b Involved in inflammatory response of Kupffer cells by regulating the production of
IL-1b during acute liver failurey

56

miR-155 IL-10 IL-10 acts, inhibiting Ets2 mRNA and protein, both basally and in response to LPS
stimulation

57

*TLR is the principal target.
yNeed further research. Different studies not related with alcoholic liver injury.
IRAK, IL-1Reassociated kinase; LPS, lipopolysaccharide; TLR, toll-like receptor; TNF-a, tumor necrosis factor-a; TRAF, TNF receptor associated factor.

Slevin et al
However, to enhance comprehension on the role of mac-
rophages during inflammatory processes, a simplistic M1 or
M2 functional classification has been adopted, and the
possible switching between these two phenotypes has been
described.39 M1 subtype expansion/activation (generally eli-
cited by LPS/TLR interaction) is thought to be the first step in
acute inflammatory response (Figure 4), enhancing phago-
cytic activities, type 1 helper T-cell (Th1) response, and
release of proinflammatory cytokines, such as TNF-a, IL-6,
and others.40 On the other hand, M2 phenotype seems to be
linked to Th2 response, showing modest phagocytic and
proinflammatory activity and instead releasing TGF-b and
IL-10. The latter are mainly considered as important anti-
inflammatory cytokines, currently investigated as possible
homeostatic/therapeutic factors for immunologic treatment of
autoimmune diseases.41

So, in this simplistic model, linking respectively M1 or
M2 activation to Th1 or Th2 response, the M1 subtype
would be involved in initiating and promoting the inflam-
matory process, whereas M2 would contribute to resolution
of injury and tissue repair. Finally, in the presence of
inflammation, the predominance of an M1 or M2 response
would be dependent by the balance between STAT1 and
STAT3/6.42,43

Because M1 depletion and/or M2 expansion may pro-
mote healing and tissue repair during significant inflam-
matory processes, modulation of the M1/M2 macrophage
phenotype has recently gained more attention. In this
perspective, a study conducted on human samples of
patients with ALD and an animal model of ethanol-fed mice
gave interesting results.43 In a group of heavy alcohol
drinkers, the hepatic expression of M2-associated genes
[CD-206 (MRC1) and CD163] was reduced in subjects with
significant liver damage compared with those with minimal
tissue injury. In parallel with this finding, an increased M2/
M1 ratio was associated with reduced damage and fatty
infiltration of the liver in ethanol-fed C57BL6/J and BALB/
2190
c mice. Finally, in BALB/c mice strain (that showed a
significant M2-mediated resistance to ethanol injury), a
mechanism was identified that was characterized by M2
Kupffer cell induction of apoptosis on the M1 subset. This
effect was determined by an enhanced IL-10 expression. In
keeping with this study, a previous study observed increased
ethanol-induced liver damage and LPS-stimulated inflam-
matory response in IL-10 (Il10�/�) knockout mice.44 It has
been demonstrated that knocking down an inflammation-
associated miRNA, miR-21 (MIR21), can inhibit cytokine
production and inflammatory responses during ALD
injury.45 Taken all together, it becomes evident that strate-
gies aiming to regulate, rather than delete, Kupffer cell
response may be beneficial in the course of ALD, as in other
human liver afflictions.46 In this perspective, nanoparticle-
driven delivery of drugs, immunomodulators, or siRNAs
has been proposed and tested.47

Kupffer Cells, miRNAs, and Liver Damage during ALD
miRNAs act as the important regulators to Kupffer cell
activation at different stages of acute and chronic liver
diseases, including ALD (Table 148e57). miRNAs are
endogenous, small, noncoding, highly conserved, single-
stranded RNAs that modulate mRNA levels through
decreased transcription or by post-transcriptionally induced
mRNA decay.58 Some of the miRNAs that play a role in
ALD include miR-212, miR-155, mir-146a (MIR146A),
and miR-217 (MIR217). During alcohol ingestion, miR-212
expression is increased within the gut epithelial cells.
miR-212 suppresses zonula occludens-1 (ZO-1), which is a
major component of tight junctions, causing disruption of
gut integrity and permeability, resulting in transport of LPS
to the liver.59 miR-155 regulates inflammatory cytokine
production via TLR4 signaling, and increases KC sensitivity
to alcohol and LPS. Knocking out miR-155 protects against
alcohol-induced inflammation and lipid accumulation. The
up-regulation of miR-155 stabilizes the production of
ajp.amjpathol.org - The American Journal of Pathology
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KCs in Alcohol-Associated Liver Injury
TNF-a in Kupffer cells.48,57 miR-146a, a negative regulator
of TRL signaling, is anti-inflammatory and is up-regulated
in ALD.60 miR-217 expression is increased as a result of
alcohol consumption, which down-regulates sirtuin-
1eLipin-1, leading to increased hepatic inflammation.61

Kupffer Cell Contribution to Liver Fibrosis during ALD
Activated KCs produce transforming growth factor-b
(TGF-b) and platelet-derived growth factor (PDGF), which
are profibrogenic factors.36 These factors, along with the
production of ROS, inflammatory cytokines, and lipid per-
oxidation, activate HSCs to transdifferentiate into myofibro-
blasts and contribute to liver fibrosis (Figure 3).37 The HSCs
reside in the space of Disse and store vitamin Aecontaining
lipid droplets in a healthy liver.62 When stimulated, these
cells lose their vitamin A lipid droplets and play a role in liver
fibrosis, which is characterized by the accumulation of
extracellular matrix proteins, such as collagen.63 When
TGF-b is secreted by KCs, it produces cytokines and che-
mokines that contribute to liver fibrogenesis.57 However,
quiescent HSCs are TGF-b activation resistant because of
their expression of high levels of Bambi (bone morphoge-
netic protein and activin membrane-bound inhibitor) that
inhibits TGF-b receptor signaling.57 But Bambi is down-
regulated when HSCs are activated by TLR4 recognition of
LPS. This allows TGF-b signaling in HSCs,57 where they
stimulate the extracellular matrix by promoting the expres-
sion of extracellular matrix proteins, such as collagen type I.
The expression of collagen type I in HSCs is regulated post-
transcriptionally by multiple stimuli and pathways, including
TGF-b, which stimulates other matrix components, such as
cellular fibronectin and proteoglycans.57 These factors,
including the production of ROS, inflammatory cytokines,
and lipid peroxidation, activate the hepatic stellate cells to
transdifferentiate into myofibroblasts and contribute to liver
fibrosis (Figure 3). The end-stage manifestation of hepatic
fibrosis is cirrhosis. This is characterized histologically by the
formation of regeneration parenchymal nodules, separated by
fibrotic septa and associated with major distortion of liver
architecture.64 Repeated inflammation occurs along with
fibrogenesis and predisposes the liver to dysplasia and sub-
sequently malignant transformation.65 Cirrhosis is considered
a risk factor for hepatocellular carcinoma. Other risk factors
include hepatic oxidative stress and elevated TGF-b and
PDGF.66 Hepatocellular carcinoma can be considered an
important severe and late-stage evolution, after prolonged
alcohol abuse.
Similarities between Nonalcoholic and Alcoholic
Steatohepatitis Associated with Kupffer Cells and
Insulin Resistance

Several inflammatory cytokines, including TNF-a, have
been linked to both insulin resistance and progression of
steatosis in non-ALD.67,68 As described previously, TNF-a
The American Journal of Pathology - ajp.amjpathol.org
correlates with inflammation and steatosis in ALD, and this
inflammation has been related to non-ALD liver disease as
well. Several studies on obese and insulin-resistant patients
demonstrated elevated levels of IL-6, IL-18, and TNF-a.68

These elevated levels of TNF-a and IL-6 negatively affect
the insulin signaling cascade, resulting in meta inflammation
and the development of insulin resistance.69 Insulin resis-
tance is described as an excessive production of insulin, in
which the body does not use the insulin effectively, result-
ing in an increase in blood glucose levels instead of glucose
absorption by cells. This condition is related to the devel-
opment of type 2 diabetes.69 In high-fat diet studies, KCs
were depleted to understand their role in modulating insulin
sensitivity.70 Lanthier et al67 demonstrated that selective
ablation of KCs significantly improved high-fat diet-induced
hepatic insulin resistance and alterations of hepatic insulin
signaling. This confirms that KCs have an important role in
the initiation mechanism of high-fat diet-induced hepatic
insulin resistance, besides or irrespectively of inflammatory
changes occurring in the adipose tissue.70 KCs release
prostaglandin E2 (PGE2), which is involved in the modu-
lation of hepatic glucose output, regulation of cytokine
production, and induction of insulin resistance in hepato-
cytes in collaboration of IL-6.69 In nonalcohol liver disease,
PGE2 could act indirectly on hepatocytes by inducing the
production of oncostatin M in KCs.71

Finally, the clinical evidence of the association between
alcohol abuse, insulin resistance, metabolic syndrome, and
type 2 diabetes72e74 suggests that the mechanisms described
in nonalcoholic steatohepatitis and the link between KCs
and metabolic impairment may be also present during ALD.
However, further comparative studies between nonalcoholic
steatohepatitis and ALD on this specific issue would be
needed to clarify the differential role of KCs in these
diseases.
Conclusion

Alcohol abuse increases the risk of liver injury and devel-
oping ALD. Ethanol consumption causes increased gut
permeability, resulting in increased LPS presentation to the
liver. Kupffer cells express TLR4 receptors that recognize
LPS, which induce signaling pathways responsible for the
production of the inflammatory response and HSC activa-
tion. TNF-a is the principal proinflammatory cytokine
involved in inflammation and steatosis in ALD, albeit
playing an important role in non-ALD disease as well.
miRNAs have been shown to modulate inflammatory me-
diators in ALD, including TNF-a. Targeting miRNAs could
be a new approach to inactivate KCs and inhibit the TNF-a
production, and to improve or establish techniques to un-
derstand the role of KCs in other metabolic conditions,
including insulin resistance. The relationship between
Kupffer cells and hepatic stellate cells can point to a new
approach to attenuate alcohol liver injury.
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