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ABSTRACT: The modified point charge plus continuum (mPC) model [Constantin, L. A.;
Phys. Rev. B 2019, 99, 085117] solves the important failures of the original counterpart,
namely, the divergences when the reduced gradient of the density is large, such as in the tail
of the density and in quasi-dimensional density regimes. The mPC allows us to define a
modified interaction-strength interpolation (mISI) method inheriting these good features,
which are important steps toward the full self-consistent treatment. Here, we provide an
assessment of mISI for molecular systems (i.e., considering thermochemistry properties,
correlation energies, vertical ionization potentials, and several noncovalent interactions),
harmonium atoms, and functional derivatives in the strong-interaction limit. For all our
tests, mISI provides a systematic improvement over the original ISI method. Semilocal
approximations of the second-order Görling−Levy (GL2) perturbation theory are also
considered in the mISI method, showing considerable worsening of the results. Possible further development of mISI is briefly
discussed.

1. INTRODUCTION
The exact exchange−correlation (XC) functional can be
formally defined using the adiabatic connection formalism
as1−7

∫ρ ρ λ[ ] = [ ]λE W dxc
0

1

(1)

where ρ is the electron density, λ is the electron−electron
interaction strength, and

ρ ρ ρ ρ[ ] = ⟨Ψ [ ]| ̂ |Ψ [ ]⟩ − [ ]λ λ λW V Uee
(2)

is the density-fixed linear adiabatic connection integrand, with
Ψλ[ρ] being the antisymmetric wave function that minimizes T̂
+ λV̂ee while yielding the density ρ (T̂ and V̂ee are the kinetic
and electron−electron interaction operators, respectively), and
U[ρ] being the Hartree energy.
Many accurate hybrid XC functionals are based on, and

explained by, this method,4,6,8−10 which provides a rationale
for mixing the Hartree−Fock (HF) exchange with semilocal
XC functionals.11 Moreover, the basic Görling−Levy (GL)
perturbation theory12−14 uses a generalized adiabatic con-
nection formula13 to obtain the Taylor expansion of the
correlation energy at a small coupling constant (λ → 0). The
adiabatic connection formalism also stays behind the more
recent and sophisticated double hybrids15 that are using either
the second-order Møller−Plesset16 (MP2) correlation mixed
with fractions of HF exchange and semilocal XC func-
tionals17−23 into the generalized Kohn−Sham (KS) density
functional theory (DFT) scheme24,25 or GL2 correlation13

combined with fractions of KS-DFT exact exchange and

semilocal XC functionals26 into the optimized effective
potential (OEP) scheme of the true KS-DFT.26−29 The
adiabatic connection is also of utmost importance for the
ground-state calculations of linear-response time-dependent
DFT, being part of the so-called adiabatic connection
fluctuation-dissipation theorem that provides a framework for
high-level, orbital-dependent methods based on XC kernel
approximations.30−45

Here, we focus on the interaction-strength interpolation
(ISI) method46−48 that accurately interpolates the weak (λ →
0)- and strong (λ →∞)-interaction limits that are well known.
Thus, in the weak-interaction limit, the GL perturbation theory
becomes exact46

ρ ρ ρ λ[ ] = [ ] + ′[ ] + ···λW W W0 0 (3)

where W0[ρ] = Ex[ρ] is the exact KS-DFT exchange functional
and W0′[ρ] = 2Ec

GL2[ρ]. On the other hand, the strong-
interaction limit is

ρ ρ ρ λ[ ] = [ ] + ′ [ ] + ···λ ∞ ∞
−W W W 1/2

(4)

where W∞[ρ] and W∞′ [ρ] can be found in the strictly
correlated electron (SCE) approach,49 but in practice, they
have been approximated from the second-order gradient
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expansion (GE2) of the point charge plus continuum (PC)
model.46−48 Starting from the ISI method, several improve-
ments and variants have been proposed.49−65 In particular, we
mention the methods of refs 49, 50, which remove the spurious
λ−1 term in the large λ limit of Wλ, keeping the almost same
accuracy of the XC energy as the original ISI method.
Moreover, correlation energy densities have been constructed
from local interpolations along the adiabatic connection
curve.57,62,63,65−67

Recently, the modified ISI (mISI) method has been
developed,65 which solves important failures of the original
ISI approach in the tail of the density and in quasi-low
dimensional density regimes. The mISI method has been
tested on very few atoms showing improved correlation
energies over its initial variant. In this article, we assess mISI
for molecular systems, using the OEP exact exchange (OEPx)
orbitals and densities. Noting that mISI and ISI are pure KS-
DFT functionals and not wave function methods, the choice of
OEPx orbitals is the most physical, presumably being very
close to the true self-consistent ISI orbitals.
The GL2 correlation energy Ec

GL2[ρ] enters the expressions
of ISI and mISI functionals, as shown, e.g., in eq 17 of ref 60.
Because GL2 depends on all occupied and unoccupied orbitals
and orbital energies, its evaluation even with OEPx orbitals is
still very expensive. In this sense, semilocal approximations of
Ec
GL2[ρ] are of interest not only for simplification of the ISI and

mISI methods but also for the development of correlation
functionals compatible with exact exchange.68,69 Hence, in our
assessment, we also consider the mISI@TPSS-GL2 method
that replaces the true GL2 with the TPSS-GL2 meta-
generalized-gradient approximation (meta-GGA) correlation
functional,68 which is one of the most accurate GL2
approximations available nowadays (see Table S12 of ref 70
for a comparison of few GL2 models).
This paper is organized as follows: In Section 2, we show a

brief theoretical overview of the methods; in Section 3, we
report the computational details; and in Section 4, we present
and analyze the results. Finally, in Section 5, we summarize our
conclusions.

2. THEORETICAL OVERVIEW OF THE METHODS

Both ISI and mISI functionals have the same Wλ[ρ] integrand
in eq 1

ρ ρ ρ ρ
ρ λ ρ

[ ] ≈ [ ] = [ ] + [ ]
+ [ ] + [ ]λ λ ∞W W W

X
Y Z1

(m)ISI

(5)

where X = xy2/z2, Y = x2y2/z4, Z = xy2/z3 − 1, and x = −4Ec
GL2,

y = W∞′ , z = W0 − W∞ which, in turn, lead to following XC
functional expression

= + [ + − − + +
+

]∞E W
X

Y
Y Z

Y Z
Z

2
1 1 ln

1
1xc

(m)ISI i
k
jjjj

y
{
zzzz
(6)

The ISI functional approximates W∞ with the GE2 of the PC
model, and W∞′ has been fitted to the PKZB meta-GGA71

counterpart such that

∫

∫

ρ ρ ρ
ρ

ρ

[ ] = { + |∇ | }

= −

∞W A B

A s

r

r

d ,

d (1 0.14 )

PC 4/3
2

4/3

4/3 2
(7)

and

∫

∫

ρ ρ ρ
ρ

ρ

′ [ ] = { + |∇ | }

= −

∞W C D

C s

r

r

d ,

d (1 0.638 )

PC 3/2
2

7/6

3/2 2
(8)

where s = |∇ρ|/[2(3π2)1/3ρ4/3] is the reduced gradient of the
density, A = −1.451 and C = 1.535 are the LDA low-density-
limit coefficients, B = 0.005317 is the second-order gradient
expansion coefficient of the PC model, and D = −0.02558 was
fixed from W∞′PKZB[ρ] of the He atom.
On the other hand, mISI uses the following expressions65

∫ρ ρ[ ] =

= +
+ +

∞ ∞

∞

W A F s

F s
as

a s

rd ( ),

( )
1

1 ( 0.14)

mPC 4/3

2

2 (9)

and

∫ρ ρ′ [ ] = +
+∞W C

bs
s

rd
1
1

mPC 3/2
2

2 (10)

Here, a = 2 is the smallest integer that ensures W∞
mISI[ρ] ≤

sLL[ρ], where sLL[ρ] = A ∫ dr ρ4/3 − 0.245 ∫ dr ρ4/3s1/4 is the
simplified gradient-dependent bound of Lewin and Lieb.72,73

Note that W∞
mPC[ρ] still recovers the GE2 of the PC model.

Finally, b = 1.3 has been fitted to the correlation energy of the
He atom.
By construction, mISI permits local interpolations along the

adiabatic connection57,62 and the adiabatic connection semi-
local correlation (ACSC) functional formalism has been
constructed.65 Thus, for completeness, we will also show
results with ACSC GGA correlation functional combined with
OEPx.
The ACSC energy per particle ϵc

ACSC(r) is defined by
Ec
ACSC[ρ] = ∫ dr ρϵcACSC(r), where65

∫ρ λϵ = = −

+ + − −
+ +

+

λ ∞w w w

X
Y

Y Z
Y Z

Z

r r r r

r
r

r r
r r

r

( ) d ( ) ( ) ( )

2 ( )
( )

1 ( ) 1 ( )ln
1 ( ) ( )

1 ( )

c
ACSC

0

1

c,
mPC

0

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i

k
jjjjjj

y

{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
(11)

while

= − ′ ′ −

= ′ ′ −

= − − ′ ′ −

∞ ∞

∞ ∞

∞ ∞

X w w w w

Y w w w w

Z w w w w

r r r r r

r r r r r

r r r r r

( ) 2 ( )( ( )) /( ( ) ( )) ,

( ) 4( ( )) ( ( )) /( ( ) ( )) ,

( ) 1 2 ( )( ( )) /( ( ) ( ))

0
mPC 2

0
mPC 2

0
2 mPC 2

0
mPC 4

0
mPC 2

0
mPC 3

(12)

Here, all energy densities wλ(r), wλ′(r) are defined byWλ = ∫ dr
wλ(r) and Wλ′ = ∫ dr wλ′(r).
The ACSC energy density is a local interpolation along the

adiabatic connection, and it is meaningful when all of the
energy densities are in the same gauge. Moreover, eq 11 is well
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defined only when w0(r) > w∞
mPC(r),65 which is violated by the

exact exchange energy density in the conventional gauge of the
electrostatic potential of the XC hole,55,74 but it is satisfied by
the exact exchange energy density in the TPSS gauge.65,74

Thus, all energy densities should be in the TPSS gauge, which
is more appropriate for semilocal expressions. Because of their
semilocal nature, both w∞

mPC(r) and w∞′mPC(r) can be
considered to be in the TPSS gauge.
For the ACSC GGA correlation functional, we use w0′(r) =

2ρϵc
PBE−GL2 and w0(r) = ρϵx

PBE(r) as in ref 65, where ϵc
PBE−GL2

and ϵx
PBE are the GL2 and exchange energy densities of the

popular PBE GGA functional.65,75

The nonlinear form of the ISI correlation functional
expression leads to the increase of size-consistency
error,58,61i.e., the total energy of two nonidentical, distant
systems is not equal to the sum of energies of subsystems A
and B separately, Exc

(m)ISI(AB)R→∞ ≠ Exc
(m)ISI(A) + Exc

(m)ISI(B). As
is generally known, the lack of size consistency may lead to
wrong predictions, e.g., for atomization or binding energies of
molecular systems.76 This feature can be restored, without
additional cost, utilizing the sum over fragments idea from ref
61, which allows us to compute the correlation energies of the
infinitely far fragments (Exc

(m)ISI(AB)R→∞) utilizing as ingre-
dients in eq 6 the sum of energies of isolated parts. Then, the

size-consistency correction can be written (for considered
case) as

∑ ∑ρ ρ

Δ = + −

= −

→∞

= =

E A E B E AB

E W E W

( ) ( ) ( )

( ( )) ( )

R

i A

B

i
i A

B

i

SCC
(m)ISI

xc
(m)ISI

xc
(m)ISI

xc
(m)ISI

xc
(m)ISI

xc
(m)ISI

i

k
jjjjjj

y

{
zzzzzz

(13)

where W[ρ] = {Ex[ρ], Ec
GL2[ρ], W∞[ρ], W∞′ [ρ]} is a compact

notation for all ISI input ingredients (for more technical
details, we refer the reader to ref 61).

3. COMPUTATIONAL DETAILS
All methods considered in the present study have been
implemented in a locally modified version of the ACES II77

program. The ISI, mISI, as well as ACSC and mISI with TPSS-
GL2 results have been obtained in a post-self-consistent-field
(SCF) manner, using as a reference OEPx SCF converged
quantities (i.e., orbitals, orbital energies, and densities). As in
our previous studies,26,29,60,78−81 to solve the OEPx equation,
we have employed the finite-basis set procedure of refs 82, 83.
To enable the comparison with GL2 results and avoid
problems related to full SCF treatment78−80,84 (see also the

Table 1. Error Statistics (MAE and MARE) of Several Thermochemistry Propertiesg

@OEPx

MP2 OEP2-sc GL2 ISIf mISIf mISIe ACSC

Correlation Energies (9 Atoms and 27 Molecules)
MAEa 24.4 18.4 95.4 42.3 34.9 85.9 73.6
MAREb 10.5 8.7 26.6 10.4 8.3 21.4 16.9

Atomization Energies (27 Molecules)
MAEcI 5.5 8.0 37.8 16.8 15.1 14.8 17.8
MAREb 5.2 7.3 31.6 15.2 13.4 13.2 17.2

Atomization Energies (AE6 Test)
MAEcI 12.2 17.1 82.1 32.7 23.6 25.5 21.0
MAREb 3.7 5.6 23.6 13.6 11.7 7.5 6.9

Atomization Energies (Small Radicals)
MAEcI 6.1 15.7 53.0 21.7 16.6 30.3 34.2
MAREb 3.9 12.1 89.1 17.0 12.2 31.1 46.4

Kinetics (K9 Test)
MAEcI 2.8 14.9 18.9 16.0 15.0 15.9 14.8
MAREb 22.5 46.5 75.9 45.5 37.8 68.3 68.6

HTR Test
MAEcI 13.5 2.2 25.4 14.8 12.2 2.9 2.8
MAREb 143.5 32.6 259.5 150.2 119.0 29.5 34.0

21 Isomerization Energies (ISO21 Test)
MAEcI 0.89 0.39 20.71 12.48 10.97 7.16 6.61
MAREb 7.97 16.59 96.60 42.74 23.87 82.39 84.89

31 Closed-Shell Reaction Energies
MAEcI 2.0 3.0 10.6 4.7 4.6 11.4 10.3
MAREb 46.8 34.5 106.3 54.5 57.3 144.8 125.7

26 Open-Shell Reaction Energies
MAEcI 4.3 3.4 18.3 11.5 10.4 12.2 11.6
MAREb 12.3 12.7 51.5 34.6 29.5 35.6 30.2

32 Vertical Ionization Potentials (VIP)
MAEd 0.2 0.2 1.2 0.6 0.5 0.4 0.4
MAREb 2.4 1.2 9.0 4.9 4.3 3.8 3.6

aIn mHa. bIn %. cIn kcal/mol. dIn eV. eWith TPSS-GL2. fCorrected for size-consistency error (see ref 61). gThe best result between ISI and mISI
of each line is highlighted in bold style. The full results of all tests are reported in ref 70. The OEP2-sc results are fully self-consistent, the MP2 and
(reference) CCSD(T) results are calculated on top of HF orbitals, and the results of the other methods (GL2, ISI, mISI, mISI@TPSS-GL2, ACSC)
are computed on top of OEPx orbitals.
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discussion in refs 29, 85, 86), the reported GL2 results are
obtained in the same manner. As reference data, we have
utilized the coupled-cluster single double and perturbative
triple [CCSD(T)]87 results obtained in the same basis set, to
make a comparison on the same footing and to reduce basis
set-related errors. Additionally, for comparison, we also report
the results of the MP216 and ab initio DFT OEP2-sc
methods.88

To assess all methods, we have considered several test cases:

• Correlation energies: evaluated for the set of 9 atoms
and 27 small closed- and open-shell molecules from refs
81, 89.

• Thermochemistry data: This set contains atomization
energies, i.e., AE6,90,91 G2 subset89 (see the Supporting
Information of ref 81 for more details), small radicals,92

K9 barrier heights,91,93 21 isomerization/reaction
energies (ISO21),76 closed- and open-shell reaction
energies listed in refs 81, 94, and the hydrogen transfer
reactions (HTR).81,95 All of the aforementioned
calculations have been performed using uncontracted
cc-pVTZ basis sets of Dunning96 without counterpoise
corrections for basis set superposition error (BSSE). In
the case of atomization energies, the size-consistency
correction from ref 61 was employed.

• Vertical ionization potentials: 32 vertical ionization
potentials (VIP)79 computed as the energy difference
between the neutral and the ionic species.97 The
computational setup, namely, basis sets and geometries
(in the case of molecules), is identical to that in ref 79.

• Noncovalent interactions data: The interaction energies
of several types of noncovalent interacting molecular
systems also used in our previous studies,98−101 such as
weak interaction (WI), dipole−dipole interaction (DI6),
hydrogen-bond interaction (HB6), double-hydrogen-
bond interaction (DHB), and charge transfer interaction
(CT7). The energies have been obtained using an
uncontracted aug-cc-pVTZ102 basis sets together with
the geometries from refs 103−106. All quantities have
been calculated without counterpoise corrections for
BSSE. In all cases, the size-consistency correction from
ref 61 was employed.

• Harmonium atoms: We have performed calculation for
various values of ω in the Hooke’s atom model107

ranging between 0.03 (strong interaction) to 1000
(weak interaction) using a even-tempered Gaussian basis
set from ref 108 (N = 8, L = 0, 1). The accuracy of full
configuration interaction (FCI) results employing this
basis set for all values of ω was cross-checked with the
exact ones reported in ref 108 yielding, in total, a mean
absolute error (MAE) of 0.002 Ha and a mean absolute
relative error (MARE) of 0.06%. Because the ISI formula
interpolates between weak- and strong-correlation limits,
this test seems to be essential for the assessment of XC
formula accuracy.

• Potentials for the strong-interaction limit: We have
computed the functional derivatives of original and
modified PCW∞ and W∞′ models in a post-SCF manner
using OEPx densities. This approach was already
successfully utilized in some studies60,109−111 to
investigate the quality of the potentials.

4. RESULTS

Here, we present and analyze results for thermochemistry,
noncovalent interactions, and Hooke’s atom112−115 at various
frequencies ω of the harmonic potential. We also investigate
the potentials for the strong-interaction limit for a few systems.

4.1. Thermochemistry Results. In Table 1, we present
the error statistics (MAE and MARE) of the thermochemistry
results. We observe that the mISI method shows a systematic
improvement over the ISI method, for all of the tests. On the
other hand, GL2 fails badly, being the worst method here. We
recall that the GL213 correlation energy expression is

∑ ∑
ε ε ε ε ε ε

= −
|⟨ || ⟩|

+ − −
−

|⟨ | − ̂ | ⟩|
−

E
ij ab i v v a1

4 abij a b i j ia a i
c
GL 2

2
x
KS

x
HF 2

(14)

where the indices i, j, a, and b are used for occupied and virtual
KS orbitals, ε’s are the KS eigenvalues, and vx

KS and v̂x
HF are the

local, multiplicative KS OEPx and the nonlocal HF exchange
potentials, respectively. The first term on the right-hand side of
eq 14 is the same as the MP2 correlation energy expression,
the only difference being computed using KS OEPx orbitals
and orbital energies instead of the HF ones. The last term of eq
14 is small80 in comparison to the first one such that Ec

GL2 is
approximately Ec

MP2 evaluated with KS orbitals. A comparison
between the MP2 and GL2 results of Table 1 shows huge
accuracy differences. In this respect, the ISI and mISI methods
show significantly improved performance over GL2. This is a
consequence of attenuating the GL2 energy term60,79,80 in the
ISI functional expression. Nevertheless, in general, they are still
worse than MP2.
On the other hand, mISI@TPSS-GL2, which replaces into

the mISI expression the GL2 term with the semilocal TPSS-
GL2 variant, is usually worse than mISI, especially for the
correlation energies of atoms and molecules. Indeed, more
reliable semilocal approximations of GL2 are needed. Finally,
the ACSC GGA correlation combined with OEPx exact
exchange has a similar accuracy to mISI@TPSS-GL2.
Next, in Figure 1, we show the atomization energy errors

versus correlation energy errors for the set of 27 small
molecules, used also in Table 1. For almost all of the
molecules, the mISI method performs better than the ISI for
both properties. We also mention that the worst results are

Figure 1. Absolute relative errors (in %) of the atomization energies
(AE) versus the ones of the correlation energies, for a set of 27 small
molecules BeH, OH, NH2, NH, NO, PH2, O2, S2, SiH2, C2H5, CH2,
CH3, CN, COH, CH4, LiF, Li2, F2, CO, CH2, H2, CS, LiH, N2, P2,
NaCl, and H2O. For the worst cases F2 and P2, GL2 fails badly for
atomization energies, with errors of 188 and 73%, respectively.
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found from F2 and P2, which are difficult cases in quantum
chemistry, due to their multiconfiguration character.116

4.2. Noncovalent Interaction Results. In Figure 2, we
report the binding energy curves for three representative cases,

namely, Ne2, Ar−Ne, and H2S−HCl dimers. In the case of ISI
and mISI curves, to enable the comparison with reference
results, we have applied the size-consistency correction from
ref 61.
First of all, we note that the ACSC gives too shallow binding

curves similar to most semilocal functionals. Almost same
behavior (not reported) was observed for the mISI@TPSS-
GL2 method. The ISI and mISI methods, in turn, reduce the
huge overestimation of the GL2 method, with one exception of
Ne dimer where ISI gives slightly worse predictions. Never-
theless, also in this case, the utilization of modified point
charge plus continuum (mPC) variants of W∞ and W∞′
corrects the predictions. The mISI method, in general,
performs better than the ISI method, the results being much
closer to reference CCSD(T) and to the ab initio OEP2-sc
data.
This finding is further confirmed by the data gathered in

Table 2, where we report the error statistics obtained for

several classes of noncovalent interacting molecular systems.
The overall statistics confirm previous findings. The mISI
outperforms the ISI method, giving in the same time results
comparable to the OEP2-sc method. The only exception is for
the HB6 test, where we observe an inverse trend. However, a
closer look at the total energies (used to calculate HB6 binding
energies) shows also here very good performance of the mISI
method. The MAEs of total energies, calculated for GL2, ISI,
and mISI with respect to the CCSD(T) reference, follow the
general observed trend mISI (0.11 Ha) < ISI (0.14 Ha) < GL2
(0.28 Ha). This may indicate that the relatively good
performance of ISI for the HB6 binding energies can be
related to some error balancing between W∞

PC and W∞′PC GE2
terms.
We also note that in the case of WI systems, the ISI and

mISI methods yield quite large MAE and MARE. This is
caused by large errors given by two dimers, namely, He−Ne
and He−Ar. We have found that the large overestimation of
ISI binding energies is inherited from the GL2 method, which
gives energies of 0.90 and 0.83 kcal/mol for He−Ne and He−
Ar, respectively. At the same time, the reference CCSD(T)
results yield −0.04 and −0.06 kcal/mol for these two cases. To
explain this, we have had a closer look at the GL2 total
energies involved in the calculation of the binding energy of
the He−Ne dimer. It has turned out that while the Ne and
He−Ne dimer total GL2 energies largely overestimate the
reference CCSD(T) data (approximately by about 80 mHa),
the He total GL2 energy gives quite accurate results, being
only 6.4 mHa off CCSD(T) data, in consequence, causing the
rise of large error in the binding energy. Nevertheless, we note
that both the ISI and mISI methods slightly reduce the value of
GL2 binding energies for both dimers.
In Table S13 of ref 70, we report additionally the

comparison of binding energies obtained from the ISI and
mISI methods using HF reference orbitals. Because the MP2
method already provides quite accurate results (MAE = 0.38
kcal/mol, MARE = 12.58%), the improvement seen in ISI and
mISI results, which give here overall MAEs of 0.25 kcal/mol
(MARE = 10.26%) and 0.29 kcal/mol (MARE = 17.11%),
respectively, is not so significant as observed in Table 2.
To conclude, the mISI shows a systematic improvement

over the ISI method, and most importantly, both these
methods provide significant correction over GL2, which fails
badly, being the worst method for all of the tests.

4.3. Hooke’s Atom. Figure 3 reports the errors in the total
energies of harmonium atoms calculated for various values of
ω ranging between 0.03 and 1000 for several methods. Because
both ISI formulas interpolate between weak- and strong-
correlation limits, this type of test can be of utmost importance
for checking their accuracy and smooth transition between
these two regimes. An inspection of the figure reveals that the
best performance is given by the mISI method closely followed
by ISI, OEP2-sc, and MP2 results. This indicates that the
modified GGA PC formula, which fixes the behavior of ISI
functional in the density tail, has a strong impact on the proper
description of both regimes. In medium- and weakly correlated
limits, we observe really good performance of the GL2 method.
This is not surprising because GL2 becomes exact in this
regime. On the other hand, in the strongly correlated limit, the
GL2 method shows the worst performance of all methods. The
ACSC and mISI@TPSS-GL2 give similar performance to the
ab initio OEP2-sc method, namely, a small error for ω1/2 < 1
and a large overestimation for larger values of ω.

Figure 2. Binding energy curves of Ne2 (top), Ne−Ar (middle), and
H2S−HCl (bottom) computed using different theoretical methods. In
the case of ISI and mISI methods, the size-consistency correction
from ref 61 was employed.
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To better see the functional performance at the strong-
correlation limit (ω → 0), we report in Figure 4 the relative

errors (RE) on the correlation energy. When ω → 0, mISI is
the most accurate method being in good agreement with the
ISI method computed with exact W∞ and W∞′ .62 On the other
hand, the original ISI, which uses the PC model, gives quite
large errors of about 30%, but still much better than GL2,
which fails badly, with an error of about 120%. Note that when
ω → 0, the density varies rapidly almost everywhere such that
the reduced density gradient s is large, and the gradient
expansion of the PC model cannot describe this regime.

4.4. Analysis of Functional Derivatives of W∞ and
W∞′ . Finally, in Figures 5 and 6, we report the comparison of
the functional derivatives of W∞

PC and W∞′PC and their modified
counterparts for two representative systems, namely, H− ion
and N2 molecule.
Let us turn first our attention to the H− ion. We note that

both mPC and PC W∞ and W∞′ potentials, like any other
GGA, diverge on the nuclei, contrary to the exact SCE
potential. Furthermore, in the tail of the density, both PC
potentials diverge.60 This is not the case for mPC potentials
where we observe smooth and fast decay to zero in this region.
We recall here that the exact SCE potential decays as −1/r in
the tail of the density. On the other hand, it was shown
recently117 that the functional derivative of an exact W∞′
diverges in the tail for one-dimensional systems. This might
indicate that the divergence is an exact feature ofW∞′ andW∞′PC
is a more accurate model.
A similar behavior is observed for the N2 molecule. In the

nuclei, both potentials diverge, whereas in the far asymptotic
region, the mPC potentials decay quite fast to zero in contrast
to the PC potential which diverges.
We note, however, that the utilization of ISI-like functionals

in practical KS calculations requires that the functional
derivative of the XC functional is finite in the tail. Thus, one
needs to remove the divergences of the functional derivative118

despite whether this is an exact or model feature. This step is
important toward the fully self-consistent implementation of
ISI functionals.118

Table 2. MAE and MARE for Noncovalent Interaction Test Setse

@OEPx

MP2 OEP2-sc GL2 ISId mISId mISIc ACSC

WI
MAEa 0.04 0.05 0.51 0.36 0.24 1.96 0.32
MAREb 18.53 17.08 598.63 455.11 426.50 899.71 150.26

HB6
MAEa 0.17 0.27 0.75 0.39 0.70 0.64 0.66
MAREb 1.81 4.32 9.27 4.92 7.28 7.50 6.49

DI6
MAEa 0.45 0.71 2.16 1.41 1.14 1.01 1.09
MAREb 12.85 20.24 64.05 42.53 34.80 38.97 34.77

CT7
MAEa 0.55 1.35 2.54 1.71 1.39 1.94 1.64
MAREb 14.99 40.25 80.36 54.94 44.61 69.62 60.33

DHB
MAEa 0.54 0.85 1.62 0.98 0.79 0.91 1.01
MAREb 8.19 13.18 30.31 18.52 15.17 20.54 20.53

Overall
MAEa 0.38 0.74 1.63 1.05 0.91 1.37 1.03
MAREb 12.58 24.28 154.22 113.00 103.06 195.24 58.49

aIn kcal/mol. bIn %. cWith TPSS-GL2. dCorrected for size-consistency error (see ref 61). eThe best result between ISI and mISI of each line is
highlighted in bold style. The OEP2-sc results are fully self-consistent, the MP2 and (reference) CCSD(T) results are calculated on top of HF
orbitals, and the results of the other methods (GL2, ISI, mISI, mISI@TPSS-GL2, ACSC) are computed on top of OEPx orbitals.

Figure 3. Absolute error on total energies of harmonium atoms for
various values of ω.

Figure 4. Relative error on correlation energies of harmonium atoms
for various values of ω. The black dots (denoted with ISI-Exact) show
the results of the ISI method computed with exactW∞ andW∞′ , taken
from ref 62.
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5. CONCLUSIONS
We have presented a small assessment and comparison of ISI
and mISI methods showing that the utilization of the modified
PC model in ISI formula leads always to the improvement in
the results. Moreover, the inspection of functional derivatives
of W∞ and W∞′ obtained from the mPC model shows a lack of
divergence in the tail of the density, which is a crucial step
toward the self-consistent implementation of ISI functionals.
We note that the overall accuracy of the results provided by

all ISI-like functionals is not better than other semilocal,
hybrid, and double-hybrid functionals.58 This is due to the
dominant role of the GL2 or MP2 (depending on the reference
orbitals used in the evaluation of energy) term in the ISI
formula60 for most of the chemically important applications.
Thus, one possible way to improve the results is to include
more terms in eq 3, i.e., third-order GL/MP or higher. This,
however, will significantly increase the cost of the method.
Another possible path is to substitute the GL2/MP2 term by

rescaled GL2/MP276 or one of spin-component-scaled
variant80,119−122 of GL or MP perturbation theory.
Finally, we mention that the mPC, and implicitly the mISI

method, can be further improved by considering the Pauli
kinetic energy enhancement factor123−128 as an additional
ingredient, which is relevant for one- and two-electron
systems,129 atomic core,129 asymptotic behavior in the tail of
the density,130 and superior overall performance.128 These will
be a subject of further studies.
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(60) Fabiano, E.; Śmiga, S.; Giarrusso, S.; Daas, T. J.; Della Sala, F.;
Grabowski, I.; Gori-Giorgi, P. Investigation of the Exchange-
Correlation Potentials of Functionals Based on the Adiabatic
Connection Interpolation. J. Chem. Theory Comput. 2019, 15,
1006−1015.
(61) Vuckovic, S.; Gori-Giorgi, P.; Della Sala, F.; Fabiano, E.
Restoring size consistency of approximate functionals constructed
from the adiabatic connection. J. Phys. Chem. Lett. 2018, 9, 3137.
(62) Kooi, D. P.; Gori-Giorgi, P. Local and global interpolations
along the adiabatic connection of DFT: a study at different correlation
regimes. Theor. Chem. Acc. 2018, 137, No. 166.
(63) Zhou, Y.; Bahmann, H.; Ernzerhof, M. Construction of
exchange-correlation functionals through interpolation between the
non-interacting and the strong-correlation limit. J. Chem. Phys. 2015,
143, No. 124103.
(64) Seidl, M.; Giarrusso, S.; Vuckovic, S.; Fabiano, E.; Gori-Giorgi,
P. Communication: Strong-interaction limit of an adiabatic
connection in Hartree-Fock theory. J. Chem. Phys. 2018, 149,
No. 241101.
(65) Constantin, L. A. Correlation energy functionals from adiabatic
connection formalism. Phys. Rev. B 2019, 99, No. 085117.
(66) Vuckovic, S.; Irons, T. J.; Wagner, L. O.; Teale, A. M.; Gori-
Giorgi, P. Interpolated energy densities, correlation indicators and
lower bounds from approximations to the strong coupling limit of
DFT. Phys. Chem. Chem. Phys. 2017, 19, 6169−6183.
(67) Vuckovic, S.; Gori-Giorgi, P. Simple Fully Nonlocal Density
Functionals for Electronic Repulsion Energy. J. Phys. Chem. Lett.
2017, 8, 2799−2805.
(68) Perdew, J. P.; Staroverov, V. N.; Tao, J.; Scuseria, G. E. Density
functional with full exact exchange, balanced nonlocality of
correlation, and constraint satisfaction. Phys. Rev. A 2008, 78,
No. 052513.
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