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ABSTRACT
Plant chloroplasts have complex membrane systems. Among these, thylakoids serve as the sites for 
photosynthesis and photosynthesis-related adaptation. In addition to the photosynthetic membrane 
complexes and associated molecules, lipids in the thylakoid membranes, are predominantly composed 
of MGDG (monogalactosyldiacylglycerol), DGDG (digalactosyldiacylglycerol), SQDG (sulfoquinovosyldia-
cylglycerol) and PG (phosphatidylglycerol), play essential roles in shaping the thylakoid architecture, 
electron transfer, and photoregulation. In this review, we discuss the effect of abiotic stress on chloroplast 
structure, the changes in membrane lipid composition, and the degree of unsaturation of fatty acids. 
Advanced understanding of the mechanisms regulating chloroplast membrane lipids and unsaturated 
fatty acids in response to abiotic stresses is indispensable for improving plant resistance and may inform 
the strategies of crop breeding.
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Introduction

Plants often need to cope with a variety of stressful environ-
ments that are not conducive to growth and development, such 
as drought, salt and temperature stress.1, 2 Drought stress can 
hinder protein synthesis, while reducing the rates of plant cell 
division and the efficiency of photosynthesis,3,4 ultimately 
resulting in slower plant growth.5–7 Salt stress can alter the 
membrane lipid composition,8,9 inhibit seed germination,10–13 

and disrupt ion homeostasis,14,15 and lead to oxidative 
stress.16–18 Continuous temperature stress can destroy the 
structure of plant cells,19,20 disturb the physiological and bio-
chemical metabolisms,21,22 reduce crop yield,4 and limit the 
geographical distribution of plants.23

Chloroplasts are the special organelles executing photosynth-
esis in plants and eukaryotic algae, and contain a complex mem-
brane system.19,24 The photosynthetic membranes (also called 
thylakoid membranes) accommodate photosynthetic pigment- 
protein complexes and electron transport chains.25–27 When 
plants are subjected to abiotic stress, photosynthetic organs are 
susceptible to environmental influences and undergo structural 
and metabolic regulations.28–31 As a result, the integrity and 
fluidity of the chloroplast membranes may be destroyed, and the 
chloroplasts in the entire plant may be deactivated.32–34 

Membrane structure and fluidity are affected by lipid composition 
and fatty acid desaturation.35 The fluidity of the lipid membrane is 
determined by the variable unsaturated fatty acid content.36 

Changes in unsaturated fatty acid content can improve the plant’s 
tolerance to environmental stresses, such as cold, high tempera-
ture and drought.37 The glycerolipids of thylakoid membranes in 
cyanobacteria and plant eukaryotes chloroplasts have a glycerol 

skeleton, where two fatty acid molecules are bonded to sn-1 and 
sn-2, and have phosphorus (phospholipid) or sugar at the sn-3 
position (Glycolipid) molecule.38 The lipid bilayer is mainly com-
posed of four unique lipids, including monogalactosyldiacylgly-
cerol (MGDG), digalactosyldiacylglycerol (DGDG), 
sulfoquinoxayldiacylglycerol (SQDG) and phosphatidylglycerin 
(PG).39 MGDG and DGDG are uncharged galactolipids, which 
form the main body of thylakoid membrane lipids, and provide 
a lipid bilayer matrix as the main component for photosynthetic 
complexes.40 Glycolipid SQDG and phospholipid PG are anionic 
lipids with negatively charged head groups.41,42 This review sum-
marizes a series of physiological changes in chloroplast membrane 
lipids under abiotic stress. Changes in the composition and con-
tent of chloroplast membrane lipids and unsaturated fatty acids 
have physiological impacts on the structure of chloroplasts and 
thylakoid membranes, and thereby affecting photosynthesis and 
plant growth.

Biosynthesis and transportation of fatty acid and 
membrane lipid

The production of chloroplast lipids begins with the synthesis of 
fatty acids in chloroplast intermediates. Figure 1 shows the 
whole process of membrane lipid synthesis and transport. The 
fatty acids are derived entirely from chloroplast FA synthase 
(FAS), while phosphatidic acid (PA) can be produced in both 
chloroplast and endoplasmic reticulum (ER), depending on the 
plant species.43 Fatty acid synthesis is catalyzed by acetyl-CoA 
carboxylase (ACC) and FAS.44 Most de novo synthesized fatty 
acids assemble into phospholipids and neutral lipids in the ER, 
so fatty acids must be transported from the plastid to the 
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endoplasmic reticulum.45 Fatty acids are synthesized through 
repeated cycles of condensation, dehydration, and reduction 
on acyl carrier proteins.46 The acyl chain grows and attaches to 
the acyl carrier protein (ACP). The newly synthesized acyl-ACP 
(acyl-ACP) is hydrolyzed by acyl-ACP thioesterases to release 
free fatty acids or perform the next cycle of fatty acid chain 
extension.47 Free fatty acids synthesize C16 and C18 long- 
chain fatty acids under the action of Long-chainacyl-COA 
synthetase (LACS).44 40% of fatty acids are left in the plastids 
to synthesize plastid lipids. This pathway is called the prokar-
yotic pathway for lipid synthesis.48 The eukaryotic biological 
process is that 60% of fatty acids are transported out of the 
plastid in the form of acyl-COA and then transported to the 
endoplasmic reticulum for extension and processing.49 About 
half of the lipids were transported back to the plastid for further 
modification.50 Such as Pea (Pisum sativum) and rice (Oryza 
sativa L.), which only use the eukaryotic pathway for chloroplast 
glycolipid assembly, and these plants have a high proportion of 
α-linolenic acid (C18:3) in chloroplast lipids, giving rise to their 
designation “18:3 plant”.51 Such as Arabidopsis thaliana and 
spinach (Spinacia oleracea L.), these two pathways are involved 
in the biosynthesis of chloroplast lipids.52 Their chloroplast 
lipids contain a large amount of hexadecanoic acid (C16:3), so 
they are called “16: 3 plants”.53 The prokaryotic pathway directly 

generates MGDG, DGDG, SQDG and PG from newly synthe-
sized FA.54 Diacylglycerol (DAG), as a precursor of MGDG and 
DGDG, can be synthesized through eukaryotic and prokaryotic 
pathways.55 Part of the DAG that synthesizes chloroplast lipids 
comes from the chloroplast, and the other part is synthesized 
using phospholipid synthesized by endoplasmic reticulum as 
a precursor.56

In the eukaryotic pathway of lipid synthesis, fatty acids 
synthesized in plastids are transported out of the plastids for 
the synthesis of phospholipids and triacylglycerols (TAG).57 

FAX1 (fatty acid export1) transporter can regulate lipid trans-
port between chloroplast and endoplasmic reticulum.58 FAX1 
is a new Arabidopsis Tmemb_14 family transporter located in 
the inner membrane of the chloroplast, which mediates the 
output of free fatty acids in the chloroplast.59 The ATP binding 
cassette (ABC) protein located in the endoplasmic reticulum 
mediates the transport of cytoplasmic acyl-COA or fatty acids 
to the endoplasmic reticulum in Arabidopsis,60 and the protein 
family has a transmembrane domain and a nucleotide binding 
domain.61 ABCA9 regulates the transport of fatty acyl-COA or 
fatty acids in the cytoplasm to the endoplasmic reticulum to 
provide lipid raw materials for the synthesis of TAG.62

Fatty acids enter into the ER and are incorporated through the 
Kennedy pathway. The fatty acid in the form of fatty acyl-COA is 
catalyzed by glycerol-3-phosphate acyltransferase (GPAT) to 
esterify the fatty acid to the sn-1 position of glycerol-3-phosphate 
(G3P), preferably 18:1 acyl-ACP. Lyso-phosphatidic acid acyl-
transferase (LPAAT) esterifies the second fatty acid to the glycerol 
backbone at the sn-2 position. The resulting PA is phosphorylated 
by phosphatidic acid phosphatase (PAP) to generate DAG. DAG 
is incorporated into various lipids, including phosphatidylcholine 
(PC).63,64 The second pathway is called as “acyl-editing”. In this 
pathway, fatty acids are added directly to lyso-PC to regenerate 
PC, which is cycled back into lyso-PC.65 Lipid transport from the 
endoplasmic reticulum to the chloroplast requires Arabidopsis 
thalactosyl diglyceride trigalactosyldiacylglycerol (TGD) to regu-
late lipid across the chloroplast inner and outer membranes into 
the chloroplast. Lipids transported through the TGD protein 
complex can include PC, PA or DAG, each TGD protein complex 
specifically binds PA.66 TGD1 is the first identified protein located 
on the outer membrane of the chloroplast, and this protein 
mutation promotes the accumulation of DGDG.67 Three proteins 
TGD1, TGD2 and TGD3 all inhibited the transport of Arabidopsis 
endoplasmic reticulum lipids to the chloroplast.68 TGD4 is 
a transmembrane lipid transfer and plays a more direct role in 
lipid transfer from the ER to the outer plastid envelope.69 TGD5 
facilitates lipid transfer from the outer to the inner plastid envel-
ope by bridging TGD4 with the TGD1,2,3 transporter complex.70 

LACS can not only catalyze the formation of fatty acid-CoA from 
free fatty acids to participate in the synthesis of long-chain fatty 
acid derivatives, but also regulate the transport of fatty acids from 
the endoplasmic reticulum to the chloroplast.71 Studies have 
shown that LACS9 localized on the outer membrane of chloro-
plasts is involved in regulating the input of chloroplast fatty 
acids.72 MGDG is synthesized by MGDG synthetase, which cat-
alyzes the transfer of galactose from Uridine diphosphate galac-
tose (UDP-Gal) to the DAG backbone. DGD synthase then 
transfers a second galactose from UDP-Gal to MGDG to form 

Figure 1. ER-chloroplast interacts in the process of lipid biosynthesis, including: 
exporting fatty acids from plastids, thylakoid lipid biosynthesis. Acyl-ACP is 
released from the fatty acid synthase complex (FAS) and hydrolyzed into free 
fatty acids (FFA), using the FAX1/LACS mechanism to export FFA, reactivated into 
the acyl-CoA in the outer membrane of the chloroplast, through the Kennedy 
pathway or acyl.The editing approach incorporates acyl-CoA into the ER lipid. TGD 
regulates the transport of lipids (mainly PA) across the inner and outer chloroplast 
membranes into the chloroplast. MGDG is synthesized from chloroplast-derived 
lipids and ER-derived lipids, which can then be desaturated by chloroplast-specific 
FAD. The blue arrow shows the lipid assembly reaction of the plastid pathway, the 
red arrow shows the ER pathway reaction, and the yellow arrow shows the 
common reaction, mainly the biosynthesis of MGDG and DGDG. The biosynthesis 
of MGDG occurs on the surface of the inner envelope, and the biosynthesis of 
DGDG occurs on the cytoplasmic surface of the outer envelope. FADs fatty acid 
desaturases, DGD1 digalactosyldiacylglycerol synthase 1, MGD1 monogalactosyl-
diacylglycerol synthase 1, PAP phosphatidic acid phosphatase, LPAAT lyso- 
phosphatidic acid acyltransferase, GPAT glycerol-phosphate acyltransferase, 
DGAT diac glycerol acyltransferase, TGD trigalactosyldiacylglycerol, LACS long- 
chain acyl-CoA synthetases, FAX1 fatty acid export 1, PA phosphatidic acid, PC 
phosphatidylcholine, MGDG monogalactosyldiacylglycerol, DGDG 
digalactosyldiacylglycerol.
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DGDG, where the contents of MGDG and DGDG are regulatable 
under stress conditions (Figure 2).73,74

The effect of abiotic stress on chloroplast structure in 
cellular level

Abiotic stress can cause irreversible damage to the structure of 
the chloroplast. Maintaining structural stability under adverse 
conditions and reducing damage to chloroplasts may play an 
important role in improving plant stress resistance.75 The 
plasma membrane is considered to be the main barrier between 
the organism and the external environment, and is a substance 
that overcomes pressure damage.76

Chloroplasts are usually the earliest abiotic damage sites 
visible in the ultrastructure of plants. The degradation of chlor-
oplasts in plants leads to a decrease in net photosynthetic rate 
and growth retardation.77 Temperature, drought and salt stress 
can cause irreversible damage to the structure of the chloroplast, 
such as the reduction of the aspect ratio and area of the chlor-
oplast, and the phase change of the chloroplast membrane.78,79 

The thylakoid membrane system is essential for photosynthesis. 
Once the system is disturbed, the number and size of plastid 
spheres change. After being treated at 4°C for 20 days, the 
thylakoid membrane of the sweet pepper swelled and deformed 
and the thylakoid of the grain split, and at the same time the 
starch grains increased.80 Chloroplasts gradually expanded from 
ellipsoids to larger spheres. Studies have shown that chloroplast 
swelling could lead to an increase in cell matrix permeability and 
low temperature could cause chloroplast degradation.81,82 When 
the Chinese cabbage Wucai (Brassica campestris L.) was exposed 
to high temperature, the chloroplast envelopes were degraded, 
the thylakoids were inflated, and the grana lamellae were loosely 
arranged. The osmiophilic particles in the chloroplasts were 
increased in both number and size.83 Treatment of Rice salt- 
sensitive (IR-29) varieties with 100mMNaCl showed that the 
chloroplast structure was damaged, which was manifested in 

the cracking of the existing grana stacks, the increase of the 
existing grana stacks, and the expansion of the thylakoid mem-
branes, which ultimately led to a decrease in photosynthetic 
activity.84

Maintaining structural stability under adverse conditions 
and reducing damage to chloroplasts may play an important 
role in improving plant stress resistance. Changes in lipid 
composition and structure in the plasma membrane under 
ambient pressure are essential to maintain the stability and 
function of the membrane. When plant organelles experience 
stress, chloroplasts respond most rapidly and with the most 
sensitivity.85,86 Changes in the ultrastructure of chloroplasts 
result in a series of adaptive and evasive responses.87,88 

Expression of the chloroplast targeting protein SlCOR413IM1 
in tomato (Solanum lycopersicum L.) increased rapidly under 
low temperature, causing minimal damage to the chloroplast 
membrane system and maintaining the integrity of the chlor-
oplast ultrastructure.89 In the dry state, AtCOR15 protein 
could interact with the galactose head group of chloroplast 
lipid MGDG in Arabidopsis thaliana. The decrease of the gel- 
liquid crystal transition temperature depends on the unsatura-
tion of the fatty acyl chain and the structure of the lipid head 
group. FTIR (Fourier-transforminfrared) spectra from mem-
branes containing MGDG showed evidence for increased fatty 
acyl chain mobility in the gel phase in the presence of the 
COR15 proteins.90 In cucumber (Cucumis sativus L.), exogen-
ous spermine (Spm) can prevent chloroplast and thylakoid 
membrane structural changes induced by salt stress, and main-
tain a complete internal layering system. Spm can also prevent 
chlorophyll degradation in cucumber leaves caused by salt 
stress, and protect the light harvesting complex (LHC) and 
PSII from salt-induced damage.91

The functions of chloroplast membrane lipids during 
abiotic stress

The thylakoid membrane is the site of photo-driven photoche-
mical reactions and electron transfer in plants, and it also plays 
an important role in maintaining the stability of photosynth-
esis (Table 1).19,92 Membrane lipids are also part of the thyla-
koid complex.93 For example, DGDG and PG are involved in 
the binding of extrinsic proteins, thereby stabilizing the man-
ganese cluster in PSII.94 Plants resist abiotic stress and protect 
themselves by changing the synthesis and composition of thy-
lakoid membrane lipids.74,95–97

Variations in the DGDG/MGDG ratio could modify the 
stability of chloroplast membranes.98,99 When plants were sub-
jected to drought stress, MGDG was most sensitive to 
drought.100 In the MGDG synthetic gene knockout 
Arabidopsis mutant mgd1, the expression level of MGDG was 
reduced and had no effect on PSII activity.101 However, in the 
mgd1 mutant, the electrical conductivity of the thylakoid mem-
brane increased, thereby weakening the photoprotective effect 
of the thylakoid membrane.102 Studies have shown that 
drought stress increases the ratio of DGDG/MGDG in spring 
wheat, and a decrease in PG content is observed. The author 
believes that it may be that PC or PC-derived lipids are directly 
or indirectly transported to galactolipid biosynthetic plastids, 
or that DAG is phosphorylated into PA for synthesis of 

Figure 2. In thylakoids, MGDG, DGDG, SQDG and PG are synthesized by PA through 
different pathways. MGDG is synthesized by MGD synthetase, which catalyzes the 
transfer of galactose from UDP-Gal to the DAG. DGD synthase transfers a second 
galactose from UDP-Gal to MGDG to form DGDG; MGDG synthesizes DGDG through 
DGD1/DGD2 pathway, and then forms TGDG from SFR2.
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DGDG.103,104 In the process of drying and recovery, the con-
tent of chloroplast membrane lipid and the expression of 
related genes of desiccation-tolerant plants (Craterostigma 
plantagineum and Lindernia brevidens) and desiccation- 
sensitive plants (Lindernia subracemosa) must change. In 
desiccation-tolerant plants, the total lipid content remains 
constant, but the membrane lipid composition changes and 
the MGDG content decreases. One of the ways to reduce 
MGDG is the synthesis of phospholipids by DAG, and the 
other is the conversion of MGDG to the DGD1/DGD2 path-
way, followed by the formation of oligogalactolipids from SFR2 
(Figure 2).105 The reduced MGDG/DGDG ratio helps maintain 
the bimolecular conformation of membrane lipids and greatly 
improves the stability of the chloroplast membrane.105

In the halophyte Thellungiella, increasing the content of PG 
and SQDG in membrane lipids and the ratio of MGDG/DGDG 
under salt stress could alleviate PSII photoinhibition.106 Under 
salt stress, there are decreases in the content of SQDG, the ratio 
of MGDG/DGDG in the chloroplast membranes of peanut 
(Arachis hypogaea L.), the expression of ω-3 FAD gene, and 
unsaturated fatty acid content. Increasing the unsaturated fatty 
acid content of peanut leaf membrane lipid reduced the photo-
inhibition of PSII and PSI and improved salt tolerance.107,108 

By contrast, Arabidopsis and rice have different lipid synthesis 
pathways. Arabidopsis is a “16:3 plant” with both eukaryotic 
and prokaryotic lipid synthesis pathways, while rice is an “18:3 
plant” with only a eukaryotic lipid synthesis pathway. Under 
low temperature, Arabidopsis contains higher levels of galacto-
lipid than those in rice. The higher double bond index and 
lower average acyl chain length make Arabidopsis chloroplast 
membranes more fluidic at low temperatures.13 Two varieties 
of Fabaceae: Sulla carnosa and Sulla coronaria, treated with 
200 mM NaCl for 20 days. The experimental results show that 
(a) maintaining a constant MGDG/DGDG ratio and fatty acids 
unsaturation level, (b) increasing unsaturation level in MGDG, 
DGDG and PG may contribute to some degree in the adapta-
tion to salt stress and could protect chloroplast membrane 
integrity against salt stress effects.109

Roles of fatty acid composition in abiotic stress 
response

Plants can adjust the fluidity of membrane lipids, by changing 
the degree of saturation of polyunsaturated fatty acids, to cope 
with stress conditions.110,111 The levels of the unsaturated FAs 
(those that carry double bonds between carbons) 18:1, 18:2, and 

18:3 are particularly important in plant defense.112 Analysis of 
fatty acids in thylakoid membrane lipids revealed the presence of 
the saturated fatty acids palmitic acid and stearic acid, and 
unsaturated fatty acids palmitoleic acid and oleic acid (18:1), 
linoleic acid (18:2) and linolenic acid (18:3).113 In the neutral 
membrane lipids (MGDG and DGDG) of the photosynthetic 
membrane, the two fatty acyl chains are mostly unsaturated 
linolenic acid.114 The negatively charged DGDG is mainly unsa-
turated linolenic acid and saturated palmitic acid, or a mixture of 
PG.115 Fatty acid desaturase (FAD) is an important enzyme that 
introduces double bonds into fatty acids during the synthesis of 
glycerolipids.116 For example, the ω-3 FAD is based on the first 
carbon atom at the methyl terminus being the ω-1 position, with 
a C = C double bond at the ω-3 position, and consists of at least 
two C = C double bonds.117 According to different electron 
donors, there is one type of omega-3 FAD in the endoplasmic 
reticulum, which mainly acts on PG or other phospholipids, 
while the other type exists in the plastid and acts on phosphati-
dylglycerol or galactosyl.118ω-3 FAD and two plastid enzymes, 
FAD7 and FAD8, are the key enzymes that catalyze the conver-
sion of 16:2 or 18:2 into 16:3 or 18:3, respectively (Figure 3a).119 

The increase of unsaturated fatty acids can enhance plant resis-
tance to stress.120,121 Therefore, the regulation of fatty acid 
saturation by FAD is an important way for plants to adapt to 
abiotic stress.

Under low temperature stress, the PSII D1 protein is the 
target of photoinhibition. Fatty acids in PG through over- 
expression of LeGPAT can alleviate PSII photoinhibition.122 

Table 1. Typical functions of membrane lipids.

Lipid 
species Description

Related 
references

MGDG In the mgd1 mutant, the electrical conductivity of the thylakoid membrane increased, thereby weakening the photoprotective effect of 
the thylakoid membrane.

100–102

DGDG DGDG confers thermotolerance to plants due to its bilayer-stabilizing properties as demonstrated by the failure of DGDG-defi cient dgd1 
mutant plants to adapt to high growth temperatures.

103,104

SQDG SQDG is a negatively charged glycolipid, composed of more saturated fatty acids, and contains different numbers of eukaryotic and 
prokaryotic species according to plant species.

106–109

PG PGs are the major phospholipid in thylakoid membranes of higher plants and can be used as a precursor of cardiolipins located on the 
inner mitochondrial membrane that are required for proper functioning of the oxidative phosphorylation enzymes.

115,118

Abbreviations: MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol; PG, phosphatidylglycerol.

Figure 3. (a) Fatty acid biosynthetic pathway and regulating mechanism of fatty 
acid desaturases in response to stress. (b) Under abiotic stress, the ω-3 fatty acid 
desaturase gene FAD3 catalyzes 18:2 to 18:3 in phospholipids, giving plants 
resistance to stress.
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The increase of unsaturated fatty acids in PG reduces the 
formation of ROS and damage to photosynthetic complexes, 
thereby improving the low-temperature tolerance of tomato 
plants.123 At lower temperatures, an increase of unsaturated 
fatty acid content was observed in the transgenic lines. The 
CaHSP26 protein protects PSII by reducing photooxidation, 
maintaining antioxidant enzyme activity and increasing the 
fluidity of the thylakoid membrane.124 Under heat stress, the 
relative amount of one triacylglycerol species (54:9) containing 
α-linolenic acid (18:3) increased. Heat stress could induce an 
increase in TAG levels in Arabidopsis leaves, which acts as an 
intermediate in lipid turnover and leads to a reduction in 
membrane polyunsaturated fatty acids.125

Sui et al.122 found that the increase of unsaturated fatty acids 
in the membrane lipids of Suaeda salsa increases the protection 
of PSII under high salinity, and that unsaturated fatty acids in 
membrane lipids can protect PS from NaCl stress. Under salt 
treatment of the halophyte Thellungiella, 18:3 unsaturated fatty 
acids increased significantly, whereas 18:1, 18:2, and 18:3 
decreased greatly in the non-halophyte Arabidopsis.106 This 
may be due to the ion channel or Na+/H+ reverse transport 
system that are located on the plasma membrane. The 
increased unsaturated fatty acids in the membrane lipids 
could improve the fluidity of the membrane, thereby activating 
the ion channel and protecting the photosystem.106,126 In 
tomato, LeFAD3 overexpression can enhance the tolerance of 
early seedlings to salt stress. It could increase the level of 18:3 in 
plants to remove excess active oxygen, and promote the repair 
of PSII, finally reduce the damage to membrane lipids (Figure 
3b)127–129 Under drought stress, the proportion of saturated 
fatty acids in thylakoid membranes increased, and mature 
leaves elevated the heat tolerance of plants by increasing the 
levels of saturated fatty acids, thereby increasing the melting 
temperature of the plasma membrane.127 A smaller reduction 
in the index of unsaturated fatty acids under drought stress is 
beneficial to thylakoid membrane stability.130 In rice LYPJ 
varieties, linoleic acid (18:2) increased significantly at 
28 days.131 The increase in linoleic acid can enhance the fluid-
ity of thylakoid membranes, thus improving the PSII repair 
rate in crops under severe drought stress.131 High temperature 
causes changes in the lipid profile of wheat, and plants respond 
to high temperature stress by remodeling lipids and reducing 
the level of lipid unsaturation.132 The lower lipid unsaturation 
level under high temperature stress is mainly due to lower 
levels of 18:3 fatty acyl chains and higher levels of 18:1 and 
16:0 fatty acyl chains.133

Conclusions and perspectives

The structure and composition of chloroplast membrane lipids 
are vital for maintaining the normal physiological activities in 
plants. Abiotic stress could induce changes in the content and 
ratio of the components of chloroplast membrane lipids. The 
regulation of the corresponding genes has become a hot topic 
in molecular biology. As transcriptome sequencing and gene 
editing technologies become increasing popular, we are now 
able to analyze more comprehensively the key genes that are 
involved in regulating membrane lipid biosynthesis under 

abiotic stress, to provide new insight into the expression and 
regulatory mechanism of these genes.

The observations of the ultrastructures of chloroplasts and 
thylakoids enable us to study the organ damage under envir-
onmental stress. However, the development of molecular 
probes is needed to decipher the accurate positions of indivi-
dual lipid molecules in membranes and membrane integral 
complexes, so that changes in chloroplasts and thylakoids can 
be seen more intuitively and dynamically.104 Given that the 
regulation of membrane lipid fatty acids in chloroplasts 
depends largely on FAD activity, it is imperative to seek how 
to regulate the genes in other organelles and tissues. Under 
abiotic stress, changes in membrane lipids may be accompa-
nied by the effects of plant hormones or some signal proteins. 
A profound understanding of their mutual regulatory relation-
ship will pave the way for improving plant resistance.
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