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a b s t r a c t

With the implementation of COVID-19 restrictions and consequent improvement in air quality due to the
nationwide lockdown, ozone (O3) pollution was generally amplified in China. However, the O3 levels
throughout the Guangxi region of South China showed a clear downward trend during the lockdown. To
better understand this unusual phenomenon, we investigated the characteristics of conventional pol-
lutants, the influence of meteorological and anthropogenic factors quantified by a multiple linear
regression (MLR) model, and the impact of local sources and long-range transport based on a continuous
emission monitoring system (CEMS) and the HYSPLIT model. Results show that in Guangxi, the con-
ventional pollutants generally declined during the COVID-19 lockdown period (January 24 to February 9,
2020) compared with their concentrations during 2016e2019, while O3 gradually increased during the
resumption (10 February to April 2020) and full operation periods (May and June 2020). Focusing on
Beihai, a typical Guangxi region city, the correlations between the daily O3 concentrations and six
meteorological parameters (wind speed, visibility, temperature, humidity, precipitation, and atmospheric
pressure) and their corresponding regression coefficients indicate that meteorological conditions were
generally conducive to O3 pollution mitigation during the lockdown. A 7.84 mg/m3 drop in O3 concen-
tration was driven by meteorology, with other decreases (4.11 mg/m3) explained by reduced anthropo-
genic emissions of O3 precursors. Taken together, the lower NO2/SO2 ratios (1.25e2.33) and consistencies
between real-time monitored primary emissions and ambient concentrations suggest that, with the
closure of small-scale industries, residual industrial emissions have become dominant contributors to
local primary pollutants. Backward trajectory cluster analyses show that the slump of O3 concentrations
in Southern Guangxi could be partly attributed to clean air mass transfer (24e58%) from the South China
Sea. Overall, the synergistic effects of the COVID-19 lockdown and meteorological factors intensified O3

reduction in the Guangxi region of South China.
© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

In response to the COVID-19 (corona virus disease 2019)
outbreak, nationwide lockdown measures were implemented by
the Chinese central government from the end of January 2020,
e by Admir C. Targino.
Minhang District, Shanghai,
which brought Chinese society almost to a standstill (Adams, 2020;
Bao and Zhang, 2020). The dramatic reduction in human and in-
dustrial activity, including vehicle kilometers traveled, industrial
operations, construction activities, the operation of restaurants,
etc., also contributed to the improved air quality (Bao and Zhang,
2020; Li et al., 2020; Pei et al., 2020; Sun et al., 2020; Yang et al.,
2020). Most of these studies analyzed the impact of COVID-19
based on changes in pollutants, including particulate matter (PM)
with an aerodynamic diameter < 2.5 mm and 10 mm (PM2.5 and
PM10), nitrogen dioxide (NO2), sulfate dioxide (SO2), carbon
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monoxide (CO) and ozone (O3). Specifically, a national decrease in
NO2 concentrations was observed but the SO2 concentrations
remained steady at lower concentrations, despite distinct trends in
PM2.5 concentrations in different regions. However, there was only
a partial improvement in air quality, given the rebound of O3 con-
centrations all over China (Li et al., 2020; Pei et al., 2020), which
was also observed in other regions of the world, such as Iran
(Broomandi et al., 2020), India (Sharma et al., 2020), Brazil
(Siciliano et al., 2020) and Europe (Sicard et al., 2020).

Increased tropospheric O3 concentrations have been a focus of
research attention in recent years due to their effect on aggravating
respiratory irritation and lung injury, while O3 has also been linked
to short-term memory loss, immune system dysfunction and
lymphocyte chromosome abnormality (Wang et al., 2019). Chen
et al. (2020) reported an increasing trend in O3-related mortality
with increased O3 concentrations from 2014 to 2018. Considering
that the cellular receptors in the lungs are the main target of
COVID-19, and are vulnerable to attachment by the virus spikes (Ali
and Alharbi, 2020), the chances of infection could increase in
subjects exposed to severe air pollution. Zhang et al. (2020b) sug-
gested a relationship between higher concentrations of air pollut-
ants (increased O3 and PM2.5 in particular) and increased risk of
COVID-19 infection. The high concentrations of atmospheric
oxidant pollutants may increase the susceptibility of the population
to respiratory complications due to COVID-19 (Babu et al., 2020).
Besides human health, high O3 concentrations also have adverse
effects on ecosystem productivity (Monks et al., 2015). Amplified O3

pollution under the lockdown has become a concern beneath the
benign surface of air quality improvement (Zhang et al., 2020b). It
should be made clear that in our observation, with the national and
even global trends of O3 increasing during the COVID-19 lockdown
period, there were some regions where O3 concentrations did not
increase or even significantly decreased.

Besides the strong sensitivity to meteorological changes in
physical and chemical processes (Chen et al., 2020; Zhang et al.,
2018), O3 air quality can be largely affected by anthropogenic
emissions. The COVID-19 restrictions contributed to reduced
anthropogenic activities, thereby providing unique opportunities
for atmospheric research. In this study, we attempted to distinguish
between the contributions of emission controls and variability in
meteorological factors to the reduced O3 concentrations in the
South China region. This study will provide reference for a
comprehensive assessment of the impact of lockdown responses.

An integrated measurement-emission-modelling approach has
been adopted in this study that includes observations of the AQI
and ambient pollutants. Our quantitative analysis uses a developed
multiple linear regression (MLR) model, and our impact analysis of
key source emissions and long-range transport is based on the
continuous emission monitoring system (CEMS) and HYSPLIT
model, respectively. This study aims to (1) study the variations of
conventional air pollutants under the different response levels in
the Guangxi region, (2) quantify the driving force of declined O3
concentrations during the lockdown period, and (3) to compre-
hensively assess the influence of local residual sources and long-
range transport on regional air quality. It is expected that these
results may provide a reference for the mitigation of O3 pollution
through O3 characterizations and identifying the driving factors of
O3 reduction in a typical region of South China.

2. Data and methodology

2.1. Study domain and time

In this study, our research domain covers the entire Guangxi
region of South China, including fourteen prefecture-level Chinese
2

cites and 50 monitoring sites (Fig. 1). The city of Beihai is repre-
sentative of general underdeveloped areas in Guangxi, in South
China, with long-term dominant industrial structure as the primary
industry (Liu et al., 2019). Detailed investigations focused on Beihai,
a city with a population of 1.68 million living in an area of 3337 km2

(in 2018). The investigations were conducted to reflect the causes of
air quality changes during the lockdown period in the Guangxi
region.

The six-month period in 2020 during which COVID-19 re-
strictions were imposed in the Guangxi region were divided into
three stages based on the response levels: Pre-lockdown, Level I
response, and Level III response. Some industries resumed opera-
tion as of February 10, 2020, and by the end of April, society had
mostly returned to normal. To better understand the details of the
air quality changes, combined with human activities, Level I
response was subdivided into three periods: (i) Spring Festival; (ii)
Level I lockdown; and (iii) Level I restoration (from February 10).
Level III response was subdivided into (i) Level III recovery
(February 25 to April 30); and (ii) Level III operation (May and June).
Following two stages of gradual social resumption (i.e. Level I
restoration and Level III recovery), the Level III operation was
classified into the full operation phase. For year-by-year compari-
sons, the period 2016e2019 was classified accordingly, as shown in
Table S1. Considering the temporal variations of multiple factors
(population movements, industrial operations, government con-
trols, meteorological conditions, etc.), apart from a separate two-
day period during the Lunar New Year, other stage divisions in
this study are made according to the Gregorian calendar, the details
of which are described in Supplementary Text 1.
2.2. Data sources

The hourly ambient mass concentrations of criteria air pollut-
ants including PM2.5, PM10, NO2, SO2, CO, and O3 were measured at
50 sites in fourteen cities during the first half years of 2016e2020,
which were acquired from real-time data released by the air
monitoring data center of the Ministry of Ecology and Environment
of the People’s Republic of China (MEE, 2020). To generate
continuous grid concentration data in the Guangxi area, the inverse
distance weighting (IDW) method was used to interpolate the
concentrations measured at sampling sites (Chen et al., 2020; Shen
et al., 2017). Hourly nitric oxide (NO) and NOx (NO þ NO2) con-
centrations were obtained from the Beihai Air Quality Network
Monitoring and Management Platform (Beihai-AQM, 2020) and
used as supplementary data for this analysis. The meteorological
data on urban precipitation and wind speed and direction were
retrieved from the European Centre for Medium-Range Weather
Forecasts Reanalysis Interim data (ERA-Interim, 2020), which had a
temporal resolution of 3 h. In additional, hourly meteorological
parameters at different monitoring sites including wind speed,
temperature, relative humidity (RH), atmospheric pressure, and
visibility (at daily resolution), were obtained from Beihai-AQM. All
data were manually inspected during processing. Following the
method adopted by Shu et al. (2017) and Zhu et al. (2019), invalid
and missing data have been collated. Moreover, meteorological
parameters and pollutant concentrations were matched at tem-
poral and spatial scales to establish association among variables.

The real-time monitoring data of key industrial emission sour-
ces in Beihai (including hourly dust, NOx, and SO2 emissions) was
obtained from the continuous emission monitoring system (CEMS,
2020). A comparative analysis was carried out on the online
monitoring data of 48 smoke outlets from 16 key industries over 2
years (2019e2020), including the COVID-19 lockdown period
(Table S2).



Fig. 1. The study area and observational locations in the study.
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2.3. Multiple linear regression model

An MLR model establishes a functional relationship between a
response variable and several explanatory variables, and such
models have been successfully applied to study PM2.5 and O3 var-
iations driven by meteorological variations (Chen et al., 2020; Zhai
et al., 2019; Zhao et al., 2020). In view of the short time interval (i.e.
the Level I lockdown period, 15 days) and lack of fluctuations in
non-meteorological factors (constant anthropogenic influences) in
previous years (2016e2019), the stepwise multiple linear regres-
sion (MLR) model used by Zhai et al. (2019) to eliminate confusion
due to seasonal variations and long-term trends, was not applicable
to this study. We therefore developed an MLR model, based on 5-
year data from different monitoring sites, to quantify the effect of
meteorology on O3 variability during the Level I lockdown period
(January 26 to February 9, 2020), using Eqs. (1) and (2). Based on
3

the MLR inverse calculation, the meteorology-driven O3 anomalies
in 2020 compared with previous years, are estimated by DCMsðtÞ.
The residual, after removing the meteorological influence from the
MLR results, is given by Eq. (3), which we attributed to anthropo-
genic influences, DCAsðtÞ.

C0sðtÞ ¼
Xn

k¼1

bk;s � Met0 k;sðtÞ þ bs þ ε (1)

DCMsðtÞ ¼
Xn

k¼1

bk;s � Met k;sðtÞ þ bs þ ε � C0sðtÞ (2)
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DCAsðtÞ ¼ CsðtÞ � ½
Xn

k¼1

bk;s � Metk;sðtÞ þ bs þ ε� (3)

where C0sðtÞ and CsðtÞ, respectively, are the observed daily con-
centrations of O3 for observation site s in 2016e2019 and 2020,
Met0 k;sðtÞandMet k;sðtÞ are, respectively, the daily values of the kth
meteorological variable for observation site s in 2016e2019 and
2020, bk;s, bs, and εare the regression coefficient, intercept and
deviation, respectively, fitted over the period used in the MLR
model, and DCMsðtÞand DCAsðtÞare the expected variations in O3
concentration driven by meteorological variability and anthropo-
genic influences, respectively.

Five meteorological variables [pressure, temperature, relative
humidity, wind speed (WDS) and precipitation] were entered into
the MLR model. Unlike previous studies (Chen et al., 2020; Zhai
et al., 2019), the meteorological variables used in the MLR model
were normalized separately, based on Min-Max Normalization
(MMN), to improve their effectiveness. Dimensionless parametri-
zation was carried out such that the variations in the meteorolog-
ical variables, and the corresponding regression coefficients, were
comprehensible and comparable. Outliers (more than three stan-
dard deviations [3SD]) were removed through case diagnostics, and
the MLR model was re-run to improve reliability of the input
samples. In addition, upon examination, the meteorological pa-
rameters in the MLR inverse calculation were included in the
variation ranges of the input samples, thereby slightly improving
the reliability of the MLR prediction.

2.4. Backward trajectory cluster analyses

To study the regional transport of air masses in the Guangxi
area, the HYSPLIT model (Version 5.0), developed by NOAA ARL,
was used to compute the backward trajectories with meteorolog-
ical inputs from the NCEP/GDAS data sets at a 2-h temporal reso-
lution. The backward trajectories of air masses during a 36-h period
were computed at a height of 500 m above ground level in eight
Guangxi surrounding cities, beginning at 00:00 a.m. (local time)
every day during the lockdown periods. Subsequently, the HYSPLIT
model was applied to the cluster analyses based on the sub-sets of
backward trajectories (Hong et al., 2019; Rolph et al., 2017).

3. Results and discussion

3.1. Air quality before and during the COVID-19 periods

The average air quality index (AQI) for Guangxi in the first half of
2020 was 46.27, down 10.1% compared with that in 2016e2019.
Fig. 2 and S1 show the levels and changes in air quality before the
COVID-19 lockdown and during the Level IeIII response periods.
Compared with previous years, a pronounced improvement of air
quality was observed throughout the Guangxi region during the
lockdown period. Under the dual advantage of regular Spring
Festival emission reductions and COVID-19 lockdown, AQI declined
dramatically with a reduction of 75.3% ± 8.1% (mean ± SD) during
the Spring Festival, which was more significant than the decrease
during the Level I lockdown period (37.3% ± 8.1%). In contrast,
during the relatively relaxed Level III response period, the AQI only
decreased slightly and even showed an upward trend during the
Level III operation period. The AQI bounced back partially after
lockdown in Guangxi, but it was still lower than before (Fig. S1) due
to the regular COVID-19 control and prevention measurements
(Yang et al., 2020).

Overall, there was a decline in conventional air pollutants
4

throughout almost the entire Guangxi region as a consequence of
lockdown, compared with previous years. During the Level I
response period, concentrations of PM2.5, PM10 and SO2 plunged,
especially while Guangxi was in lockdown; the average reduction
of NO2 concentrations was 37.8% relative to that in 2019, and
consistent with the national mean reduction of 35.7% in NO2 con-
centrations (Zheng et al., 2020). Among the 14 investigated cities,
there were some differences in the changes of CO concentrations,
which ranged from �47.6% to 23.4%. The O3 reductions in the 14
investigated cities were considerable during the Spring Festival
(43.7% ± 10.6%) and Level I lockdown (14.5% ± 11.6%) periods, with a
slight rebound during the Level I restoration period (9.7% ± 16.6%).
Unlike in the rest of China and elsewhere in the world (Li et al.,
2020; Sharma et al., 2020; Sicard et al., 2020; Siciliano et al.,
2020; Zheng et al., 2020), amplified ozone pollution was not
observed in the Guangxi region during the COVID-19 lockdown
period. During the Level III response period, with routine human
activities gradually resuming operation, the mean changes of PM2.5,
PM10, NO2, SO2, CO, and O3 in the Guangxi region for the recovery
(full operation) period compared with the same period in
2016e2019 were �25.5% (�12.6%), �22.6% (�5.9%), �11.4%
(�1.2%), �26.9% (�22.5%), �18.6% (�20.8%), and �4.9% (10.3%),
respectively, showing that the Level III responses also contributed
to the air quality improvements. In terms of the spatial distribution
of air pollutants during post-lockdown, O3 and NOx showed
opposite trends (Fig. 2). In particular, during the Level I restoration
and full operation phases, increased O3 was always accompanied by
decreased NO2.

Air quality changes also varied among these prefecture-level
cities. In addition to the different meteorological conditions and
response measures, the variations were also related to the spatial
distribution of industrial activities in the regions. For example,
power plants are mainly distributed in western and central
Guangxi, while steel plants and petrochemical industries are
concentrated in northern and southern Guangxi, respectively (Liu
et al., 2019). As a typical coastal city of Southern Guangxi, air
quality changes in Beihai city during the COVID-19 response reflect
the average conditions in the Guangxi region (Fig. 2). As detailed
below, the atmospheric characteristics and year-to-year changes
were investigated, based on the data collected in Beihai. Figure S3
shows the daily mean concentrations of criteria air pollutants in
Beihai during different periods over the past 5 years. The daily
mean concentrations of the six criteria pollutants (PM2.5, PM10,
NO2, SO2 CO and O3) were at their lowest under the lockdown
(32.18, 41.66, 9.74, 7.55, 0.78 � 103, 58.38 mg/m3) relative to cor-
responding periods in the previous 5 years, and compared to the
2019 measurements, their concentrations decreased by 30.1%,
32.8%, 34.7%, 14.2%, 14.5% and 37.0%, respectively. A sharp reduction
in NO2 and a significant decrease in O3 were observed, with con-
centrations of 24.4% and 58.4% of the air quality standard limits,
respectively. Moreover, the long-term upward trend of O3 con-
centrations in previous years was reversed during the Level I
lockdown period, indicating that the driving force of ozone decline
was significant in 2020. Additionally, SO2 was maintained at a low
concentration of 6.09e8.30 mg/m3 under the lockdown, suggesting
a significant decrease in SO2 emissions (especially coal consump-
tion) (Qu et al., 2016; Zheng et al., 2018). During the phase of
gradual resumption of social activity (i.e. Level I restoration and
Level III recovery), SO2 (O3) concentrations increased by 17.6%
(15.6%) compared with those in 2019; while NO2 (CO) concentra-
tions still declined by 12.3% (28.3%); PM10 (PM2.5) concentrations
declined slightly, with an average decline of 1.7% (1.8%). CO and
PM2.5 concentrations decreased to their lowest values during the
full operation period (Fig. S2), consistent with their temporal dis-
tribution over the Yangtze River Delta Region (YRD) by Li et al.



Fig. 2. Changes of AQI (a) and air pollutants [NO2 (b) and O3-8h (c)] during the corresponding COVID-19 response periods in 2020 compared with the same period 2016e2019 in the
Guangxi region.
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(2020), indicating that reductions in their concentrations were
more dependent on a longer-term response. Concentrations of
other conventional pollutants (except for O3) declined slightly
during the full operation period compared with previous years,
similar to the changes preceding the COVID-19 epidemic outbreak.

3.2. Characteristics of atmospheric pollutants during the COVID-19
lockdown period

As shown in Fig. 3, S3, and S4, the diurnal variations and time
series of the atmospheric pollutants, as well as their correlations
under both hourly and daily resolutions, were investigated to
analyze their characteristics during the lockdown period. In gen-
eral, despite weaker peaks of all conventional pollutants during the
lockdown period, the diurnal trends of generation and consump-
tion of pollutants were consistent with those in previous years
(Fig. S4). There was a general decline in the hourly PM2.5 concen-
tration, indicating reduced anthropogenic emissions from fossil
fuel combustion and biomass burning (Zhang and Cao, 2015). The
slightly increased PM2.5/PM10 ratio indicated the meteorological
conditions were conducive to deposition of coarser particles. NO2
showed weaker bimodal trends consistent with morning and
evening traffic peaks, and the observed NO2 reductions were linked
to the lockdown and the subsequent changes in industrial and
traffic activity (Kuerban et al., 2020). Additionally, during the
lockdown period, the evening NO2 peak was more pronounced
than the morning peak. The correlations between the hourly NO2,
SO2 and CO concentrations were significantly positive (Fig. 3),
suggesting that their emission sources were highly consistent.
Moreover, as shown in Fig. S4, both the SO2 and NO2 concentrations
decreased owing to reduced anthropogenic emissions, and the
NO2/SO2 ratio was lower than that in 2019, especially during the
evening rush hour. Given the lower ratio of NOx to SOx from coal
combustion (1:2) instead of combustion of vehicle fuels (8:1e13:1),
it was assumed that, during the lockdown period, the low NO2/SO2
5

ratio (1.25e2.33) showed that automobile exhausts contributed
little to air pollution (Tang et al., 2013; Zhang et al., 2020a). The
investigation of night-time light by Liu et al. (2020) also revealed
that the reduction of non-essential industries and motor vehicle
usage during the COVID-19 lockdown has had a crucial impact on
improved air quality.

The hourly PM2.5/CO ratio, a good tracer of primary combustion
sources, is also shown in Fig. S4. The diurnal distributions showed a
less pronounced PM2.5/CO ratio peak in the daytime, indicating
secondary formations from the photochemical reaction were rela-
tively weak (Zhang and Cao, 2015). Enhanced overnight PM2.5/CO
ratios were observed during the lockdown period, with its high
values lagging behind the high NO2 emissions by ~2 h, suggesting
that NO2 emitted from coal combustion contributed to the primary
emissions and secondary production of PM2.5. The time series in
Fig. S3 showed that high values of primary pollutants (especially
NOx, SO2) and PM2.5 were observed less and were more likely to
occur at midnight than in 2019, which was presumably due to the
staggered daytime activities of the population under the COVID-19
lockdown restrictions.

As shown in Fig. S4, a lower unimodal tendency was observed
for O3. Comparisons of diurnal variations of O3 during different
periods showed its lowest concentration at 16:00 and slightly
higher values overnight, indicating the weaker photochemical
formation and consumption under lockdown, whereas the varia-
tions of O3 still conformed to the normal diurnal fluctuations (Hui
et al., 2019; Liao et al., 2017). Given that the daily emissions of
NO were relatively lower and that it is easily oxidized into NO2
during the daytime, the diurnal NO/NO2 ratios were slightly lower.
In the afternoon (12:00e17:00), during the lockdown period, the
higher NO/O3 ratios indicated that the titration effect of NO in the
NOx cycle was considerable in photochemical reactions. Addition-
ally, as shown in Fig. 3, comparative correlations of hourly and daily
resolutions during the lockdown periods in 2020 and the period
2016e2019, showed that O3 was always significantly negatively



Fig. 3. Correlations between air pollutants based on hourly and daily resolutions during lockdown periods (*p < 0.05; **p < 0.01).
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correlated with NO. In previous years (2016e2019), the significant
positive correlation with NO2 in daily resolution, instead of nega-
tive correlations in hourly, showed that increased O3 concentra-
tions are highly associated with increased daily emissions of O3
precursors. During the lockdown period in 2020, O3 showed a
strong positive correlation with NO2 in daily resolution (rs ¼ 0.375,
p < 0.01), and a moderate positive correlation in hourly resolution
(rs ¼ 0.106, p < 0.05), indicating, unlike previous studies (Fu et al.,
2020), that O3 concentrations were more likely to depend on NOx
concentrations. Besides variabilities in its precursors, as a second-
ary photochemical pollutant, fluctuations in O3 concentrations can
also be driven by changes in meteorological conditions, which will
be detailed below.
3.3. Variations in meteorological parameters and their correlations
with O3

The general meteorological conditions of Beihai during the first
six months of 2020 were the mild temperature (8.75e35.2 �C),
modest atmospheric pressure (995.60e1006.35 Hpa), and variable
RH (37.5e100%) and wind speed (0.10e9.60 m/s) with a heavy total
precipitation (1256.40 mm). The hourly temperature was signifi-
cantly negatively correlated with RH (rs ¼ �0.188, p < 0.01) and
atmospheric pressure (rs ¼ �0.826, p < 0.01). Compared to the
6

previous 4 years, the daily mean O3 concentrations during the
corresponding lockdown stages were significantly negatively
correlated with RH (rs ¼ �0.211, p < 0.01), wind speed (rs ¼�0.162,
p < 0.01) and precipitation (rs ¼ �0.227, p < 0.01), and strongly
positively correlated with temperature (rs ¼ 0.377, p < 0.01) and
atmospheric pressure (rs ¼ 0.155, p < 0.05). A moderate negative
correlation with visibility (rs ¼ �0.015) was also observed.

Compared to previous years, the temperature during the lock-
down period in 2020 was relatively lower (Fig. S3). The daily mean
temperature was 0.67 �C lower than that during the period
2016e2019, and the average daytime (8:00e17:00 local time)
temperaturewith amean of 16.05 �C (SD: 3.92 �C)was 6.17 �C lower
than that in 2019, which was unfavorable for the photochemical
formation of O3 and biogenic emissions of O3 precursors (Liu and
Wang, 2020). Compared with previous years, the increased RH
(þ5.5%) was accompanied by increased cloud fraction and more
precipitation (þ54.4%), which facilitated the deposition of pollut-
ants, but restricted the formation of photochemical products (Hui
et al., 2018). Synchronous faster wind speed (2.12 ± 1.13 m/s) and
improved visibility (18.21 ± 9.61 km) can promote the diffusion and
dilution of pollutants, as well as a reduction in O3 concentrations.
Although visibility was insignificantly correlated with O3, the
covariation between visibility and wind speed (rs ¼ 0.215, p < 0.01)
was reflected. As shown in Fig. S3, on January 25, 2020, the O3
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(21.10 mg/m3) and PM2.5 (6.50 mg/m3) concentrations reached their
lowest values at 9:00e13:00 and 23:00, respectively, synchronous
with the low daily temperature (18.81 �C), high humidity (93.24%),
heavy precipitation (63 mm/d), higher wind speed (2.75 m/s) and
moderate pressure (1012.16 Hpa). However, during the lockdown
period, short-term maximum values of O3 were also observed, in
particular on 31 January and February 6, 2020, with previously high
concentrations of O3 precursor (NOX) and favorable photochemical
conditions.

3.4. O3 concentration determination using driven variations in the
MLR model

To quantify meteorological influences on O3 trends during the
Level I lockdown period, we developed an MLRmodel to determine
the relationships between O3 concentrations and significantly
correlated meteorological variables (excluding visibility), based on
synthetic data from the previous 4 years. The six meteorological
variables (daily atmospheric pressure, temperature, RH, WDS and
precipitation) measured at different sites, were normalized sepa-
rately based on MMN, and the dimensionless parametrization was
carried out such that the variables were comprehensible and
comparable. Comparison of MMN variables showed that atmo-
spheric pressure (�0.10) and RH (þ0.06) varied from previous
years, followed by WDS (þ0.05), temperature (�0.05) and precip-
itation (�0.01). The regression coefficients in MLR model output
showed that the changes in O3 concentrationweremost affected by
temperature (þ72.03) and RH (�45.01), followed by precipitation
(�28.96), atmospheric pressure (þ26.28) and WDS (�15.20). By
assuming no fluctuations in non-meteorological factors (i.e. con-
stant anthropogenic influences), the O3 concentrations affected by
meteorological influences during this lockdown period were
mainly distributed in the range of 60e100 mg/m3, with a mean of
79.81 mg/m3. To best exhibit the O3 concentration distributions
under the influence of multiple factors, as shown in Fig. 4, the RH,
precipitation, pressure, and WDS were renormalized and then in-
tegrated into the phase diagrams, given their positive correlations
in daily resolution. The pronounced O3 pollution was always
accompanied by synchronous high temperature, low RH and pre-
cipitation, with weak pressure and WDS. Change in these meteo-
rological variables consistently drove the mean O3 concentration
down (total decrease 7.84 mg/m3) by RH (29.5% change), pressure
(29.5% change), temperature (37.8% change), and WDS (7.9%
change), while the potential elevated effect (up to 4.7%) was due to
precipitation changes. During the Level I lockdown phase, themean
O3 concentration decreased by 34.2%, based on the previous 4-year
baseline (87.65 mg/m3). However, as shown in the yellow zone in
Fig. 4(c), the rising O3 concentrations driven by meteorological
factors were evident in the first half of this period. According to the
MLR estimation, other decreases (4.11 mg/m3) due to non-
meteorological variations, were attributed to reduced anthropo-
genic emissions of O3 precursors, accounting for 34.4% of the
observed O3 decreases. This showed that, under the implementa-
tion of lockdown restrictions, variations in anthropogenic emis-
sions had a considerable effect on the mitigation of ambient O3
concentrations.

3.5. Impact of industrial emissions on the variation in pollutants
during the COVID-19 lockdown

Based on the real-time monitoring of 48 smoke outlets from
CEMS in 16 enterprises, variations in key industrial emissions were
analyzed to better understand the impact of industrial activities on
changes in air quality during the COVID-19 lockdown period. As
shown in Fig. 5, compared with the same periods in 2019, the total
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dust (44.8%) and NOx (34.3%) emissions declined significantly,
while little variation was observed in SO2 emissions (�2.8%).
Combined with Fig. 5 and S4, the mean diurnal variations in dust,
SO2 and NOx emissions showed consistency with those of ambient
pollutants measured by Beihai-AQM during the COVID-19 lock-
down, in contrast with the inconsistencies of those in 2019, thus
confirming that emissions from residual enterprises were signifi-
cant contributors to primary pollutants present during lockdown.
Power plants, petrochemical industries and cardboard processing
plants did not show significant reduction in activity during the
COVID-19 lockdown period, and even increased activity, while the
emissions from iron and steel plants, non-metallic mineral
manufacturing and refined sugar plants fell dramatically. Given the
closure of other small-scale industries and dramatic reduction in
mobile source activities, with the decrease in ambient NOx con-
centrations and slight decrease in the emission of volatile organic
compounds (VOCs) (Li et al., 2020; Siciliano et al., 2020), the VOCs/
NOx ratio was likely to be higher than during the same period in
2019.

Siciliano et al. (2020) reported that, under VOC-controlled
conditions, the increase in O3 concentrations during the lock-
down period in their research region could be attributed to the
significant increase in NMHC/NOx ratios. With the VOC-limited
regimes in most regions of China (Wang et al., 2017), the national
increase in O3 could be linked to the decreased NOx, in addition to
the increased VOCs/NOx ratio. On the contrary, in Beihaidclassified
as a transitional regime (VOCs/NOx ~ 8:1) based on the 2018
measurements (Fu et al., 2020), the VOCs/NOx ratio was expected
to greatly exceed the transitional threshold from double-controlled
regime to NOx-limited (VOCs/NOx > 12) under the lockdown.
Based on the assumption, the drop in NOx concentrations
contributed to the decline in O3 concentrations in this region of
South China. This case also confirmed the significant positive cor-
relation with NOx and can be linked to the MLR results, suggesting
that changes in local anthropogenic emissions during the lockdown
period would have pushed the transformation of O3 formation
regime. O3 concentrations under transitional regimes are sensitive
to both VOC and NOx variations. For the spatial distribution of air
pollutants following the lockdown response (shown in Fig. 2), the
increased O3 was always accompanied by decreased NO2, especially
when there was a significant increase in O3 concentrations (Level I
restoration period in the resumption and full operation phases).
The apparent negative correlation during these periods suggested
that, after the lifting of lockdown restrictions, the system likely
reverted to the VOC-limited regime.

3.6. Effect of regional transmission based on backward trajectory
analyses

Given that long-range transport is an important factor in
regional variations in O3 concentrations (Sun et al., 2016; Zhang
et al., 2016), a cluster analysis of back trajectories in the sur-
rounding Guangxi cities was carried out to analyze the air mass
transport patterns during the COVID-19 lockdown period. As
shown in Fig. S5, in addition to the influence of adjacent areas, air
masses reaching Southern Guangxi also originated from the South
China Sea, and advected along the coast. In particular, Beihai was
most frequently affected by onshore air masses (Clusters 1 and 2,
58%), followed by Chongzuo (Clusters 1 and 3, 45%), Yulin (Clusters
1 and 3, 31%) and Nanning (Cluster 3, 24%). In view of the clean air
from the South China Sea (Fu et al., 2020) and lower O3 concen-
trations in Southern Guangxi cities (Fig. S1), we could conclude that
the regional transport of air masses facilitated the overall decline in
O3 in Southern Guangxi. The air masses affecting Northern Guangxi
(including cities such as Henzhou, Guilin and Hechi), however,



Fig. 4. The distribution of O3 concentrations dominated by normalized meteorological parameters in previous years (a) and in 2020 (b), as well as predicted daily concentrations
and overall decline in O3 levels driven by anthropogenic and meteorological variations [c, anthropogenic driven: the declined (elevated) levels shown in the green (gray) zone; and
meteorologically driven: the declined (elevated) levels shown in blue (yellow) zone) during the lockdown period, using the MLR model. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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mainly came from Central China. Northerly and easterly air flow
from Central China dominated the air mass transport to Ginlin
(Clusters 1 and 3, 65%) where a slightly elevated local O3 phe-
nomenon was observed, which could be linked to the high O3
values observed in Central China (Pei et al., 2020; Sicard et al., 2020;
Sun et al., 2016). The air mass reaching Hezhou and Yulin (Eastern
Guangxi) was mainly influenced by local sources based on the
regional transport from surrounding areas, shown in the Clusters 1
(22%) and 3 (37%) for Hezhou, and Cluster 2 (69%) for Yulin. In
comparison, besides the nearby transport patterns in Western
Guangxi, as observed in Baise (Clusters 1 and 2, 87%), Hechi
(Clusters 1 and 4, 59%), Chongzuo (Cluster 3, 50%) and Nanning
(Cluster 2, 35%), the long-range transport patterns from the inland
area were similar (3e5%). In general, given the low ozone con-
centrations observed in the entire Guangxi area during the COVID-
19 lockdown period, more internal transmission would not aggra-
vate O3 pollution. Northern Guangxi was affected by the air masses
with high O3 concentrations from Central China, especially in
Guilin; while the decline in O3 concentrations was more obvious in
the southern coastal area, partly attributed to the effects of clean air
flow from the South China Sea.
4. Conclusions

In general, an improvement in air quality with an overall decline
in conventional pollutants was observed throughout the Guangxi
region as a consequence of the COVID-19 lockdown. Interestingly,
8

the reduction of O3 in the Guangxi region differed from the national
trend of amplified ozone pollution. Focusing on the decreasing O3
concentration in this region, we analyzed the meteorological vari-
ability and the influence of human activity under lockdown. Both
the Pearson’s correlations and corresponding regression co-
efficients between the daily O3 concentrations and meteorological
parameters show that the pronounced O3 pollution was always
accompanied by high temperature, low RH and precipitation, as
well as low pressure, weak WDS and visibility. Compared to pre-
vious years, the meteorological conditions during the lockdown
period in 2020 (such as higher RHs, lower temperatures, and
weaker pressures) were generally conducive to O3 depletion. Ac-
cording to the MLR model, synergistic effects of the lockdown
(34.4%) and meteorology (65.6%) intensified the decrease in O3

concentrations in the entire region.
Furthermore, significant correlations between hourly primary

atmospheric pollutants and their consistency with hourly pollutant
emissions monitored by CEMS reflected changes in the structure of
anthropogenic sources during the lockdown period. Also, it was
likely that the O3 formation regime transformed to NOx-limited.
Thus, the decrease in NOx contributed to the decreased O3 con-
centrations in the Guangxi region. Combined with regional trans-
mission in Guangxi, it was concluded that favorable meteorological
conditions, reduced local emissions and small exogenous trans-
mission of O3 precursors under the lockdown conditions resulted in
low ozone concentrations in the Guangxi region.



Fig. 5. Emission variations of dust, SO2, and NOx observed by CEMS during lockdown period.
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