Skip to main content
. 2020 Oct 19;20(20):5907. doi: 10.3390/s20205907
a: Depth of cut (mm)
ACC: Resultant PSD distribution
ACCx: PSD distribution of x-axis accelerometer signal
ACCy: PSD distribution of y-axis accelerometer signal
ACCz: PSD distribution of z-axis accelerometer signal
BPNN: Backpropagation neural network
C: Covariance matrix of the training set
F: Calculated cutting force (N)
f: Cutting feed (mm/rev)
γ0: Rake angle
hm: Chip thickness (mm)
kc: Specific cutting force (N/mm2)
kc1: Specific cutting force (N/mm2)
Kr: Edge angle
λi: Eigenvalue
mc: Non-dimensional factor
PCA: Principal component analysis
PIi: Weight value
PSD: Power spectral density
q: Ratio of the total variance
S: Training set
Sij: Insert condition classification
SB: Weighted sum value for the built-up edge insert condition
SF: Weighted sum values for the fracture insert condition
SN: Weighted sum value for the normal insert condition
SW: Weighted sum value for the flank wear insert condition
u: Unitless coefficient
vi: Eigenvector
W: Transformation matrix
x: Test data
xi: Training data
X¯: Average of the training set
y: Transformed data