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Abstract: The measurement of gait characteristics during a self-administered 2-minute walk test
(2MWT), in persons with multiple sclerosis (PwMS), using a single body-worn device, has the
potential to provide high-density longitudinal information on disease progression, beyond what is
currently measured in the clinician-administered 2MWT. The purpose of this study is to determine
the test-retest reliability, standard error of measurement (SEM) and minimum detectable change
(MDC) of features calculated on gait characteristics, harvested during a self-administered 2MWT in a
home environment, in 51 PwMS and 11 healthy control (HC) subjects over 24 weeks, using a single
waist-worn inertial sensor-based smartphone. Excellent, or good to excellent test-retest reliability
were observed in 58 of the 92 temporal, spatial and spatiotemporal gait features in PwMS. However,
these were less reliable for HCs. Low SEM% and MDC% values were observed for most of the
distribution measures for all gait characteristics for PwMS and HCs. This study demonstrates the
inter-session test-retest reliability and provides an indication of clinically important change estimates,
for interpreting the outcomes of gait characteristics measured using a body-worn smartphone, during
a self-administered 2MWT. This system thus provides a reliable measure of gait characteristics in
PwMS, supporting its application for the longitudinal assessment of gait deficits in this population.

Keywords: gait; smartphone; multiple sclerosis; 2-minute walk test; test-retest reliability; MDC; SEM;
wearable sensors

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous
system [1], which can gradually lead to gait deficits and the inability to fully activate the muscles
of the lower limbs [2]. It has been shown that gait impairment affects quality of life, health status
and productivity [3] in persons with MS (PwMS), with the prevalence of these reported impairments
between 75% and 90% [4]. Analysis of gait, therefore, plays a central role in the assessment of MS
disease severity and progression.

MS diagnosis is based on established clinical and magnetic resonance imaging (MRI) criteria [5]
yet to date there is no universal gold standard clinical assessment for MS disease severity [6]. Current
best practice includes administering of observational rating scales, such as the expanded disability
status scale (EDSS) and the multiple sclerosis impact scale (MSIS-29), and ma+nually timed functional
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tasks (e.g., timed-up-and-go (TUG), timed 25-foot walk (T25FW) and the 2- or 6-minute walk test
(2MWT, 6MWT)) administered by trained clinical staff [7]. Central to these clinical assessments is
the quantification of gait deficits and gait characteristics in PwMS. However these assessments are
administered infrequently, can be time- and resource-intensive and are prone to rater-dependent error.
Thus a quantitative assessment of gait using body-worn inertial-sensor based systems has the potential
to provide objective longitudinal monitoring of the disease state in PwMS.

The 2-minute walk test is a validated alternative to the 6-minute walk test [8]. The distance
travelled in a fixed amount of time is used as a measure of physical function [8]. An opportunity
thus exists as the participant’s gait characteristics remain unexplored. Recent studies have employed
body-worn inertial-sensor based systems for the assessment of gait in PwMS, through the measurement
of temporal, spatial and/or spatiotemporal gait characteristics, during laboratory-based scripted
functional assessments such as the 6MWT [9–11], T25FW [12,13], TUG [13–15], a 1-minute walk [16]
and free-living gait [16]. However these studies suffer from a number of limitations and drawbacks,
including the requirement for a multi-sensor body-worn set-up [9,11–15,17], the test requires assistance
from a clinician and/or were laboratory based [9,11–15,17], were carried out on a small/limited
cohort [10,16] or the sensor requires direct attachment to the skin [9,14].

Advances in inertial-sensor technology combined with the widespread adoption of commercially
available smartphones, has made the ubiquitous monitoring of human body movement, using
body-worn inertial-sensors, more possible than ever before. To date, to the best of our knowledge,
no study has demonstrated that temporal, spatial and spatiotemporal gait characteristics can be
successfully measured using a single sensor at the waist in an MS cohort, during an unsupervised,
self-administered test. We thus hypothesize that instrumentation of the 2MWT performed in the
person’s home environment, with a body-worn inertial-sensor based smartphone, can potentially
reveal gait characteristics related to MS disease state, without a supervising clinician or a laboratory.
Identifying when a patient’s behavior has changed due to an intervention, through the use of body-worn
sensors, has the potential to expand the armamentarium beyond the traditional clinical endpoints.
Interpreting this change requires two benchmarks: the minimum detectable change (MDC), and the
minimal important difference (MID). The MDC is the minimum magnitude of change required to be 95%
confident that the observed change between measurements reflects true change and not measurement
error [18]. The MID is defined as the smallest change in the score of the construct to be measured,
which is perceived as important by patients, clinicians, or relevant others [19]. If the MDC is smaller
than the MID, it is possible to distinguish a clinically important change from measurement error with
a large amount of certainty [20], Figure 1. However, this is much more difficult if the MDC is larger
than the MID, since there is a considerable chance that the observed change is caused by measurement
error [20], Figure 1.

MDC is thus a prerequisite that allows clinicians and researchers to explain change scores in
successive measurements reasonably [21]. The objective was thus to assess the test-retest reliability
and ultimately the MDC of gait characteristics measured during a self-administered 2MWT with a
body–worn inertial-sensor based smartphone, in PwMS and healthy controls (HCs).
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presented with safety questions, given instructions how to perform the test and how to attach the 
smartphone, Figure 2. Participants then record the test by attaching the smartphone at the front of 
the body in a commercial waist-worn belt-bag or in a trouser pocket, Figure 2. Audio and vibration 
cues indicate the beginning and end of the 2-minute test. Feedback on how participants perform the 
test is not provided. 
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Figure 2. (a) The instructional screens provided to the participant, (b) a smartphone attached at the 
waist using a belt-bag and (c) summary description of the 2-minute walk test (2MWT). 

Figure 1. In (a) the MID is larger than the MDC. In this situation, changes as large as the MID can
be considered statistically significant and important to patients. In (b) the MID is smaller than the
MDC. In this situation, changes as large as the MID may be important for patients, but they cannot be
distinguished from measurement error [19]. Minimal detectable change (MDC). Minimal important
difference (MID). Figure adapted from Terwee et al. [20].

2. Materials and Methods

Extensive details on the trial protocol, inclusion/exclusion criteria and ethical approval are
available in the study by Midaglia et al. [22] with the key relevant points presented here.

2.1. Study Design

This cross-sectional study examined the longitudinal inter-session test-retest reliability and MDC
of gait characteristics harvested during the self-administered 2MWT in PwMS and HCs.

2.2. Participants

In total, 76 PwMS and 25 HCs were enrolled in the study. PwMS were included if they had a
diagnosis of MS and an EDSS score of 0.0 to 5.5 (inclusive). The EDSS [23] is a 10-point ordinal scale
used to measure MS disability. Zero indicates normal neurological exam, while higher values indicate
greater disability and increased mobility impairment.

2.3. Protocol and Equipment

At enrolment/baseline, PwMS and HCs were provided with a preconfigured smartphone and
were asked to perform the 2MWT daily over a 24-week period. For each test, participants are first
presented with safety questions, given instructions how to perform the test and how to attach the
smartphone, Figure 2. Participants then record the test by attaching the smartphone at the front of the
body in a commercial waist-worn belt-bag or in a trouser pocket, Figure 2. Audio and vibration cues
indicate the beginning and end of the 2-minute test. Feedback on how participants perform the test is
not provided.
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Figure 2. (a) The instructional screens provided to the participant, (b) a smartphone attached at the
waist using a belt-bag and (c) summary description of the 2-minute walk test (2MWT).

Participants were provided with a Samsung Galaxy S7 smartphone by the study investigator.
The Samsung Galaxy S7 contains the LSM6DS3 from STMicroelectronics. The LSM6DS3 is a
micro-electro-mechanical systems inertial monitoring unit (IMU) that contains factory calibrated
tri-axial accelerometer and gyroscope sensors. The Samsung Galaxy S7 samples used a variable
sampling rate of approximately 100 Hz. The smartphone’s sensor data were encrypted before wireless
transmission to a secure database for subsequent data analysis before gait features were exported,
Figure 3.
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Figure 3. Data flow and approximate timeline which includes performing the 2MWT, wireless
transmission of inertial monitoring unit (IMU) data, database processing and file extraction, gait
algorithm execution and gait feature export.

2.4. Signal Processing

Data analysis was performed in Python 3.6. The data harvested during each 2MWT were first
resampled using a Blackman window to create a regular sampling rate, then filtered using a zero-phase
2nd order Butterworth filter [24] at a cut-off frequency of 25 Hz. The IMU’s longitudinal axis was
aligned with the gravity vector using an axis-angle rotation [25]. The gravity vector was estimated
using the mean of the accelerometer data during the walking bouts.
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2.5. Phone Location Detection

The location of the smartphone was inferred based on the smartphone orientation during each
2MWT. If a landscape orientation was detected, a waist worn location was assumed.

2.6. Walking Bout Algorithm

Walking bouts were identified through thresholding of the standard-deviation of the
vector-magnitude of the tri-axial accelerometer signals, using a non-overlapping rolling window
of 1-second. Walking was detected if the signal exceeded a threshold of 1.0.

2.7. Gait Algorithms

The following gait characteristics were measured for each 2MWT recorded only at the waist
(trouser pocket location excluded); step/stride length [26], step/stride velocity [27], stance time [26],
swing time [26] and step/stride time [26], Figure 4.Sensors 2020, 20, x FOR PEER REVIEW  5 of 16 

 
Figure 4. Schematic of the human gait cycle and a selection of the temporal gait characteristics 
measured in this study. Reproduced and modified with permission from Tunca, C.; Pehlivan, N.; Ak, 
N.; Arnrich, B.; Salur, G.; Ersoy, C. Inertial Sensor-Based Robust Gait Analysis in Non-Hospital 
Settings for Neurological Disorders. Sensors 2017, 17, 825. 

During the gait cycle, the initial contact (IC, heel strike) and final contact (FC, foot-off) events, 
were identified from the Gaussian continuous wavelet transform of the vertical accelerometer signal, 
Figure 5. The detected IC and FC events were used to compute estimates of step, stance, swing and 
stride times [29]. The IC events were also used to provide an estimate of step length using the inverted 
pendulum model [27] along with the scaled iliac height of each subject. Step velocity was calculated 
as the ratio of step length to step time [27]. Validation of these algorithms [27] was performed in both 
young and older adult populations [27] and in Parkinson’s disease patients [30]. Stride length was 
the sum of consecutive contralateral step lengths, with stride velocity the ratio of stride length to 
stride time. The definitions of the computed gait characteristics are presented in Table 1.  

 
Figure 5. The heel-contact/initial contact (IC) and toe-off/final contact (FC) points identified from local 
minima and local maxima of the Gaussian continuous wavelet transform, of the processed vertical 
accelerometer signal. 

  

Figure 4. Schematic of the human gait cycle and a selection of the temporal gait characteristics
measured in this study. Reproduced and modified with permission from Tunca, C.; Pehlivan, N.;
Ak, N.; Arnrich, B.; Salur, G.; Ersoy, C. Inertial Sensor-Based Robust Gait Analysis in Non-Hospital
Settings for Neurological Disorders. Sensors 2017, 17, 825.

The calculation of these gait characteristics is extensively described in [27], along with a software
implementation tutorial [28], but summarized here for convenience.

During the gait cycle, the initial contact (IC, heel strike) and final contact (FC, foot-off) events,
were identified from the Gaussian continuous wavelet transform of the vertical accelerometer signal,
Figure 5. The detected IC and FC events were used to compute estimates of step, stance, swing and
stride times [29]. The IC events were also used to provide an estimate of step length using the inverted
pendulum model [27] along with the scaled iliac height of each subject. Step velocity was calculated as
the ratio of step length to step time [27]. Validation of these algorithms [27] was performed in both
young and older adult populations [27] and in Parkinson’s disease patients [30]. Stride length was the
sum of consecutive contralateral step lengths, with stride velocity the ratio of stride length to stride
time. The definitions of the computed gait characteristics are presented in Table 1.
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Figure 5. The heel-contact/initial contact (IC) and toe-off/final contact (FC) points identified from local
minima and local maxima of the Gaussian continuous wavelet transform, of the processed vertical
accelerometer signal.

Table 1. Definitions of gait characteristics, reprinted from Hollman, J.H.; McDade, E.M.; Petersen, R.C.
Normative Spatiotemporal Gait Parameters in Older Adults. Gait Posture 2001, 34, 111–118, Copyright
(2011), with permission from Elsevier.

Name Description

Spatial

Step Length The anterior-posterior distance between the heel of one footprint to the
heel of the opposite footprint

Stride Length

Anterior-posterior distance between heels of two consecutive footprints
of the same foot (left to left, right to

right); two steps (e.g., a right step followed by a left step) comprise one
stride or one gait cycle

Spatiotemporal

Step Velocity Calculated by dividing the step length by the step time

Stride Velocity Calculated by dividing stride length by the stride time

Temporal

Stance Time

The stance phase is the weight bearing portion of each gait cycle
initiated at heel contact and ending at toe off of the same foot; stance

time is the time elapsed between the initial contact and the last contact
of a single footfall

Step Time Time elapsed from initial contact of one foot to initial contact of the
opposite foot

Stride Time Time elapsed between the initial contacts of two consecutive footfalls of
the same foot

Swing Time

The swing phase is initiated with toe off and ends with initial contact of
the same foot; swing time is the time elapsed between the last contact of
the current footfall to the initial contact of the next footfall of the same

foot

Inertial sensor gait data were segmented into straight line walking bouts, of minimum 10 s,
with turns greater than 45o excluded. If multiple gait bouts were detected, gait characteristics computed
for each walking bout were compiled for each 2MWT.

The following features were computed for each gait characteristic during each 2MWT. To calculate
variability, the variance for all steps/strides (left and right separately) was calculated and combined [27].
Left and right steps were determined using the anterior-posterior gyroscope signal [29]. The standard
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deviation (std) was calculated using all steps/strides regardless of side. The coefficient-of-variation
(CV) [31] was calculated using Equation (1):

CV = std/mean (1)

Asymmetry was determined as the absolute difference between left and right steps [27]. The following
distribution measures were calculated for each 2MWT. The; 5th, 25th, 50th, 75th and 95th percentiles,
referred to from here on as percentiles, as well as the maximum, mean and minimum. The inclusion of
percentile calculations is motivated by a recent finding, where the 95th percentile of stride velocity was
considered by regulators as a new endpoint when assessing a neurological disease [32].

2.8. Gait Feature Aggregation

The median of each gait feature, calculated during individual 2MWTs, was harvested during a
14-day period of tests, with a minimum of three tests required. This constituted one session and was
compiled for each participant. A 14-day period was chosen to reduce day-to-day/weekend-weekday
fluctuations and variations in the daily test schedule/location which are all irrelevant for longer MS
disease progression.

2.9. Test-Retest Reliability

Test-retest reliability was assessed using the second (baseline session excluded to allow
familiarisation) and subsequent complete 14-day session per subject. This was performed using
a two-way mixed effect model with absolute agreement for a single rater/measurement intra-class
correlation coefficient, ICC (2,1) [33]. Reliability is indicated using the ICC values classified as; poor
(ICC < 0.5), moderate (ICC = 0.5 to 0.75), good (ICC = 0.75 to 0.9) and excellent (ICC > 0.9) [34].

2.10. Standard Error of Measurement (SEM) and Minimum Detectable Change (MDC)

The standard error of measurement (SEM) reflects the precision of the measurement instrument [34].
The SEM was calculated as Equation (2):

SEM = SD·
√

1− ICC (2)

where SD is the standard deviation of the specific gait characteristic values. The minimal detectable
change with a 95% confidence interval (MDC) was calculated to determine how much measured
change is likely to reflect true change [34]. The MDC [18] was calculated as Equation (3):

MDC = 1.96·SEM·
√

2 (3)

The SEM and MDC can be expressed as percentages that are independent of the units of
measurement. This allows comparison on the amount of random error between measurement features,
as Equation (4):

SEM% = 100·
(
SEM/

−
x
)
, (4)

and as Equation (5):

MDC% = 100·
(
MDC/

−
x
)
, (5)

where
−
x is the mean for all observations [18]. SEM% values were classified as low (SEM%≤ 10%) or high

(SEM% > 10%). MDC% values were classified as low (MDC% ≤ 20%), acceptable (20% < MDC% < 40%)
and high (MDC% ≥ 40%). Thresholds for SEM% and MDC% were chosen to align with previous
similar work [35] as no clear criteria for SEM% and MDC% are available.
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3. Results

A total of 4854 tests were recorded from the waist (trouser pocket location excluded from this
analysis) from 101 participants. Baseline demographics are described in Table 2.

Table 2. Cohort demographics and characteristics for PwMS and HCs at baseline. Abbreviations: EDSS:
Expanded Disability Status Scale, HC: Healthy control, MS: Multiple sclerosis, NA: Not applicable,
PPMS: Primary progressive multiple sclerosis, PwMS: People with multiple sclerosis, RRMS:
Relapsing-remitting multiple sclerosis, SD: Standard deviation, SPMS: Secondary progressive multiple
sclerosis, T25FW: Timed 25-Foot Walk.

Parameter PwMS HCs

Subjects (n) n = 76 n = 25
Age, mean ± SD, years 39.5 ± 7.9 34.9 ± 9.3

Female, n (%) 53 (69.7) 7 (28.0)
MS diagnosis (PPMS, SPMS, RRMS), % 3.9, 5.3, 90.8 NA

Time since MS symptom onset, mean ± SD, years 11.3 ± 7.0 NA
EDSS, mean ± SD 2.4 ± 1.4 NA

T25FW, mean ± SD, seconds 6.0 ± 2.1 5.0 ± 1.0

There was no significant difference (p = 0.569) between the quantity of 2MWTs performed during
each 14-day session by PwMS (n = 3867, 6.66 ± 4.6, maximum = 17, minimum = 1) and HCs (n = 987,
6.49 ± 4.6, maximum = 15, minimum = 1) and no significant difference (p = 0.235) between the total
walking bout length during each 2MWT performed by PwMS (n = 3867, 92.69 s ± 36.60 s) and HCs
(n = 987, 91.9 s ± 36.6 s). Algorithm execution computation time (Figure 3) was 3 h 45 min to process
4854 recorded 2MWT files (mean 2.78 s per file) using a HP computer with an Intel®Coretm i5-8350U
with a CPU rate of 1.70 GHz and 16 GB of RAM.

3.1. Test-Retest Reliability

Data from a total of 62 participants (51 PwMS and 11 HCs) were included to assess test-retest
reliability, presented in Tables 3 and 4 for PwMS and HCs.

For PwMS, of the 48 temporal gait features, 2 were excellent (ICC > 0.9), 31 were good to excellent
(ICC > 0.75), 3 were moderate to excellent and 11 were moderate to good, Table 3. Of the 44 spatial
and spatiotemporal gait features, 12 were excellent (ICC > 0.9), 13 were good to excellent (ICC > 0.75),
4 were moderate to excellent, 12 were moderate to good, and 3 were poor to good, Table 4.

For HCs, of the 48 temporal gait features, 1 was excellent (ICC > 0.9), 16 were good to excellent
(ICC > 0.75), 21 were moderate to excellent, 3 were poor to good and 17 were poor to excellent, Table 3.
Of the 44 spatial and spatiotemporal gait features, 12 were good to excellent (ICC > 0.75), 11 were
moderate to excellent, 8 poor to excellent and 13 were poor to good, Table 4.
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Table 3. Reliability statistics for temporal gait characteristics for PwMS and HCs. Colour code- ICC: Poor < 0.5 , moderate = 0.5–0.75 , good = 0.75–0.9 ,

excellent > 0.9 ; SEM%: low ≤10% , High > 10% . MDC%: low ≤20% , 20% < acceptable < 40% , high ≥40% .

PwMS HCs

ICC
(2,1) (lb, ub) p SEM SEM

(%) MDC MDC
(%)

ICC
(2,1) (lb, ub) p SEM SEM

(%) MDC MDC
(%)

Temporal Temporal

stance time (s) stance time (s)
0.05 0.83 0.72 0.90 <0.001 0.034 5.87 0.094 16.27 0.05 0.80 0.27 0.95 <0.001 0.020 3.27 0.056 9.07
0.25 0.81 0.69 0.89 <0.001 0.028 4.49 0.078 12.43 0.25 0.86 0.59 0.96 <0.001 0.017 2.54 0.046 7.05
0.5 0.88 0.80 0.93 <0.001 0.023 3.46 0.063 9.59 0.5 0.67 0.20 0.90 0.006 0.030 4.53 0.084 12.55

0.75 0.91 0.84 0.95 <0.001 0.025 3.60 0.069 9.97 0.75 0.79 0.42 0.94 0.001 0.029 4.12 0.079 11.43
0.95 0.90 0.83 0.94 <0.001 0.037 4.96 0.102 13.76 0.95 0.91 0.71 0.97 <0.001 0.027 3.68 0.075 10.19
max 0.82 0.70 0.89 <0.001 0.060 7.45 0.167 20.65 Max 0.92 0.74 0.98 <0.001 0.027 3.46 0.076 9.58

mean 0.92 0.87 0.95 <0.001 0.017 2.54 0.046 7.05 Mean 0.77 0.35 0.93 0.001 0.025 3.66 0.068 10.15
min 0.73 0.56 0.83 <0.001 0.047 9.22 0.131 25.57 Min 0.89 0.63 0.97 <0.001 0.028 5.33 0.078 14.76
std 0.87 0.79 0.93 <0.001 0.018 33.95 0.051 94.11 Std 0.89 0.63 0.97 <0.001 0.009 21.82 0.026 60.49
CV 0.86 0.76 0.92 <0.001 0.029 34.96 0.079 96.90 CV 0.88 0.56 0.97 <0.001 0.013 20.75 0.035 57.53

variability 0.85 0.75 0.91 <0.001 0.019 38.41 0.053 106.46 variability 0.85 0.52 0.96 <0.001 0.009 23.70 0.026 65.70
asymmetry 0.86 0.76 0.92 <0.001 0.013 48.19 0.035 133.57 asymmetry 0.89 0.66 0.97 <0.001 0.011 46.96 0.029 130.18

step time (s) step time (s)
0.05 0.86 0.77 0.92 <0.001 0.030 6.81 0.084 18.87 0.05 0.59 0.08 0.87 0.013 0.032 6.59 0.088 18.25
0.25 0.74 0.59 0.84 <0.001 0.031 6.35 0.085 17.59 0.25 0.92 0.74 0.98 <0.001 0.010 2.03 0.029 5.63
0.5 0.89 0.81 0.93 <0.001 0.016 3.10 0.045 8.59 0.5 0.89 0.65 0.97 <0.001 0.013 2.43 0.036 6.74

0.75 0.95 0.91 0.97 <0.001 0.013 2.35 0.036 6.51 0.75 0.81 0.47 0.95 0.001 0.023 4.13 0.065 11.44
0.95 0.92 0.87 0.96 <0.001 0.025 4.18 0.070 11.59 0.95 0.98 0.94 1.00 <0.001 0.009 1.53 0.025 4.23
max 0.85 0.75 0.91 <0.001 0.046 6.90 0.128 19.13 max 0.87 0.59 0.96 <0.001 0.031 4.73 0.086 13.11

mean 0.91 0.85 0.95 <0.001 0.013 2.49 0.036 6.89 mean 0.80 0.43 0.94 0.001 0.017 3.25 0.048 9.00
min 0.69 0.51 0.81 <0.001 0.047 12.41 0.129 34.39 min 0.89 0.61 0.97 <0.001 0.029 7.54 0.081 20.89
std 0.90 0.83 0.94 <0.001 0.015 28.27 0.043 78.35 std 0.96 0.86 0.99 <0.001 0.006 13.94 0.017 38.65
CV 0.89 0.81 0.94 <0.001 0.030 28.83 0.083 79.90 CV 0.96 0.85 0.99 <0.001 0.011 13.66 0.029 37.86

variability 0.88 0.81 0.93 <0.001 0.015 32.04 0.043 88.82 variability 0.94 0.81 0.98 <0.001 0.005 14.01 0.015 38.84
asymmetry 0.70 0.52 0.81 <0.001 0.018 55.74 0.050 154.50 asymmetry 0.91 0.72 0.98 <0.001 0.012 37.13 0.033 102.92
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Table 3. Cont.

PwMS HCs

ICC
(2,1) (lb, ub) p SEM SEM

(%) MDC MDC
(%)

ICC
(2,1) (lb, ub) p SEM SEM

(%) MDC MDC
(%)

Temporal Temporal

stride time (s) stride time (s)
0.05 0.86 0.76 0.91 <0.001 0.048 5.10 0.133 14.13 0.05 0.57 0.05 0.86 0.014 0.053 5.32 0.148 14.74
0.25 0.75 0.60 0.85 <0.001 0.050 4.93 0.137 13.66 0.25 0.79 0.42 0.94 0.001 0.035 3.26 0.096 9.05
0.5 0.90 0.83 0.94 <0.001 0.030 2.88 0.083 7.97 0.5 0.82 0.48 0.95 <0.001 0.035 3.21 0.096 8.90

0.75 0.94 0.89 0.96 <0.001 0.027 2.49 0.075 6.91 0.75 0.84 0.54 0.96 <0.001 0.033 3.03 0.092 8.39
0.95 0.92 0.87 0.95 <0.001 0.039 3.43 0.108 9.50 0.95 0.93 0.77 0.98 <0.001 0.030 2.56 0.082 7.11
max 0.79 0.66 0.87 <0.001 0.082 6.73 0.229 18.67 max 0.87 0.60 0.96 <0.001 0.045 3.67 0.124 10.16

mean 0.91 0.86 0.95 <0.001 0.026 2.48 0.072 6.88 mean 0.78 0.39 0.94 0.001 0.036 3.37 0.101 9.34
min 0.68 0.50 0.80 <0.001 0.080 9.43 0.222 26.15 min 0.92 0.70 0.98 <0.001 0.043 4.92 0.119 13.64
std 0.87 0.78 0.92 <0.001 0.023 35.44 0.064 98.24 std 0.74 0.25 0.93 0.001 0.016 29.91 0.044 82.92
CV 0.84 0.74 0.91 <0.001 0.025 39.06 0.069 108.27 CV 0.73 0.22 0.92 0.001 0.014 29.26 0.039 81.12

variability 0.87 0.78 0.92 <0.001 0.022 35.13 0.062 97.37 variability 0.75 0.25 0.93 0.001 0.016 29.51 0.043 81.80
asymmetry 0.94 0.90 0.97 <0.001 0.006 67.33 0.017 186.63 asymmetry 0.75 0.29 0.93 0.003 0.001 37.66 0.003 104.39

swing time (s) swing time (s)
0.05 0.85 0.76 0.91 <0.001 0.026 7.82 0.071 21.67 0.05 0.71 0.24 0.91 0.002 0.021 5.60 0.057 15.54
0.25 0.77 0.62 0.86 <0.001 0.026 7.32 0.073 20.29 0.25 0.81 0.47 0.95 0.001 0.014 3.66 0.040 10.14
0.5 0.93 0.88 0.96 <0.001 0.012 3.11 0.033 8.63 0.5 0.84 0.53 0.96 <0.001 0.013 3.07 0.035 8.50

0.75 0.93 0.88 0.96 <0.001 0.010 2.55 0.029 7.08 0.75 0.82 0.49 0.95 0.001 0.016 3.83 0.045 10.61
0.95 0.87 0.79 0.93 <0.001 0.019 4.24 0.052 11.77 0.95 0.93 0.76 0.98 <0.001 0.013 2.81 0.035 7.78
max 0.85 0.76 0.91 <0.001 0.030 6.02 0.082 16.69 Max 0.88 0.62 0.97 <0.001 0.021 4.23 0.057 11.72

mean 0.91 0.85 0.95 <0.001 0.012 2.98 0.032 8.27 Mean 0.84 0.52 0.95 <0.001 0.012 2.97 0.034 8.22
min 0.72 0.56 0.83 <0.001 0.036 13.24 0.100 36.71 Min 0.85 0.55 0.96 <0.001 0.026 8.96 0.072 24.83
std 0.93 0.88 0.96 <0.001 0.009 21.42 0.024 59.37 Std 0.90 0.53 0.97 <0.001 0.007 22.58 0.020 62.60
CV 0.90 0.83 0.94 <0.001 0.030 27.72 0.083 76.84 CV 0.88 0.44 0.97 <0.001 0.018 23.40 0.050 64.86

variability 0.94 0.89 0.96 <0.001 0.008 21.60 0.022 59.87 variability 0.88 0.44 0.97 <0.001 0.005 18.06 0.013 50.06
asymmetry 0.79 0.67 0.88 <0.001 0.008 37.86 0.021 104.94 asymmetry 0.95 0.83 0.99 <0.001 0.007 33.07 0.020 91.67
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Table 4. Reliability statistics for spatial and spatiotemporal gait characteristics for PwMS and HCs. Colour code ICC: Poor < 0.5 , moderate = 0.5–0.75 ,
good = 0.75–0.9 , excellent > 0.9 ; SEM%: low ≤10% , High >10% . MDC%: low ≤20% , 20% < acceptable < 40% , high ≥40% .

PwMS HCs

ICC
(2,1) (lb, ub) p SEM SEM

(%) MDC MDC
(%)

ICC
(2,1) (lb, ub) p SEM SEM

(%) MDC MDC
(%)

Spatial Spatial

step length (m) step length (m)
0.05 0.94 0.90 0.97 <0.001 0.041 8.94 0.114 24.79 0.05 0.45 -0.11 0.81 0.061 0.095 18.87 0.263 52.31
0.25 0.94 0.90 0.97 <0.001 0.032 5.99 0.090 16.60 0.25 0.70 0.23 0.91 0.006 0.046 7.73 0.128 21.44
0.5 0.94 0.89 0.96 <0.001 0.029 5.01 0.082 13.90 0.5 0.92 0.74 0.98 <0.001 0.022 3.39 0.061 9.40

0.75 0.93 0.87 0.96 <0.001 0.030 4.73 0.083 13.12 0.75 0.92 0.73 0.98 <0.001 0.025 3.63 0.068 10.07
0.95 0.78 0.65 0.87 <0.001 0.059 8.58 0.163 23.77 0.95 0.96 0.80 0.99 <0.001 0.020 2.74 0.054 7.58
max 0.53 0.30 0.70 <0.001 0.155 19.68 0.430 54.56 max 0.96 0.86 0.99 <0.001 0.022 2.81 0.061 7.78

mean 0.95 0.91 0.97 <0.001 0.028 4.75 0.077 13.16 mean 0.90 0.67 0.97 <0.001 0.025 3.92 0.068 10.87
min 0.75 0.60 0.85 <0.001 0.072 26.99 0.200 74.80 min 0.63 0.07 0.89 0.005 0.064 23.01 0.178 63.79
std 0.84 0.73 0.90 <0.001 0.020 24.02 0.054 66.59 std 0.45 −0.08 0.81 0.048 0.035 43.93 0.097 121.77
CV 0.93 0.87 0.96 <0.001 0.030 19.18 0.082 53.15 CV 0.33 −0.19 0.75 0.115 0.066 51.28 0.183 142.15

variability 0.78 0.65 0.87 <0.001 0.021 28.78 0.058 79.78 variability 0.59 0.07 0.87 0.014 0.023 32.15 0.063 89.12
asymmetry 0.78 0.64 0.87 <0.001 0.024 53.39 0.067 148.00 asymmetry 0.70 0.20 0.91 0.007 0.023 59.55 0.063 165.07

stride length (m) stride length (m)
0.05 0.93 0.88 0.96 <0.001 0.076 7.57 0.212 20.99 0.05 0.68 0.19 0.90 0.008 0.092 8.22 0.255 22.79
0.25 0.95 0.91 0.97 <0.001 0.059 5.31 0.165 14.73 0.25 0.81 0.47 0.94 0.001 0.069 5.71 0.192 15.83
0.5 0.94 0.89 0.96 <0.001 0.059 5.01 0.163 13.88 0.5 0.92 0.72 0.98 <0.001 0.044 3.49 0.123 9.69

0.75 0.89 0.82 0.94 <0.001 0.073 5.91 0.201 16.39 0.75 0.96 0.86 0.99 <0.001 0.033 2.49 0.091 6.89
0.95 0.89 0.82 0.94 <0.001 0.069 5.36 0.192 14.85 0.95 0.95 0.83 0.99 <0.001 0.038 2.77 0.106 7.69
max 0.84 0.74 0.91 <0.001 0.093 6.77 0.259 18.76 max 0.95 0.82 0.98 <0.001 0.042 2.91 0.116 8.08

mean 0.94 0.90 0.97 <0.001 0.056 4.80 0.155 13.32 mean 0.91 0.69 0.97 <0.001 0.048 3.81 0.133 10.55
min 0.84 0.74 0.91 <0.001 0.111 13.45 0.308 37.28 min 0.81 0.44 0.95 <0.001 0.058 6.22 0.161 17.25
std 0.74 0.59 0.85 <0.001 0.027 26.30 0.074 72.90 std 0.70 0.25 0.91 0.004 0.024 25.30 0.067 70.12
CV 0.82 0.71 0.90 <0.001 0.031 30.78 0.085 85.31 CV 0.56 0.02 0.85 0.025 0.025 32.02 0.069 88.75
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Table 4. Cont.

PwMS HCs

ICC
(2,1) (lb, ub) p SEM SEM

(%) MDC MDC
(%)

ICC
(2,1) (lb, ub) p SEM SEM

(%) MDC MDC
(%)

Spatiotemporal Spatiotemporal

step velocity (m/s) step velocity (m/s)
0.05 0.92 0.87 0.96 <0.001 0.090 10.37 0.250 28.73 0.05 0.63 0.12 0.88 0.012 0.155 16.70 0.429 46.30
0.25 0.94 0.90 0.97 <0.001 0.064 6.16 0.177 17.07 0.25 0.88 0.63 0.97 <0.001 0.064 5.76 0.177 15.96
0.5 0.95 0.91 0.97 <0.001 0.055 4.84 0.152 13.41 0.5 0.95 0.81 0.99 <0.001 0.037 3.06 0.102 8.49

0.75 0.92 0.86 0.95 <0.001 0.065 5.32 0.181 14.73 0.75 0.93 0.76 0.98 <0.001 0.045 3.57 0.126 9.88
0.95 0.82 0.70 0.89 <0.001 0.092 6.74 0.255 18.69 0.95 0.93 0.73 0.98 <0.001 0.050 3.67 0.139 10.17
max 0.53 0.30 0.70 <0.001 0.249 15.49 0.691 42.94 max 0.75 0.31 0.93 0.003 0.166 10.26 0.460 28.45

mean 0.95 0.91 0.97 <0.001 0.054 4.79 0.150 13.28 mean 0.93 0.78 0.98 <0.001 0.045 3.79 0.125 10.52
min 0.80 0.67 0.88 <0.001 0.124 24.54 0.343 68.02 min 0.66 0.14 0.90 0.004 0.106 19.88 0.293 55.10
std 0.76 0.62 0.86 <0.001 0.045 25.86 0.124 71.68 std 0.50 −0.03 0.83 0.030 0.053 32.92 0.146 91.25
CV 0.89 0.81 0.93 <0.001 0.039 22.98 0.108 63.70 CV 0.40 −0.15 0.78 0.081 0.054 38.20 0.149 105.89

variability 0.75 0.60 0.85 <0.001 0.045 27.85 0.125 77.19 variability 0.69 0.19 0.91 0.002 0.037 24.93 0.102 69.11
asymmetry 0.73 0.57 0.84 <0.001 0.036 44.41 0.100 123.09 asymmetry 0.61 0.05 0.88 0.020 0.025 41.49 0.068 115.01

stride velocity (m/s) stride velocity (m/s)
0.05 0.93 0.88 0.96 <0.001 0.077 8.05 0.213 22.31 0.05 0.85 0.54 0.96 <0.001 0.074 7.19 0.204 19.94
0.25 0.95 0.91 0.97 <0.001 0.060 5.65 0.167 15.65 0.25 0.92 0.73 0.98 <0.001 0.050 4.45 0.139 12.34
0.5 0.96 0.93 0.98 <0.001 0.050 4.45 0.139 12.33 0.5 0.95 0.83 0.99 <0.001 0.040 3.35 0.111 9.30

0.75 0.94 0.90 0.97 <0.001 0.055 4.64 0.153 12.87 0.75 0.96 0.85 0.99 <0.001 0.038 3.05 0.105 8.45
0.95 0.94 0.90 0.97 <0.001 0.053 4.16 0.146 11.53 0.95 0.95 0.84 0.99 <0.001 0.042 3.22 0.116 8.93
max 0.85 0.76 0.91 <0.001 0.091 6.69 0.254 18.56 max 0.85 0.54 0.96 <0.001 0.081 5.91 0.226 16.39

mean 0.95 0.92 0.97 <0.001 0.054 4.76 0.148 13.19 mean 0.94 0.81 0.98 <0.001 0.041 3.50 0.114 9.71
min 0.82 0.71 0.89 <0.001 0.114 14.59 0.317 40.44 min 0.88 0.60 0.97 <0.001 0.049 5.70 0.135 15.80
std 0.67 0.48 0.80 <0.001 0.030 27.37 0.083 75.87 std 0.61 0.10 0.88 0.012 0.024 23.51 0.066 65.18
CV 0.85 0.75 0.91 <0.001 0.029 26.12 0.080 72.41 CV 0.60 0.08 0.87 0.017 0.024 27.23 0.067 75.48
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3.2. SEM and MDC

For PwMS, Table 4 for the percentiles, min, mean and max of spatial (step and stride length) and
spatiotemporal (step and stride velocity) gait characteristics, the SEM and SEM% values were low
(4.16−8.94%) except for min which produced high values and in some cases max and the 5th percentile
of step length and velocity. The MDC and MDC% values were low or acceptable (11.53−37.28%)
except for some cases of min and max which were high. The std, CV, variability and asymmetry
produced high SEM and SEM% values (19.18−53.39%) and high MDC and MDC% values (53.15−148%).
For the percentiles, min, mean and max of temporal gait characteristics (stance, step, swing and stride
time) the SEM and SEM% values were low (2.35−9.43%), except for the min of step and swing time
(12.41%, 13.24%), Table 3. MDC and MDC% values were low or acceptable (6.51−36.71%). The std,
CV, variability and asymmetry produced high SEM, SEM% (21.42−67.33%), MDC and MDC% values
(59.37−186.63%).

For HCs, Table 4 for the percentiles, min, mean and max of spatial and spatiotemporal gait
characteristics the SEM and SEM% values were low (2.49−8.22%) except for min which produced high
values and in some cases max and the 5th percentile of step length and velocity. The MDC and MDC%
values were low or acceptable (6.89−28.45%) except for the min and 5th percentile of step length and
velocity which were high. The std, CV, variability and asymmetry produced high SEM, and SEM%
values (23.51−59.55%) and high MDC and MDC% values (65.18−165.07%). For HCs for the percentiles,
min, mean and max of temporal gait characteristics (stance, step, swing and stride time) the SEM and
SEM% values were low (1.53−6.59%) and the MDC and MDC% values were also low or acceptable
(4.23−24.83%), Table 3. The std, CV, variability and asymmetry produced high SEM, and SEM% values
(13.66−46.96%) and acceptable or high MDC and MDC% values (37.86−130.18%).

4. Discussion

This study evaluated the between-session test-retest reliability, SEM and MDC of a comprehensive
set of gait features harvested during a self-administered 2-minute walk test, using a single smartphone
attached to the front of the waist in PwMS and HCs.

ICC values for test-retest reliability were similar to those reported in other assessments of gait in
PwMS using body-worn IMUs [11,15] and for clinical walking outcome assessments in PwMS [36].
ICCs for test-retest reliability harvested from HCs were less reliable than from PwMS. Analysis of the
ICC over 4 consecutive pairs of sessions (compliance dropped below 50% after the initial 8 sessions)
confirmed that the test-retest robustness estimates were unaffected by the choice of session for PwMS.
For HCs we observed some instability due to the smaller sample size, which is also reflected in the
larger confidence intervals reported. Bootstrap analysis with 1000 iterations on the study participants
confirmed that the results reported here are robust to the choice of participants. Koo and Li et al. [33]
recommend that “researchers should try to obtain at least 30 heterogeneous samples” when conducting
a reliability study. In this study we harvested values from 51 PwMS and 11 HCs thus the quantity of
values recorded from HCs is much less than recommended.

The SEM was used to assess the measurement precision of the gait features and the MDC to
detect the minimal threshold of change above the 95% confidence interval (CI) for each feature. These
measures represent the limit for the smallest change that indicates a real or detectable improvement
rather than measurement error for people with MS, thus, making it particularly useful for gauging the
effects of an intervention or rehabilitation [18].

Small or low SEM values for gait characteristics indicate that measurements are stable and
reproducible over time, thus indicating the precision of the measurement system [37]. Angelini et al. [11]
reported SEM and MDC values for gait characteristics measured in PwMS (n = 26, EDSS = 2–6.5) using
three body-worn (both ankles and lumbar spine) IMU-based sensors, during a 6MWT recorded in a
clinical setting. SEM values reported here are lower for mean stride (0.026 s vs. 0.04 s), step (0.013 s vs.
0.02 s) and stance (0.017 s vs. 0.03 s) times, Table 3, and comparable to the swing time (0.012 s vs. 0.01 s),
Table 3, reported by Angelini et al. [11]. MDC values reported here are lower for step (0.036 s vs. 0.05 s)
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time and higher for stride (0.072 s vs. 0.01 s), stance (0.046 s vs. 0.03 s) and swing (0.032 s vs. 0.03 s)
time, Table 3, to those reported by Angelini et al. [11].Except for swing time asymmetry, higher SEM
and MDC temporal variability and asymmetry metrics were observed for mean stride, step, stance and
swing times when compared to those reported by Angelini et al. [11]. The study by Angelini et al. [11]
was however conducted in a controlled clinical setting using a multi-sensor recording set-up. Future
work will examine the quantity of steps/strides required to produce more reliable measures of gait,
especially for variability and asymmetry metrics, similar to Hollman et al. [38].

Learmonth et al. [36] demonstrated that in an MS population (n = 82, SR-EDSS = 0–6.5) the 6MWT
has an MDC% of 20% for both distance and speed. Examining MS subgroups this changes to 11%
and 39% for MS mild (SR-EDSS < 4) and MS moderate (SR-EDSS = 4–6.5), respectively, for both the
distance and speed. Valet et al. [39] reported an 11% MDC% for the 2MWT in an MS population
(n = 63, EDSS = 0–4). In this study for the MDC% of the percentiles, min, mean, max of the spatial,
spatiotemporal and temporal gait features, 46 of the 64 features (Tables 3 and 4) were below the
20% MDC% reported by Learmonth et al. [36] with 13 of the 64 below the 11% MDC% reported by
Valet et al. [39]. For the MDC% for variability, std, CV and asymmetry none were less than 39%.

Decavel et al. [40] reported SEM% and MDC% values for gait characteristics harvested during the
T25FW using a GAITRite®(CIR Systems Inc. Franklin, NJ, USA) sensorised walkway in a population
of 59 PwMS (EDSS mean (SD) of 5.2 (1.1)) and 19 HCs. Here, we report lower SEM% and MDC%
values for mean stride length and velocity (gait velocity versus stride/step velocity) for both PwMS and
HCs and lower values for stride time for PwMS, Table 4. Thus demonstrating that the measurement
of gait characteristics can be achieved in a person’s own home environment, using an unsupervised
self-administered walking test, using a single sensor attached to the waist and can achieve better
precision and lower measurement error than a dedicated laboratory based system.

The obtained SEM and MDC values can be considered as valid measurement threshold references
for their respective gait characteristics when measured using a single body-worn smartphone, during
an unsupervised self-administered 2MWT, performed in the person’s home environment. Future
further studies in this domain should examine the, clinically relevant, MID for outcomes of these gait
characteristics, as they are currently lacking. Knowledge of these MID values would assist in the
clinical interpretation of the indices for the measurement errors found in this study. This will help
clinicians and researchers reasonably and confidently determine real change, between repeated session
measurements, for PwMS evaluated using a body-worn smartphone during a self-administered 2MWT.

Future work will determine the accuracy of this algorithm using ground truth data harvested
from an MS cohort. Future work will also examine the criterion validity of these gait characteristics,
measured in an MS cohort, with reported outcomes from clinical observational rating scales (e.g., EDSS
and MSIS-29) and timed functional assessments (e.g., T25FW). In addition, variations in inertial sensor
data measured using different smartphones do exist [41], future work will employ techniques such as
auto-calibration [42] to reduce the error associated with these variations.

5. Conclusions

These findings indicate that gait analysis performed on inertial sensor data harvested during a
self-administered 2MWT using a single smartphone, attached to the front of the waist, provides both
accurate and reliable measurements of selected spatial, temporal and spatiotemporal characteristics of
gait in PwMS and HCs.

The ICC, SEM and MDC values recorded for this measurement system are also comparable to
existing clinically accepted outcome measures for gait evaluation.

These findings have meaningful implications for clinicians and researchers who use body-worn
IMU-based measurement systems to evaluate gait deficits in PwMS.
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