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Abstract

Assessment of soft tissue elasticity and viscosity is of interest in several clinical applications. In 

this study we present feasibility of the local phase velocity based imaging (LPVI) method to create 

images of phase velocity and viscoelastic parameters in viscoelastic tissue-mimicking materials 

and soft tissues. In viscoelastic materials it is necessary to utilize wave mode isolation using a 

narrow bandpass filter combined with a directional filter in order to robustly reconstruct phase 

velocity images with LPVI in viscoelastic media over a wide range of frequencies. A pair of 

sequential focused acoustic radiation force push beams, focused once on the left side and once on 

the right side of the probe, was used to produce broadband propagating shear waves. The local 

shear wave phase velocity is then recovered in the frequency domain for multiple frequencies, for 

both acquired data sets. Then, a two-dimensional shear wave velocity map is reconstructed by 

combining maps from two separate acquisitions. By testing the method on simulated data sets and 

performing in vitro phantom and in vivo liver tissue experiments, we show the ability of the 

proposed technique to generate shear wave phase velocity maps at various frequencies in 

viscoelastic materials. Moreover, a nonlinear least-squares problem is solved in order to locally 

estimate elasticity and viscosity parameters. The LPVI method with added directional and 

wavenumber filters can produce phase velocity images, which can be used to characterize 

viscoelastic materials.
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I. Introduction

Soft tissues exhibit viscoelastic behavior. As a result, over the last few decades many 

methods have been developed to measure mechanical properties of these soft tissues for 

evaluation of disease. One way to quantitatively evaluate viscoelastic materials is to measure 

the velocity dispersion, or variation with frequency, of propagating shear waves. Shear wave-

based elastography utilizes different methods to introduce shear waves such as mechanical 

actuation, acoustic radiation force, or endogenous vibration [1]. After the shear waves are 

produced different means are used for the measurement of the shear wave motion such as 

ultrasound, magnetic resonance imaging (MRI), or optical coherence tomography (OCT) 

[1]–[4]. These methods have been used to investigate viscoelastic properties in healthy and 

pathologic conditions.

Liver fibrosis is a progressive disease that affects the liver stemming from multiple etiologies 

such as viral hepatitis, damage due to alcohol overuse, and fatty liver disease [5]. As 

hepatocytes are damaged due to inflammatory processes, collagen is deposited during the 

healing phase. The increase in collagen, or fibrosis, makes the liver stiffer. Liver fibrosis is a 

chronic condition and fibrotic infiltration can increase over time, which will progressively 

increase the liver stiffness further until cirrhosis occurs. This has been demonstrated in 

studies with biopsy comparison. Because of the intimate connection between liver fibrosis 

and liver mechanical properties [5], measurement of shear wave velocity and viscoelasticity 

has been used in clinical populations to evaluate diagnostic effectiveness. Changes in liver 

viscoelasticity with liver fibrosis have also been explored [6]–[11]. In addition to fibrosis in 

the liver, fat deposition can occur, a condition called steatosis, which can also have effects on 

the liver viscoelasticity [9], [12], [13]. Additionally, Nenadic, et al., has recently reported 

that acute cellular rejection involving inflammation processes in liver transplants can change 

viscoelastic parameters [14].

The kidney is also viscoelastic and its viscoelasticity can be modulated by blood flow 

alterations [15]. Additionally, the kidney is anisotropic and the viscoelastic properties can 

vary with the direction of measurement, along or across the natural orientations of the 

tubules and vessels in the kidney [16], [17]. Skeletal muscle also exhibits viscoelasticity and 

like the kidney is anisotropic [18], [19]. Shear waves propagating at different angles with 

respect to the muscle fibers will yield different results [20]–[22]. As many soft tissues 

exhibit viscoelastic behavior and those viscoelastic properties change with disease, it is 

important to develop robust methods for measurement of these properties, such as elasticity 

and viscosity. While one-dimensional or point-measurements of these parameters have been 

reported, images of these properties are an active area of research.

For developing and refinement of different methods to measure viscoelasticity, digital and 

physical tissue-mimicking phantoms have been created and tested. A good deal of work has 

been conducted to characterize these phantoms and conduct tests among different groups 

[23]–[28].

As mentioned above, one way to investigate the viscoelasticity of materials is to measure 

shear wave velocity dispersion, or change in the shear wave velocity with respect to 
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frequency. Many clinical scanners measure the group velocity, or velocity with which the 

shear wave ”packet” travels with time-of-flight methods [29], [30]. Shear wave velocities at 

specific frequencies are denoted as phase velocities [31]. Two common methods to measure 

phase velocities include the phase gradient and two-dimensional Fourier transform ℱ2D
analysis [31], [32].

The phase gradient method utilizes the phase difference at specific frequencies evaluated at 

different spatial locations. This difference in phase values ϕ1 and ϕ2 can be computed 

between two specific locations r1 and r2 at a frequency ω

V s(ω) = ω r2 − r1
ϕ2 − ϕ1

(1)

or computed using a linear regression of points from several locations [31], [33], [34]. The 

phase gradient is typically evaluated lateral to the shear wave source. Vs(ω) in Eq. (1) stands 

for phase velocity.

The ℱ2D methods use spatiotemporal data (x, t) and transform to a space that has 

coordinates of wavenumber and frequency (k, f) and have been used to measure the 

dispersion [32], [35]. The peaks in the magnitude distribution of the (k, f) space are used to 

measure the phase velocities using the relationship c = 2πf/k = 2πfλ/(2π) = fλ. The 

dispersion either from the phase gradient or ℱ2D can be fit to rheological models to quantify 

the viscoelastic parameters of the medium [9], [31], [33].

The phase gradient and ℱ2D approaches have been implemented in a one-dimensional sense 

using measurements lateral to the shear wave excitation. As a result, this can be regarded as 

a point measurement encompassing data from a certain limited region in the material or 

tissue. Recently, methods have been proposed to move past these point-based measurements, 

to make images of the phase velocities or viscoelastic parameters [36]–[40].

The method proposed by Budelli, et al. [36], uses the phase gradient method and calculates 

the phase velocity over a certain distance and performs this calculation at different axial 

locations to construct an image of the phase velocity. This method is considered free of 

assuming a rheological model for tissue characterization, but it only takes into account wave 

propagation in the lateral direction. The method proposed by Selzo, at al. [37], calculates a 

combined parameter which reflects elasticity and viscosity. This method does not give 

quantitative evaluation of the elasticity or viscosity independently. The method proposed by 

van Sloun, et al. [38], is based on fitting shear wave motion dynamics using a linear systems 

approach for estimating the local viscoelastic parameters assuming a Kelvin-Voigt (KV) 

rheological model. The method described by Bhatt, et al. [39], employs the frequency-shift 

method and calculates the shear wave attenuation over a certain distance. This method 

assumes that a shape parameter of a power spectrum amplitude is constant which may not 

hold for all viscoelastic materials.

Recently, we proposed an adaptation of a method called local wavenumber imaging to 

construct images of phase velocities called local phase velocity imaging (LPVI) [40]. In that 
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work, we made measurements in elastic homogeneous and heterogeneous tissue mimicking 

phantoms to explore how the phase velocities in inclusions varied with frequency. In this 

paper we use the LPVI method to construct images of phase velocities and viscoelastic 

parameters in homogeneous viscoelastic tissue mimicking phantoms and in vivo healthy 

human livers. Directional and bandpass wavenumber filters are adopted in the LPVI 

approach. Two-dimensional (2D) shear wave phase velocity maps are reconstructed 

sequentially for two acquisition data, for a pair of sequential focused acoustic radiation force 

push beams and averaged at the end stage.

The rest of the article is organized as follows. First, we present the LPVI method as applied 

for the shear wave velocity mapping of viscoelastic materials. The effects of the filters are 

investigated in this manuscript, and advantages of the LPVI with these filters are shown. The 

LPVI method was tested on data from numerical simulations and experimental 

measurements. Then, the generated shear wave velocity maps were used to reconstruct 

elasticity and viscosity maps using a nonlinear least-squares fit applied to the KV 

rheological, viscoelastic model. In this paper, we use three homogeneous and three 

heterogeneous viscoelastic digital and two physical phantoms, as well as data from in vivo 
liver studies from five healthy subjects to test the methods. These testing platforms have 

viscoelastic properties that are relevant for applications in soft tissues. Results from these 

studies will be presented. The results will be followed with a discussion and conclusions.

II. Methods

In this section, the LPVI method is adapted for shear wave phase velocity estimation of 

viscoelastic materials. The LPVI method is tested with the local interaction simulation 

approach (LISA) numerical viscoelastic models, and experimentally using viscoelastic 

tissue-mimicking (TM) phantoms and data from in vivo healthy human livers. First, we 

provide a procedure for the LPVI method in Sec. II-A. The elasticity and viscosity mapping 

steps are described in Sec. II-B. A description of the numerical LISA viscoelastic phantom 

is provided in Sec. II-C. The experimental TM and in vivo human liver data used in our 

study are introduced in Secs. II-D and II-E, respectively. Appropriate examples are provided 

in order to show efficiency of LPVI in Sec. III.

A. Local-Phase-Velocity-based Imaging Approach

A new method called local phase velocity based imaging (LPVI), as an alternative technique 

to measure tissue elasticity, was previously proposed in [40]. The LPVI method recovers 

local shear wave velocity in the frequency domain for a single frequency or frequency band. 

In contrast to the work presented in [40] a bandpass filter in the wavenumber domain 

combined with a directional filter is added in this manuscript. The steps of the technique are 

presented in a flow chart in Fig. 1.

First, the shear wave mode isolation of the spatio-temporal particle motion, particle velocity 

in this study, V (z, x, t) is performed using directional and bandpass filters in a 2D 

wavenumber (kz − kx) domain (marked as (II) and (III) in the flow chart in Fig. 1). A first 

order Butterworth bandpass filter is applied to each frame to remove spatial wavelengths 

representing shear wave speeds outside a predetermined range. The wavenumber bandwidth 
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is centered about the nominal wavenumber k(f0) of the shear wave mode. k(f0) is a 

wavenumber of the shear wave mode estimated from the ℱ2D dispersion curve (as described 

in Sec. II-F). The wavenumber bandwidth is selected as

Γ(k) = 2πf0
V ℱ2D f0 ± V k f0

, (2)

where V ℱ2D f0  is the phase velocity estimated from the ℱ2D dispersion curve, and Vk(f0) 

was set to 0.5 m/s for homogeneous data. This value was determined empirically through 

preliminary processing of phantom data. Motion propagation in the axial direction is also 

reduced by filtering the corresponding spatial Fourier domain components using a rolled-off 

wedge filter [41]. Shear waves traveling in one lateral direction are taken into account 

through the use of a directional filter [42]. This can be expressed as the product between the 

spectrum in the frequency-wavenumber domain, Ṽ(kz, kx, f0), of the particle motion and a 

filter function in the form

V w kz, kx, f0 = V kz, kx, f0 ⋅ D kz, kx, f0 ⋅ Bk kz, kx , (3)

where D(kz, kx, f0) is the 3D directional filter in the kz − kx − f0 domain, Bk(kz, kx) denotes 

the 2D bandpass filter in the kz − kx domain, and Ṽw(kz, kx, f0) is the filtered spectrum. The 

3D D filter can be multiplied with 2D B filter iteratively for each frequency f0.

The filtered spectrum is then transformed back into the frequency-space domain (IV–V) by 

using the inverse ℱ2D ℱ2D
−1

V w z, x, f0 = ℱ2D
−1 V w kz, kx, f0 . (4)

Then, a short space ℱ2D is applied in space domains z and x (VI). This step entails breaking 

down the Ṽ(z, x, f0) wavefield into small segments over the spatial dimensions before 

Fourier transformation and retaining the spatial information. The Ṽw(z, x, f0) wavefield is 

multiplied by a window function W z, x(z, x) which is non-zero for only a small region in 

space while constant over the entire frequency domain, which can be defined as follows

V w* z, x, f0 = V w z, x, f0 ⋅ W z, x(z, x), (5)

where W z, x(z, x) is a 2D cosine-tapered window (i.e. Tukey window). z and x denote non-

zero values in z and x directions, respectively. When the W z, x(z, x) window slides along the 

spatial dimensions, windowed wavefield regions, V w* z, x, f0 , are created. The ℱ2D is 

applied to the V w* z, x, f0  region (VII), resulting in a set of 2D wavenumber (kz, kx) spectra 

for the frequency f0, which mathematically is given as

V w kz, kx, f0 = ∫
−∞

+∞∫
−∞

+∞
V w* z, x, f0 ⋅ e−i kzz + kxx dzdx . (6)
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The resulting spectra V w kz, kx, f0  are indexed by the locations of the window such that the 

spatial information is retained.

Next, the spatial distribution of the phase velocity is calculated (VIII). From the 

V w kz, kx, f0  spectra, for all spatial windows, the phase velocity is computed as

V pℎ(z, x) f0 = 2πf0
k , (7)

where |k| is a wavenumber magnitude described as

k = k(z, m)
2 + k(x, m)

2 , (8)

and k(z,m) and k(x,m) arguments are found using

k(z, m), k(x, m) = arg max
kz, kx

V w kz, kx, f0 . (9)

Based on Eq. (7) the full field-of-view of the shear wave phase velocity image is 

reconstructed (IX–X).

The above procedure has been implemented in MATLAB (Mathworks, Natick, MA) to show 

and evaluate the principle and its basic performance. We examined tests using this method 

with LISA numerical phantom data, as well as the TM phantom and in vivo tissue 

experimental data.

B. Elasticity and Viscosity Mapping

Based on the local 2D shear wave velocity maps over a given frequency range, the elasticity 

and viscosity maps are deduced. In this work we assume the KV rheological viscoelastic 

model. We adopt this rheological model because it has been shown in literature, in multiple 

works, that the KV model does describe shear wave velocity dispersion over certain ranges 

of frequency such as 100 – 600 Hz [6], [15], [20]–[24], [34], [38], [43]. The values found in 

this manuscript can be compared against these previous publications.

The KV model requires only two parameters. It is composed of a dashpot and a spring 

placed in parallel. The stress-strain relationship of the KV model is represented in the form

σ = μ1 − μ2
∂
∂t ε, (10)

where, the stress, σ, is related to the strain, ε, by the shear elasticity μ1, the shear viscosity 

μ2 and the time derivative operator (∂/∂t). Inserting this relation into the equation of wave 

motion, one obtains the one-dimensional Helmholtz equation for the KV model. Then, from 

the complex wave vector, the shear wave velocity of the KV model can be computed as [43]
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V s(ω) =
2 μ1

2 + ω2μ2
2

ρ μ1 + μ1
2 + ω2μ2

2 , (11)

where, ρ represents the density and ω is an angular frequency (ω = 2πf).

In order to locally estimate elasticity and viscosity parameters for each pixel, the curve of 

Eq. (11) over the frequency domain is estimated using a nonlinear least-squares problem 

(NLSQ). We formulate the following NLSQ in a form

μ1, μ2 = min
μ1, μ2

‖V s(z, x, f) − V pℎ(z, x, f)‖2
2 . (12)

Equation (12) is numerically solved using a MATLAB solver, lsqcurvefit. Calculations are 

processed for each pixel of 2D shear wave velocity maps in z and x directions. Different 

ranges of frequency were used for viscoelastic material characterization, for various 

phantoms. However, they were selected to be the same for the LPVI and 2D-FT techniques, 

respectively, for a fair comparison.

C. Numerical LISA Phantoms Description

To produce digital phantoms of viscoelastic materials for which the mechanical properties 

are known, we used a 2D local interaction simulation approach (LISA) [44]–[46]. LISA has 

been used for SWE applications in our previous study [40]. One of the major advantages of 

the LISA algorithm when used for wave propagation is the local interaction nature of 

boundaries in the model. The sharp interface model was used to average physical properties 

at interface grid points which represent intersections of four elementary cells [47]. In other 

words, cells are considered as discontinuous (displacements and stresses are adjusted at 

interface grid points). The sharp interface model allows for a more physical and unequivocal 

treatment of interface discontinuities for different layers of material than standard finite 

difference schemes. Physical parameter smoothing across material interfaces is applied, 

leading to more precise results when treating wave propagation problems in complex media 

(e.g. layered structures).

The LISA technique for an elastic, isotropic, homogeneous, and nearly incompressible 

model for soft tissue is described by Navier’s equation

λ1 + 2μ1 ∇(∇ ⋅ u) + μ1∇ × (∇ × u) + F = ρ ∂
∂t u, (13)

where, λ1 and μ1 are the bulk and shear modulus, respectively, and ρ is the density. u is the 

local particle displacement, F is the induced body force, and t is the time. When the KV 

model for viscous loss is incorporated, Navier’s equation becomes [48]

λ1 + 2μ1 + λ2 + 2μ2
∂
∂t ∇(∇ ⋅ u) + μ1 + μ2

∂
∂t ∇ × (∇ × u) + F = ρ ∂

∂t u, (14)
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where, λ2 and μ2 denote the bulk viscosity and shear viscosity, respectively.

In the LISA implementation, similar to the standard finite difference scheme, the future time 

step is calculated as a combination of the same quantities taken in the already calculated 

time steps. As a result, the algorithm can be parallelized very efficiently. Therefore, we used 

parallel computation technology - offered by modern graphics processing units (GPUs) and 

compute unified device architecture (CUDA) used in low-cost graphical cards - for 

computation of the LISA equations. The entire process was implemented in MATLAB 

software.

The acoustic radiation force push beam, for the numerical models, was simulated using Field 

II [49], [50]. A linear array transducer (L7–4, Verasonics, Inc., Kirkland, WA, USA) was 

modeled. A linear array with 48 active elements, with element width of 0.283 mm, element 

height of 7 mm, element pitch of 0.308 mm, elevation focus of 25 mm was simulated with a 

center frequency of 5.0 MHz, and using a medium attenuation, α, of 0.5 dB/cm/MHz and 

sound velocity, c, of 1540 m/s. The intensity, I, was calculated by squaring the pressure to be 

used in the body force defined by F = 2αI/c. A focal depth of 21.6 mm was used for the push 

beams with a fixed f-number (F/N) of 1.46.

The domains were uniformly spatially sampled at 0.1 mm. The dimensions of the simulated 

domain are x = ±60 mm in the lateral direction and z = 60 mm in the axial dimension. We 

adopted a KV material model with three different material properties scenarios for 

homogeneous phantoms: μ1 = 14.44 kPa and μ2 = 3 Pa·s for Phantom 1, μ1 = 3.34 kPa and 

μ2 = 1.25 Pa·s for Phantom 2, and μ1 = 1.48 kPa and μ2 = 0.75 Pa·s for Phantom 3, 

respectively. ρ was equal to 1000 kg/m3 for both phantoms.

Three heterogeneous viscoelastic phantoms (Phantom I, II and III) were also simulated. The 

background shear modulus was set to 4.5 kPa and the circular inclusion shear modulus was 

set to 22 kPa for all models, respectively. The viscosity of the background was set to 0.3 

Pa·s. The inclusion’s viscosity was set to 2 Pa·s for Phantom I, 4 Pa·s for Phantom II, and 6 

Pa·s for Phantom III, respectively. In our study we investigated an inclusion with 10 mm 

diameter.

The data sets were then processed as described in Secs. II-A–II-B in order to obtain 2D 

estimates of shear wave velocity and viscoelasticity. The spatial window size, W z, x(z, x), 
used within the LPVI approach was set to 40 × 40 pixels, resulting in 4.0 × 4.0 mm. Two 

separate acquisitions with ultrasound push beams focused once on the left side (at x = 0 mm 

for Phantoms 1, 2, and 3) and once on the right side (at x = 30 mm for Phantom 1, x = 26 

mm for Phantom 2, and x = 17 mm for Phantom 3, respectively) of the L7–4 probe were 

performed. From the push on the left of the ROI, we only used information for the wave 

traveling from left-to-right, and for the push on the right side of the ROI we only used 

information for the wave traveling right-to-left. A local shear wave velocity was then 

recovered in the frequency domain for a single frequency, for both acquired data sets. Then, 

a two-dimensional shear wave velocity map is reconstructed by averaging maps from two 

separate acquisitions.
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D. Tissue-mimicking Viscoelastic Phantoms

Custom tissue-mimicking viscoelastic phantoms - similar to those used in a comparison 

study [25] - were used (CIRS Inc., Norfolk, VA, USA) in this work to test robustness of the 

LPVI approach for shear wave phase velocity and viscoelastic parameters mapping. The 

reference values of elasticity and viscosity of these phantoms are not known. A Verasonics 

ultrasound system equipped with a linear array transducer (L7–4, Verasonics, Inc., Kirkland, 

WA, USA) was used for data acquisition. The acoustic radiation force push beams were 

focused at 21.56 mm. The push duration was 400 μs and the push frequency was 4.09 MHz. 

The push beam was generated by 30 active elements. Push beams were placed on each side 

of the L7–4 probe (at x = 4.62 mm and x = 34.80 mm for Phantom A, and at x = 6.47 mm 

and x = 32.96 mm for Phantom B, respectively). A plane wave acquisition was used using 3 

angularly directed plane waves (−4°, 0°, +4°) that were coherently compounded [51]. The 

effective frame rate after compounding was 4.1667 kHz. The ultrasound frequency for the 

tracking beam was 5 MHz. The motion (shear wave particle velocity) was calculated from 

the in-phase/quadrature data using an autocorrelation algorithm with an axial window of 3 

pixels and temporal window of 2 frames [52]. For the 2D phase velocity maps reconstruction 

we used moving spatial window in a size of 4.0 × 4.0 mm. Similarly to the numerical 

phantoms (Sec. II-C), two acquisitions were used to construct final shear wave phase 

velocity maps.

E. In vivo Human Livers

SWE measurements were performed in the livers of five human subjects, with no history of 

liver, reported in [53], [54]. These data were used to test the efficacy of the LPVI approach 

in soft tissues. The experimental protocol was approved by the Mayo Clinic Institutional 

Review Board and written informed consent was obtained prior to scanning. Imaging and 

measurements were performed by an experienced sonographer with the ultrasound probe 

positioned at the eighth intercostal space during breath holds. A Vantage ultrasound system 

(Verasonics, Inc., Kirkland, WA, USA) equipped with a curved array transducer (C5–2v, 

Verasonics, Inc., Kirkland, WA, USA) was used. The acoustic radiation force push beams 

were focused in the middle of the probe (at x = 0 mm). The detection beams were wide 

beams with an f/9.9 focal configuration. The push duration was 600 μs, and the push 

frequency was 2 MHz. A plane wave imaging compounding method was used to improve 

the signal-to-noise of shear wave tracking [51]. Two frames at different steering angles (−1° 

and +1°) were used to obtain each imaging frame, giving an effective frame rate of 2.77 

kHz. Because of different focal depths used in these studies, we characterized the MI, Ispta, 

and Isppa for multiple possible push beams. The parameters for the push beams were hard-

coded to make sure that we used parameters that provided acoustic output within FDA 

regulatory limits. Similar to the TM phantoms, the motion (shear wave particle velocity) was 

calculated from the in-phase/quadrature data using an autocorrelation algorithm with the 

same parameters as used for the TM phantoms [52]. The spatial window size used for the 

velocity maps reconstruction was the same as in the case of the numerical and TM 

phantoms. Final phase velocity maps were reconstructed from a single-sided acquisition 

only (no averaging was performed).
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F. Dispersion Comparison

The following LPVI results are compared against the phase velocity estimates for ℱ2D. 

First, the 2D particle velocity field was averaged along the depth dimension over 3 mm, 

centered at the focal depth. Then, the DC component was removed from the waveforms. It is 

well known that when data within a short distance from the focused push beam are 

considered, higher standard deviation of the phase velocity is observed. This is induced by a 

near-field effect. With this in mind the phase velocity estimates for ℱ2D were computed as a 

mean and standard deviation for various lengths of lateral segments of data. The starting 

measurement point varied from 0 to 4 mm away from the focused push beam location with a 

step size of Δx equal to 0.1 mm for the LISA numerical data, 0.154 mm for the TM 

experimental data, and 0.345 mm for the in vivo human liver data. The last measurement 

point was constant for all computations, equal to 30 mm for the LISA numerical and TM 

experimental data, respectively, and 20 mm for the in vivo human liver data. This means that 

the phase velocity curves were calculated for selected lateral segments equivalent to 0–30 

mm, 0.1–30 mm, 0.2–30 mm, etc., for example, for the numerical data. Based on these 

computations multiple dispersion curves were evaluated and the standard deviation was 

calculated. Above procedure was repeated for both acquisitions coming from a pair of 

sequential focused acoustic radiation force push beams. The μ1 and μ2 parameters presented 

in Tables I, III, and IV were calculated based on the mean phase velocity fit to the KV 

model. In this case a standard deviation is not presented.

To have an objective measure of uniformity for reconstructed the 2D shear phase velocities, 

as well as viscoelastic parameters μ1 and μ2 we determined the unitless coefficient of 

variation using the following formula CV = SD
MEAN , where SD is the standard deviation. 

Results are presented in Tables I, III and IV, for the numerical LISA homogeneous and 

experimental TM phantoms data, and the in vivo human subjects, respectively.

III. Results

A. Shear Wave Elastography Using LPVI

Shear waves at higher frequencies typically undergo higher attenuation and therefore do not 

propagate as far leading to shorter lateral imaging lengths. Consequently, for higher 

frequencies smaller ROIs need to be selected. Hence, a trade off needs to be made between 

these two criteria. For a selected frequency range we reconstructed a full field of view of the 

shear wave phase velocity map. Then, we evaluated regions where the shear wave has been 

attenuated. This determination was made by examining the phase velocity images and 

determining when the reconstruction becomes inconsistent and noisy particularly at edges of 

the region-of-interest, which is indicative of insufficient motion information. Next, we 

selected the largest possible ROI for the highest frequency possible.

1) Numerical LISA Results: Figure 2, top row, shows the wave motion of the simulated 

data described in Sec. II-C for three different viscoelastic digital phantoms, i.e. Phantoms 1, 

2, and 3 respectively. The k-space spectra for these data sets are presented in the middle row 

of Fig. 2. The bottom row shows phase velocity curves for the numerical data superimposed 
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with analytical results. The phase velocity estimates, based on a standard ℱ2D technique for 

the focused excitation push beam depth, as well as a mean phase velocity computed from 

LPVI for ROIs are presented, respectively. The ROIs for each phantom are marked in Fig. 3.

Figure 3 shows the 2D shear wave phase velocity maps reconstructed using the LPVI 

approach. Results presented in the top row, for each phantom, (Filters Off) were 

reconstructed using the approach described in [40], i.e. without applying bandpass 

wavenumber and directional filters. The bottom row (Filters On) however, shows results for 

the LPVI method described in Sec. II-A (i.e. with adopting wavenumber and directional 

filters). Three frequencies were selected in order to obtain estimates of the velocity maps for 

three numerical phantoms. Based on the reconstructed maps mean, standard deviation and 

CV of phase velocities were computed within the ROIs. Results are summarized in Table I 

(from Fig. 3) and superimposed in the bottom row of Fig. 2. One can appreciate that the 

mean phase velocity estimates using the LPVI approach with adopted bandpass filters (Table 

I) are very close to the true values. The reconstructed mean velocities for Phantom 1 are 

overestimated in comparison to the analytical solution. LPVI in its original form (without 

bandpass filters) gives higher mean phase velocity estimates with higher standard deviation. 

Similar phenomena are observed for Phantoms 2 and 3. It can be clearly seen that the shear 

wave mode isolation improves the quality of the reconstructed shear wave velocity maps 

(bottom row of Fig. 3). The shear wave mode isolation applied in LPVI also allows the 

retrieval of information over a wider frequency range (Figs. 3c, 3f and 3i).

The viscoelastic parameters were estimated considering the two-parameter KV model as 

described in Sec. II-B. The numerical phantom data were used and 2D elasticity (μ1) and 

viscosity (μ2) maps were evaluated (Fig. 4) based on the frequency-dependent 2D shear 

wave velocity maps reconstructed using LPVI, as described in Sec. III-A, for LPVI with 

adopted wavenumber and directional filters. The frequency ranges used for the 2D 

viscoelastic maps reconstructions were chosen as follow: Phantom 1: 150 – 550 Hz, 

Phantom 2: 160 – 600 Hz and Phantom 3: 130 – 500 Hz, corresponding to the main 

frequency content present in the k-space spectra (values corresponding to normalized 

magnitudes >0.2) in Fig. 2. We did not reconstruct similar μ1 and μ2 maps for the LPVI 

without applying wavenumber and directional filters because, the nonlinear least-squares 

function was unable to solve this problem.

Relatively uniform elasticity and viscosity reconstructions were obtained for the numerical, 

homogeneous phantoms as can be seen in Fig. 4 and Table I. The estimated mean and 

standard deviation of elasticity and viscosity are tabulated in Table I. Bias is observed in 

comparison to the true values. The μ1 has lower variation (CV ⩽ 0.07) than the viscosity, μ2 

(CV ⩽ 0.16).

Figure 5 shows 2D shear wave phase velocity images for the LISA heterogeneous, 

viscoelastic numerical Phantoms I, II, and III. The f0 used for the calculations was equal to 

(Fig. 5a) 300, (Fig. 5b) 550, and (Fig. 5c) 800 Hz for Phantoms I–III, respectively. Results 

for LPVI with a constant bandpass filter set to 0.5–11 m/s are shown. The constant, wide 

range of the wavenumber filter was selected in order to cover a wide range of phase velocity 

present in the examined phantoms. As in Fig. 3, it is demonstrated in Fig. 5 that when the 
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wavenumber filter is not used, the reconstructions have noticeable artifacts and higher 

variation.

The viscoelastic parameters were estimated, similarly as for the numerical homogeneous 

phantoms. Results are summarized in Table II. The frequency ranges used for the 2D 

viscoelastic maps reconstruction shown in Fig. 6 were chosen to be constant and set from 

200 to 900 Hz, for all heterogeneous phantoms investigated. The shape of the reconstructed 

viscoelastic inclusions are well preserved. However, bias in the reconstructed μ1 and μ2 

values is observed. Figure 7 shows phase velocity dispersion curves calculated for the (Fig. 

7a) background, and (Figs. 7b–7c) inclusion single locations marked in Fig. 5a. Blue dots 

correspond to LPVI data. Red, dashed lines represent NLSQ fit to the KV model for LPVI 

data. Black, continuous lines show theoretical dispersion curves computed using Eq. (11). 

Observed bias might be caused by a few phenomena which will be further discussed in Sec. 

IV.

2) TM Phantoms Results: The shear wave experiments were performed as described in 

Sec. II-D and processed according to Sec. II-A. Figure 8 shows the shear wave motion maps 

(top row), the k-space spectra (middle row) and phase velocity results (bottom row) for 

Phantom A (Fig. 8a), and Phantom B (Fig. 8b), respectively. The phase velocity results were 

calculated based on the standard ℱ2D technique for the focused excitation push beam depth, 

as well as using the LPVI approach (a mean, standard deviation and CV of phase velocity 

calculated for the ROIs marked in Fig. 9). Here, a similar estimate of the mean phase 

velocity based on the LPVI approach is observed. Results agree well with data calculated 

using standard ℱ2D as can be seen in Fig. 8, the bottom row.

Figure 9 shows 2D shear wave phase velocity images for the experimental TM phantoms 

data. Results for LPVI without bandpass filters, similar to the work described in [40], are 

shown in the top row of Fig. 9. Similar results however, for LPVI with active filters 

described in Sec. II-A are presented in the bottom row of Fig. 9. The phantoms were imaged 

for three selected frequencies. Phase velocities from the images for active filters (Filters On) 

agreed well with the ℱ2D estimation. However, results for ‘Filters Off’ exhibited higher 

standard deviation. Moreover, 2D shear wave phase velocity images reconstructions failed 

for higher frequencies investigated in this work, i.e. 600 Hz for Phantom A (Fig. 9c), and 

400 Hz for Phantom B (Fig. 9f). The measured mean shear wave phase velocity estimates 

along with standard deviation are also summarized in Table III for two TM phantoms.

The viscoelastic 2D maps, μ1 and μ2, were evaluated based on the frequency-dependent 2D 

shear wave velocity maps reconstructed using LPVI with adopted bandpass filters (bottom 

row of Fig. 9). The frequency ranges used for the 2D viscoelastic maps reconstructions were 

chosen as follow: Phantom A: 270 – 500 Hz and Phantom B: 100 – 400 Hz, respectively, 

corresponding to the main frequency content present in the k-space spectra (values 

corresponding to magnitudes >0.2) in Fig. 8. For the experimental CIRS phantom results 

presented in Fig. 10 some heterogeneity, especially for the viscosity map in Phantom B, is 

observed (CV = 0.15). This effect might be caused by sensitivity of the nonlinear least-

squares function to data sets.

Kijanka and Urban Page 12

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3) In vivo Human Liver Results: Figure 11 shows the wave motion (top row), the k-

space (middle row) and phase velocity (bottom row) calculated for the in vivo human livers 

for five healthy volunteers. Figure 12 summarizes the 2D LPVI-based shear wave velocity 

distributions using the approach described in Sec. II-A. The shear wave velocity maps are 

presented for three frequencies (80, 140 and 200 Hz). Uniform phase velocity maps can be 

distinguished. An increase of the shear wave velocity with frequency is also visible in Fig. 

12. This originates from liver’s viscoelastic nature. A summary of the measured mean, 

standard deviation and CV of shear wave phase velocity estimates for both locations are 

summarized in Table IV.

The viscoelastic 2D maps, μ1 and μ2, were evaluated based on the frequency-dependent 2D 

shear wave velocity maps. The frequency ranges used for the 2D viscoelastic maps 

reconstructions were chosen as follow: Subject I: 60 – 200 Hz; Subject II: 80 – 180 Hz; 

Subject III: 90 – 180 Hz; Subject IV: 80 – 190 Hz; and Subject V: 60 – 160 Hz, 

corresponding to the main frequency content present in the k-space spectra (values 

corresponding to magnitudes >0.2) in Fig. 11. More heterogeneity is observed for the in vivo 
liver on both elasticity and viscosity reconstruction maps (Fig. 13) for Subjects III (CV ⩽ 
0.14) and IV (CV ⩽ 0.17), respectively.

IV. Discussion

In this study, LPVI was used for shear wave velocity mapping in viscoelastic tissues. Results 

showed the proposed method is capable of measuring phase velocities accurately. Soft 

tissues are viscoelastic, which imposes higher attenuation of shear waves reducing the 

propagation distance in comparison to elastic phantoms [40]. The shear wave velocity is 

frequency dependent due to tissue viscosity. Therefore, an additional step to LPVI was 

added in contrast to the procedure and results presented in [40], that is, a bandpass filter in 

the wavenumber domain.

As examined numerical models and experimental data have shown, applying the bandpass 

filter in the wavenumber domain improves phase velocity maps reconstruction (Figs. 3 and 

9, and Tables I and III). This overcomes issues shown in the top row of Figs. 3 and 9 with 

adequately estimating the shear wave phase velocity of viscoelastic materials. As a result, 

the reconstructed phase velocity maps are more accurate, as can be seen in bottom rows of 

Figs. 2 and 8, and results summarized in Tables I and III. Moreover, the estimation errors 

and their standard deviations are much smaller by using wave mode isolation. Shear wave 

mode isolation, due to suppressing noise, allows to retrieve an information over a wider 

frequency range (Figs. 3c, 3f and 3i, and Figs. 9c and 9f).

The bandpass filter is used in order to increase the frequency range for which 2D phase 

velocity maps could be reconstructed. The bandpass filter with narrower bandwidth is 

mostly beneficial for higher frequencies where the magnitude spectrum and SNR are 

reasonably low. For lower frequencies, with higher magnitude spectrum values and SNR, the 

bandpass filter could be omitted or the bandwidth could be set to be constant. This is 

confirmed for example in Figs. 9a–9c. Results for lower frequencies (170 and 350 Hz) are 

very similar for LPVI without (top row) and with (bottom row) the applied the bandpass 
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filter. On the other hand, 2D phase velocity maps reconstructed for higher frequency, e.g. 

600 Hz, were greatly improved when the bandpass filter was applied. Hence, one can 

conclude that the bandpass filter does not need to be applied for elastic or viscoelastic 

materials, for frequencies, where higher magnitude spectrum values and SNR are present. 

For these cases the bandpass filter might have limited impact (see as an example Figs. 9a 

and 9b).

If the bandpass filter is set to be too narrow, it could bias the results. In our work we 

performed multiple studies to determine the value of Vk(f0) = 0.5 m/s for the homogeneous 

cases. For the heterogeneous phantoms the passband for the filter was widened substantially 

(0.5–11 m/s) to accommodate this situation. For clinical use, shear wave elastography is 

typically used for differentiation of tissues. A lesion would have likely been identified 

previously using mammography, ultrasound, magnetic resonance imaging, etc. and then if 

ultrasound imaging was used, the lesion would be located and shear wave elastography 

would be used. As a result, the wavenumber filter could be set wider knowing that two 

different classes of material are present (lesion and background). In the case of 

homogeneous liver, the wavenumber filter could be much narrower, but guided by the data 

as it is described in this paper (Eq. (2)).

Reconstructed μ1 and μ2 parameters for the heterogeneous numerical data investigated in this 

work exhibited some bias. The μ1 values were underestimated, whereas the μ2 values were 

overestimated for the circular inclusion, for Phantoms I–III (Fig. 6). The propagation 

velocity of shear waves within the inclusion may be physically modified by the boundary 

effects imposed by the background material. Therefore, the shear wave velocity within the 

inclusion may no longer be solely determined by the inclusion’s material properties. The 

bias is related to reconstructions of the phase velocity maps. First, the spatial resolution of 

LPVI is determined by the spatial shear wavelengths which are shorter at the higher 

frequencies. LPVI ideally requires one or more wavelengths to precisely estimate the shear 

wave velocity of inclusions as discussed in [40]. In our work, the 10 mm diameter inclusions 

have a shear wave speed of 4.69 m/s and this value is higher due to added viscosity. The 

investigated viscoelastic inclusions will have more than one wavelength at frequencies 

higher than 469 Hz. Second, the LPVI algorithm assumes local homogeneity by selecting a 

spatial window size. This is violated near boundaries between regions with different 

stiffness. The shear wave velocity gradually transitions between regions [40], leading to 

elevated shear wave velocities in the background (Fig. 7a) and diminished shear wave 

velocity inside the inclusion near the boundary (Fig. 7c). Third, the measured shear wave 

phase velocity in the inclusion varies with frequency even for purely elastic materials, as it 

was shown based on the numerical and experimental data in [40]. Due to the viscoelasticity 

there is a range of wavelengths at different frequencies that are possible. This further 

increases difficulties. Future work will be devoted to examining the sources of bias and 

estimating the shear elasticity and viscosity accurately.

The estimated mean phase velocities calculated within selected ROIs for the numerical 

phantoms, the bottom row of Fig. 3, showed good agreement with true values, as 

demonstrated comparing the values in the bottom row of Fig. 2. The results for frequencies 

below 100 Hz are slightly overestimated in comparison to the analytical solutions. However, 
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they match with the values computed using the ℱ2D technique. There are two possible 

reasons for this behavior. First, the effect of the push beam excitation that has been used. 

The L7–4 probe with 48 active elements was modeled to generate the push beam excitation. 

Shear waves do not propagate in lateral locations close to the spatial extent of the pushing 

beam. The near-field effect, which is related to local effects of the acoustic radiation force 

push beam, is wider in the lateral direction in this region which may have influenced the 

reconstruction of phase velocity maps. This in turn introduces bias in computed mean phase 

velocities. Second, the shear wavelength increases for lower frequencies which can produce 

larger bias as was discussed in [40].

Results for the TM phantoms and in vivo human liver experimental acquisitions are also in 

good agreement with outcomes computed using the ℱ2D. Data from the in vivo liver tests 

had significant levels of noise that were blurred by a spatial median filter in the spatial 

direction for different time points. It is worth noting that LPVI mean phase velocities were 

estimated within the selected ROIs, whereas ℱ2D results were computed for only one axial 

position as a result of averaging data from 3 mm in thickness at the push beam focus. 

Therefore, a bias in between the estimates is possible due to small phantom heterogeneity. 

For the in vivo data the coefficients of variation (CVs) are larger for the shear elasticity and 

viscosity compared to the numerical and physical phantom results. The viscosity CV values 

are relatively constant across the subjects, but there are large CV values for the shear 

elasticity. We cannot unambiguously state why more heterogeneity was observed for the in 
vivo data. The tissue-mimicking phantoms are very uniform due to control of the pouring 

conditions during manufacturing, where as there is more natural heterogeneity in the tissue 

that may be caused by presence of vessels and other anatomical variation. These subjects 

were different and were from healthy population.

A larger window size for the in vivo imaging was used because the pixel sizes for the in vivo 
experiments were roughly twice the size used in the numerical and TM experimental data. 

The in vivo data were acquired using a curved array transducer with a lower center 

frequency so higher spatial resolution could not be matched compared to the data acquired 

using a linear array transducer. We used a window size of 5.17 × 5.17 mm for the in vivo 
study which corresponds to 15 × 15 pixel segmented data. It was assumed in this study that 

this pixel size is a lower limit when used for the 2D-FT calculations. Reducing the 15 × 15 

pixel segmented data will produce higher noise in reconstructed phase velocity maps.

The LPVI method is an alternative method used for 2D ultrasound SWE where local shear 

wave phase velocity results are recovered. The 2D-FT method instead, was used in order to 

reconstruct phase velocity at a focal depth and typically a long lateral segment length (>10 

mm) is used for calculations. In this work an axial average of 3 mm was used in order to 

improve the SNR of the shear wave particle velocity signal for the 2D-FT. A larger lateral 

segment length for 2D-FT than for the LPVI method was used in order to retrieve the most 

robust dispersion results for the 2D-FT method. Taking into account a short lateral segment 

length (<5 mm) will provide higher standard deviation in the phase velocity measurement, as 

was discussed, for example in [28]. Due to this the 2D-FT method with sliding window may 
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give higher root-mean-square error and standard deviation if used for 2D phase velocity 

maps reconstruction.

Different tissues have different levels of viscosity. Softer materials with higher viscosity 

impose higher attenuation of shear waves. Shear waves at higher frequencies typically 

undergo higher attenuation and therefore do not propagate as far leading to shorter lateral 

imaging lengths. This effect can be seen, for example, in a magnitude spectrum (k-space) 

map. Limited shear wave energy distribution, in the frequency domain, will be present for 

softer and more viscous tissues. In work [40], 2D phase velocity maps were reconstructed 

for wider frequency ranges because nearly elastic materials with a very limited viscosity 

content were examined. In those materials shear waves at higher frequencies, e.g. 1000 Hz, 

were not attenuated within ROIs considered as opposed to the models and phantoms 

described within this manuscript. In this study, cut-off frequencies were chosen based on the 

k-space spectra for each phantoms separately. Based on these frequencies the size of the 

ROIs were selected. It is expected that in practice, the frequency range can be increased and 

optimized for higher frequency content.

The ROI size in the lateral direction was limited to ~10 mm for the numerical homogeneous 

data and TM phantoms, and ~7 mm for the in vivo human liver experimental data. We 

determined these limits from the phase velocity images at different frequencies when the 

reconstruction was not consistent and started to contain mainly noise. This was an indication 

that shear wave motion has insufficient amplitude for use in the LPVI algorithm. The lateral 

distance is dependent on shear wave attenuation phenomena, as discussed above. In clinical 

applications, in order to cover a wider ROI, multiple simultaneous pushes as utilized in the 

comb-push ultrasound shear elastography (CUSE) method can be used [55], [56]. This, in 

turn, will eliminate the necessity of knowing how far shear wave propagates in examined 

tissue. For a specific application, if the range of viscoelastic properties is known, the 

positioning of acoustic radiation force pushes could be optimized.

Patient motion or sonographer hand motion may change the field-of-view between the left 

and right pushes. It should be noted that these measurements take on the order of 25 ms, so 

for two independent pushes it would take 50 ms, so depending on the situation motion may 

be limited. However, in this situation two simultaneous pushes can be used. A directional 

filter in LPVI is applied on the shear wave field to extract the left-to-right (LR) and right-to-

left (RL) propagating shear waves. Then, a local shear wave phase velocity map will be 

recovered based on both LR and RL waves. Using multiple simultaneous pushes as utilized 

in the CUSE method will ensure a constant field-of-view.

We used the phase velocity, measured using the 2D-FT method, in order to estimate nominal 

wavenumbers in a frequency domain for propagating shear wave. The nominal wavenumbers 

correspond to the center of the bandpass filter of Vk(f0) width. This procedure is mostly 

beneficial for higher frequencies where the power spectrum magnitude and a SNR are 

reasonable low. For lower frequencies, where the power spectrum magnitude and a SNR are 

higher, the bandpass filter could be set to be constant, e.g. from 0.5 to 4 m/s. At the same 

time a knowledge about the 2D-FT phase velocity would not be necessary. This could be 

determined for a given application, for instance, liver fibrosis staging. The threshold for the 
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magnitude spectrum to select the lower frequency corresponds to magnitudes higher than 

approximately 40% of the maximum frequency content present in the k-space spectrum, for 

the data investigated in this work. The limiting threshold for SNR is 5 dB when shear wave 

particle velocity signals are used [56].

Equation 11 assumes plane wave propagation. Based on the numerical phantom data shown 

in Fig. 2 and Table I, the assumption of a plane wave does not introduce considerable error. 

For the estimation of phase velocity, the presence of a wave more similar to a cylindrical 

wave generated by the acoustic radiation force does not introduce considerable error.

Based on the 2D-FT measurements shown in Figs. 8 and 11, it can be reasonably stated that 

a Kelvin-Voigt model can describe the dispersion curves over a frequency range of 100 – 

600 Hz. The accuracy of these characterizations can not be evaluated in a direct way. 

However, based on authors experience with this type of phantom data and liver data, as well 

as many literature studies, e.g. [6], [15], [20]–[24], [34], [38], [43], the model is considered 

to be reasonable for parameterization.

LPVI can be used for assessing 2D elasticity and viscosity from shear wave measurements. 

This approach enables the generation of shear wave phase velocity maps with a lateral and 

axial resolution that are primarily determined by the moving spatial window, Wz,x, and the 

spatial wavelengths which are shorter at the higher frequencies. Choosing an appropriate 

Wz,x leads to a trade-off. For lower frequencies a larger Wz,x window is preferred in order to 

capture enough information about the wavelength. It is preferred that the Wz,x window will 

capture at least one shear wavelength. However, for low frequencies, i.e. 100–200 Hz, and 

some soft materials this can be difficult. On the other hand, choosing a Wz,x that is too small 

(for high frequencies, i.e. 1000 Hz) provides a noisier image which was addressed in [40].

The elasticity and viscosity maps computed based on the reconstructed LPVI shear wave 

phase velocity images show deviation from the exact values for the LISA homogeneous, 

viscoelastic phantoms, Fig. 4. These are likely due to variations present in the LPVI velocity 

maps are transferred to the μ1 and μ2 mapping. The KV model dispersion relation has 

frequency ranges with upward and downward curvatures. Thus the KV model can yield 

variability in the fitted parameters as the fitting procedure attempts to identify these higher 

order variations. Moreover, the nonlinear least squares fit problem, for the KV model, is 

sensitive to the input data. Errors in reconstructed phase velocity will produce deviation in 

elasticity and viscosity results. Nevertheless, the idea of reconstructing the 2D images of 

mechanical properties is general hence, other rheological models can also be incorporated.

The computational time for the reconstruction of one 2D phase velocity map, for the TM 

phantom A, was ~9 seconds. Elasticity and viscosity images instead are reconstructed 

directly from a number of 2D phase velocity maps which takes a couple of seconds. In 

summary, a total computation time in order to get reconstructed elasticity and viscosity maps 

for Phantom A was ~3 minutes. The computation time will however depend on the ROI size 

which is to be reconstructed, as discussed in [56].

In this work particle motion for the numerical models was calculated by taking derivatives of 

displacements. The noise in the displacement estimation does not affect extensively phase 
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velocity maps reconstruction. This was studied in a work presented by Kijanka and Urban in 

[56]. In this work the LPVI method’s performance with an addition of white Gaussian noise 

to the shear wave particle velocity and displacement motion data was examined.

The presented work has some limitations that should be addressed in future work. First, 2D 

simulation data were used in order to generate numerical phantom data. Ideally, 3D models 

would be preferred to account for all aspects of the acoustic radiation force and 3D wave 

propagation, even though a 2D image is produced. In data not shown, we compared a 

simulation of a material based on the fits to phase velocity measured in Phantom A, and we 

found that the frequency bandwidth was similar between the 3D experiment and 2D 

simulation. Second, we have not systematically evaluated how patient or sonographer 

motion would impact the LPVI measurements, and this would need to be evaluated for 

clinical applications. Third, the NLSQ fit is sensitive to a frequency range as was discussed, 

for example in [43]. In addition, reconstructed μ1 and μ2 maps for the heterogeneous 

materials need extra steps in order to reduce, or at least minimize observed bias. Fourth, the 

LPVI method needs to be tested in materials, either numerical or tissue-mimicking 

phantoms, with a wider range of viscoelastic properties. Additional rheological models 

could also be explored, to account for a larger range of biological tissues. Fifth, if different 

transducers, focal configurations, and focal depths were used, the results with a given value 

of Vk(f) could yield different results. We did not study this aspect which is also a limitation 

of the current work and will be investigated in the future work. Lastly, we did not apply 

simulated ultrasonic tracking for the numerical studies, which is a limitation of this work. 

However, the experimental results from tissue-mimicking phantoms and in vivo liver data 

demonstrate similar agreement with data acquired using the 2D-FT as a comparison point.

V. Conclusions

This paper introduces LPVI used for 2D viscoelastic material parameters imaging. This was 

accomplished by generating 2D phase velocity maps and fitting phase velocity dispersion to 

find viscoelastic parameters based on the KV rheological viscoelastic model. The LPVI 

method, in order to properly work for viscoelastic materials, requires applying bandpass 

filters to obtain maximal frequency range for the phase velocity. LPVI demonstrates good 

reconstructions of 2D shear wave phase phase velocity, μ1, and μ2 maps, respectively, in 

homogeneous, viscoelastic phantoms and soft tissues with lower stiffness. Homogeneous 

materials higher levels of stiffness, for which the motion SNR will be lower, will be 

improved in the future. Reconstructions of heterogeneous, viscoelastic materials require 

additional work in order to reduce observed bias in reconstructed viscoelastic parameters.
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Fig. 1: 
Flow chart of the proposed LPVI approach for one-sided push. Principal steps of the LPVI 

can be summarized as follows: (I) acquire a 3D shear wave velocity data; (II) apply 

directional filter to the data; (III) apply bandpass filter in a wavenumber domain; (IV) 

transform the spatio-temporal data into a frequency domain; (V) choose the spatial spectrum 

at a particular frequency f0; (VI) execute a short space 2D Fourier transform in space 

domains; (VII) execute 2D Fourier transform on the windowed wavefield regions; (VIII) 

calculate spatial distribution of the phase velocity of the shear wave motion for the specified 

frequency and select ROI (IX–X). Repeat previous steps for shear wave velocity data for the 

second push. Average resulting LPVI data for ROI’s from two pushes.
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Fig. 2: 
The wave motion (top row), the k-space spectrum (middle row) and the phase velocity 

(bottom row) calculated for the LISA homogeneous, viscoelastic phantoms numerical data. 

Phase velocity results (bottom row) for LPVI with active bandpass filters introduced in this 

manuscript are shown.
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Fig. 3: 
Two-dimensional shear wave phase velocity images for the LISA viscoelastic numerical 

data. The f0 used for the calculations was equal to (a) 150, (b) 350, and (c) 550 for Phantom 

1, (d) 200 Hz, (e) 300, and (f) 400 Hz for Phantom 2, and (g) 150, (h) 250, and (i) 350 Hz 

for Phantom 3, respectively. Results for LPVI without bandpass filters similar to the work 

described in [40] are shown in the top row (Filters Off). Results for LPVI with active filters 

introduced in this manuscript are shown in the bottom row (Filters On). The window size, 

Wz,x, was equal to 4.0 × 4.0 mm.
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Fig. 4: 
Two-dimensional image reconstructions of μ1 and μ2 calculated based on the Kelvin-Voigt 

rheological model for the LISA homogeneous, viscoelastic numerical data. Results for LPVI 

with active bandpass filters introduced in this manuscript are shown.
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Fig. 5: 
Two-dimensional shear wave phase velocity images for the LISA heterogeneous, 

viscoelastic numerical data. The f0 used for the calculations was equal to (a), (d), (g) 300, 

(b), (e), (h) 550, and (c), (f), (i) 850 Hz for Phantoms I–III, respectively. Results for LPVI 

without bandpass filters similar to the work described in [40] are shown in the top row 

(Filters Off). Results for LPVI with active filters introduced in this manuscript (for a 

constant bandpass filter set to 0.5–11 m/s) are shown in the bottom row (Filters On). The 

window size, Wz,x, was equal to 4.0 × 4.0 mm. Red markers in (a), (d) and (g) in the bottom 

row correspond to positions, for the background and inclusion, for which phase velocity 

curves in Fig. 7 were plotted.
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Fig. 6: 
Two-dimensional image reconstructions of μ1 and μ2 calculated based on the Kelvin-Voigt 

rheological model for the LISA heterogeneous, viscoelastic numerical data. Results for 

LPVI with active bandpass filters introduced in this manuscript are shown. The theoretical 

background shear modulus was 4.5 kPa and the circular inclusion shear modulus was 22 kPa 

for all models, respectively. The viscosity of the background was 0.3 Pa·s. The inclusion’s 

viscosity was 2 Pa·s for Phantom I, 4 Pa·s for Phantom II, and 6 Pa·s for Phantom III, 

respectively.
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Fig. 7: 
Phase velocity dispersion curves calculated for the (a) background, and inclusion locations 

marked as (b) ×, and (c) ○ in Fig. 5a using red markers. Blue dots correspond to LPVI data. 

Red, dashed lines represent NLSQ fit to the KV model for LPVI data. Black, continuous 

lines show theoretical dispersion curves computed using Eq. (11).
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Fig. 8: 
The shear wave motion (top row), the k-space spectrum (middle row) and phase velocity 

(bottom row) calculated for the TM viscoelastic phantom experimental data. Phase velocity 

results (bottom row) for LPVI with active bandpass filters introduced in this manuscript are 

shown.
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Fig. 9: 
Two-dimensional shear wave phase velocity images for the experimental TM viscoelastic 

phantom data. The f0 used for the calculations was equal to (a) 170, (b) 350, and (c) 600 for 

Phantom A, and (d) 120 Hz, (e) 260, and (f) 400 Hz for Phantom B, respectively. Results for 

LPVI without bandpass filters similar to the work described in [40] are shown in the top row 

(Filters Off). Results for LPVI with active filters introduced in this manuscript are shown in 

the bottom row (Filters On). The window size, Wz,x, was equal to 4.0 × 4.0 mm.
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Fig. 10: 
Two-dimensional image reconstructions of μ1 and μ2 calculated based on the Kelvin-Voigt 

rheological model for the TM viscoelastic phantoms experimental data. Results for LPVI 

with active bandpass filters introduced in this manuscript are shown.

Kijanka and Urban Page 32

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11: 
The shear wave motion (top row), the k-space spectrum (middle row) and phase velocity 

(bottom row) for the experimental in vivo human liver studies. Phase velocity results 

(bottom row) for LPVI with active bandpass filters introduced in this manuscript are shown.
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Fig. 12: 
Two-dimensional shear wave phase velocity images for the experimental in vivo human liver 

studies. The f0 used for the calculations was equal to (a) 80, (b) 140, and (c) 200 for all five 

subjects examined, respectively. Results for LPVI with active bandpass filters introduced in 

this manuscript are shown. The window size, Wz,x, was equal to 5.17 × 5.17 mm.
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Fig. 13: 
Two-dimensional image reconstructions of μ1 and μ2 calculated based on the Kelvin-Voigt 

rheological model for the in vivo human liver experimental data. Results for LPVI with 

active bandpass filters introduced in this manuscript are shown.
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TABLE III:

Mean, standard deviation and uniformity coefficient (i.e. CV = SD/MEAN) of the phase velocity and 

viscoelastic parameters μ1 and μ2, calculated for the TM phantoms within the ROI marked in Figs. 9 and 10.

Parameter Unit
Phantom A Phantom B

Mean±SD CV Mean±SD CV

Vph, filters Off [m/s] 2.44±0.13 (170 Hz) 0.05 1.43±0.13 (120 Hz) 0.09

Vph, filters On [m/s] 2.55±0.10 (170 Hz) 0.04 1.48±0.03 (120 Hz) 0.02

Vph, filters Off [m/s] 2.61±0.12 (350 Hz) 0.05 1.56±0.13 (260 Hz) 0.08

Vph, filters On [m/s] 2.72±0.06 (350 Hz) 0.02 1.58±0.05 (260 Hz) 0.03

Vph, filters Off [m/s] 5.22±4.92 (600 Hz) 0.94 3.83±4.87 (400 Hz) 1.27

Vph, filters On [m/s] 2.85±0.07 (600 Hz) 0.02 1.64±0.05 (400 Hz) 0.03

μ1, LPVI* [kPa] 6.62±0.27 0.04 2.28±0.06 0.03

μ1, ℱ2D [kPa] 5.96 - 2.08 -

μ2, LPVI* [Pa·s] 1.23±0.11 0.09 0.52±0.08 0.15

μ2, ℱ2D [Pa·s] 1.21 - 0.58 -

*
results for LPVI with adopted bandpass filters. LPVI without applying wavenumber and directional filters are not presented because, the nonlinear 

least-squares function was unable to solve this problem.
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