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Abstract

Ultrasound is one of the most ubiquitous imaging modalities in clinical practice. It is cheap, does 

not require ionizing radiation and can be performed at the bedside, making it the most commonly 

utilized imaging technique in pregnancy. Despite these advantages, it does have some drawbacks 

such as relatively low imaging quality, low contrast, and high variability. With these constraints, 

automating the interpretation of ultrasound images is challenging. However, successful automated 

identification of structures within 3D ultrasound volumes has the potential to revolutionize clinical 

practice. For example, a small placental volume in the first trimester has been shown to be 

correlated to adverse outcome later in pregnancy. If the placenta could be segmented reliably and 

automatically from a static 3D ultrasound volume, it would facilitate the use of its estimated 

volume, and other morphological metrics, as part of a screening test for increased risk of 

pregnancy complications potentially improving clinical outcomes.

Recently, deep learning has emerged, achieving state-of-the-art performance in various research 

fields, notably medical image analysis involving classification, segmentation, object detection, and 

tracking tasks. Due to its increased performance with large datasets, it has gained great interest 

in medical imaging applications. In this review, we present an overview of deep learning methods 

applied to ultrasound in pregnancy, introducing their architectures and analyzing their strategies. 

We then present some common problems and provide some perspectives into potential future 

research.
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1. Introduction

In medical imaging, the most commonly employed deep learning methods are convolutional 

neural networks (CNNs) [1–8]. Compared to classical machine learning algorithms, CNNs 

have enabled the development of numerous solutions not previously achievable because they 

do not need a human operator to identify an initial set of features: they can find relevant 
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features within the data itself. In many cases CNNs are able to identify better features than 

the human-eye.

CNNs have some disadvantages however; they need large amounts of data in order to 

automatically find the right features and processing large datasets is both computationally 

costly and takes time. Fortunately, a CNN’s training time can be reduced significantly if 

parallel architectures are used (for example by using graphics cards).

In medical imaging, deep learning is increasingly used for tasks such as automated lesion 

detection, segmentation and registration to assist clinicians in disease diagnosis and surgical 

planning. Deep learning techniques have the potential to create new screening tools, predict 

diseases, improve diagnostic accuracy and accelerate clinical tasks, whilst also reducing 

costs and human error [9–17]. For example, automated lesion segmentation tools usually run 

in a few seconds, much faster than human operators and often provide more reproducible 

results.

Ultrasound is the most commonly used medical imaging modality for diagnosis and 

screening in clinical practice [18]. It presents many advantages over other modalities such as 

X-ray, magnetic resonance imaging (MRI), and computed tomography (CT) because it does 

not use ionizing radiation, is highly portable and is relatively cheap [9]. However, ultrasound 

has its disadvantages. It often has relatively low imaging quality, is prone to artifacts, is 

highly dependent on operator experience, and has high inter- and intra-observer variability 

across different manufacturers’ machines [10]. Nonetheless, it’s safety profile, non-invasive 

nature and convenience makes it the primary imaging modality for fetal assessment 

in pregnancy [20]. This includes early pregnancy dating, screening for fetal structural 

abnormalities and the estimation of fetal weight and growth velocity [21]. Although two-

dimensional (2D) ultrasound is most commonly used for pregnancy evaluation due to its 

wide availability and high resolution, most machines also have three-dimensional (3D) 

probes and software, which have been successfully employed in detection of fetal structural 

abnormalities [22].

Ultrasound has a number of limitations when it comes to intrauterine scanning, including 

small field-of-view, poor image quality under certain conditions (e.g. reduced amniotic 

fluid), limited soft-tissue acoustic contrast, and beam attenuation caused by adipose tissue 

[22]. Furthermore, fetal position, gestational age induced effects (poor visualization, skull 

ossification) and fetal tissue definition can also affect the assessment [20]. As a result, a high 

level of expertise is essential to ensure adequate image acquisition and appropriate clinical 

diagnostic performance. Thus ultrasound examination results are highly dependent on the 

training, experience and skill of the sonographer [23].

A study of the prenatal detection of malformations using ultrasound images demonstrated 

that the performance sensitivity ranged from 27.5% to 96% among different medical 

institutions [24]. Even when undertaken correctly by an expert, manual interrogation of 

ultrasound images is still time-consuming which limits its use as a population-based 

screening tool.
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To address these challenges, automated image analysis tools have been developed which are 

able to provide faster, more accurate and less subjective ultrasound markers for a variety of 

diagnoses. In this paper, we review some of the most recent developments in deep learning 

which have been applied to ultrasound in pregnancy.

2. Deep Learning Applications in Pregnancy Ultrasound

Deep Learning techniques have been used for ultrasound image analysis in pregnancy to 

address such tasks as classification, object detection and tissue segmentation. This review 

covers applications in pregnancy. The reviewed papers were identified using a broad free-

text search on the most commonly utilized medical databases (PubMed, Google Scholar 

etc.). The search was augmented by reviewing the references in the identified papers. The 

resulting papers were assessed by the authors and filtered for perceived novelty, impact 

in the field, and published date (2017–2020). Table 1 lists the literature reviewed in this 

section.

2.1. Fetal Segmentation

Ultrasound is the imaging modality most commonly used in routine obstetric examination. 

Fetal segmentation and volumetric measurement have been explored for many applications, 

including assessment of the fetal health, calculation of gestational age and growth velocity. 

Ultrasound is also used for structural and functional assessment of the fetal heart, head 

biometrics, brain development and cerebral abnormalities. This antenatal assessment allows 

clinicians to make an early diagnosis of many conditions facilitating parental choice and 

enabling appropriate planning for the rest of the pregnancy including early delivery.

Currently, fetal segmentation and volumetric measurement still rely on manual or semi-

automated methods, which are time-consuming and subject to inter-observer variability 

[11]. Effective fully automated segmentation is required to address these issues. Recent 

developments to facilitate automated fetal segmentation from 3D ultrasound are presented 

below:

Namburete et al. [9] developed a methodology to address the challenge of aligning 3D 

ultrasound images of the fetal brain to form the basis of automated analysis of brain 

maturation. A multi-task fully convolutional neural network (FCNN) was used to localize 

the 3D fetal brain, segment structures, and then align them to a referential coordinate 

system. The network was optimized by simultaneously learning features shared within the 

input data pertaining to the correlated tasks, and later branching out into task-specific output 

streams.

The proposed model was trained on a dataset of 599 volumes with a gestational age ranging 

from 18 to 34 weeks, and then evaluated on a clinical dataset consisting of 140 volumes 

presenting both healthy and growth-restricted fetuses acquired from different ethnic and 

geographical groups. The automatically co-aligned volumes showed a good correlation 

between fetal anatomies
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Torrents-Barrena et al. [25] proposed a “radiomics” based method to segment different 

fetal tissues from magnetic resonance imaging and 3D ultrasound. This is the first time 

that ‘radiomics’ (the high-throughput extraction of large numbers of image features from 

radiographic images [35]) has been used for segmentation purposes. First, handcrafted 

radiomic features were extracted to characterize the uterus, placenta, umbilical cord, fetal 

lungs and brain. Then the ‘radiomics’ for each anatomical target were optimized using 

both K-best and Sequential Forward Feature Selection techniques. Finally, a Support 

Vector Machine with instance balancing was adopted for accurate segmentation using these 

features as its input. In addition, several state-of-the-art deep learning-based segmentation 

approaches were studied and validated on a set of 60 axial MRI and 3D US images from 

pathological and clinical cases. Their results demonstrated that a combination of 10 selected 

radiomic features led to the highest tissue segmentation performance.

Philip et al. [26] proposed a 3D U-Net based fully automated method to segment the fetal 

annulus (base of the heart valves). The aim of this was to build a tool to help fetal medicine 

experts with assessment of fetal cardiac function. The method was trained and tested on 250 

cases (at different points in the cardiac cycle to ensure that the technique was valid). This 

provided automated measurements of the excursion of the mitral and tricuspid valve annular 

planes in form of TAPSE/MAPSE (TAPSE: Tricuspid Annular Plane Systolic Excursion; 

MAPSE: Mitral Annular Plane Systolic Excursion). This demonstrated the feasibility of 

using this technique for automated segmentation of the fetal annulus.

Al-Bander et al. [11] introduced a deep learning-based method to segment the fetal 

head in ultrasound images. The fetal head boundary was detected by incorporating an 

object localization scheme into the segmentation, achieved by combining a Mask R-CNN 

(Regional Convolutional Neural Network) with a FCNN. The proposed model was trained 

on 999 3D ultrasound images and tested on 335 images captured from 551 pregnant women 

with a gestational age ranging between 12 and 20 weeks. Finally, an ellipse was fitted to 

the contour of the detected fetal head using the least-squares fitting algorithm [36]. Figure 1 

illustrates the examples of fetal head segmentation.

2.2. Placental Segmentation

The placenta is an essential organ which plays a vital role in the healthy growth and 

development of the fetus. It permits the exchange of respiratory gases, nutrients and waste 

between mother and fetus. It also synthesizes many substances that maintain the pregnancy, 

including estrogen, progesterone, cytokines, and growth factors. Furthermore, the placenta 

also functions as a barrier, protecting the fetus against pathogens and drugs [37].

Abnormal placental function affects the development of the fetus and causes obstetric 

complications such as pre-eclampsia. Placental insufficiency is associated with adverse 

pregnancy outcomes like fetal growth restriction (FGR), caused by insufficient transport of 

nutrients and oxygen through the placenta [38]. A good indicator of future placental function 

is the size of the placenta in early pregnancy. The placental volume as early as 11 to 13 

weeks’ gestation has long been known to correlate with birth weight at term [39]. Poor 

vascularity of the first-trimester placenta has also been demonstrated to increase the risk of 

developing pre-eclampsia later in pregnancy [40].
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Reliable placental segmentation is the basis of further measurement and analysis which has 

the ability to predict adverse outcomes. However, full automation of this is a challenging 

task due to the heterogeneity of ultrasound images, indistinct boundaries and them 

placenta’s highly variable shape and position. Manual segmentation is relatively accurate 

but is extremely time-consuming. Semi-automated image analysis tools are faster but are 

still time consuming and typically require the operator to manually identify the placenta 

within the image. An accurate and fully automated technique for placental segmentation that 

provided measurements such as placental volume and vascularity would permit population-

based screening for pregnancies at risk of adverse outcomes.

Figure 2 illustrates an example of placenta segmentation.

Qi et al. [27] proposed a weakly-supervised CNN for anatomy recognition in 2D placental 

ultrasound images. This was the first successful attempt at multi-structure detection in 

placental ultrasound images. The CNN was designed to learn discriminative features in 

Class Activation Maps (one for each class), which are generated by applying Global Average 

Pooling in the last hidden layer. An image dataset of 10,808 image patches from 60 

placental ultrasound volumes were used to evaluate the proposed method. Experimental 

results demonstrated that the proposed method achieved high recognition accuracy, and 

could localize complex anatomical structures around the placenta.

Looney et al. [28] used a CNN named DeepMedic [41] to automate segmentation of 

placenta in 3D ultrasound. This was the first attempt to segment 3D placental ultrasound 

using a CNN. Their database contained 300 3D ultrasound volumes from the first trimester. 

The placenta was segmented in a semi-automated manner using the Random Walker method 

[42], to provide a ‘ground truth’ dataset. The results of the DeepMedic CNN were compared 

against semi-automated segmentation, achieving median Dice Similarity Coefficient (DSC) 

of 0.73 (first Quartile, third Quartile: 0.66, 0.76) and median Hausdorff distance of 27 mm 

(first Quartile, third Quartile:18 mm, 36 mm).

Looney et al. [29] then presented a new 3D FCNN named OxNNet. This was based on 

the 2D U-net architecture to fully automate segmentation of the placenta in 3D ultrasound 

volumes. A large dataset, composed of 2,393 first trimester 3D ultrasound volumes, was 

used for training and testing purpose. The ground truth dataset was generated using the 

semi-automated Random Walker method [42] (initially seeded by three expert operators). 

The OxNNet FCNN obtained placental segmentation with state-of-the-art accuracy (median 

DSC of 0.84 (Interquartile range 0.09). They also demonstrated that increasing the size of 

the training set improves the performance of the FCNN. In addition, the placental volumes 

segmented by OxNNet were correlated with birth weight to predict small-for-gestational-age 

babies, showing almost identical clinical conclusions to those produced by the validated 

semi-automated tools.

Oguz et al. [30] combined a CNN with multi-atlas joint label fusion and Random Forests 

algorithms for fully automated placental segmentation. A dataset of 47 ultrasound volumes 

from the first trimester was pre-processed by data augmentation. The resulting dataset was 

used to train a 2D CNN to generate a first 3D prediction. This was used to initialize a multi-
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atlas joint label fusion algorithm, generating a second prediction. These two predictions 

were fused together using a Random Forest algorithm, enhancing overall performance. A 

4-fold cross-validation was performed and the proposed method reportedly achieved a mean 

Dice coefficient of 0.8686.3 (±0.05) for the test folds.

Yin et al. [31] proposed a fully automated method combining deep learning and image 

processing techniques to extract the vasculature of the placental bed from 3D power Doppler 

ultrasound scans and estimate its perfusion. A multi-class FCNN was applied to segment 

the placenta, amniotic fluid and fetus from the 3D ultrasound volume to provide accurate 

localization of the utero-placental interface (UPI) which is where the maternal blood enters 

the placenta from the uterus. A transfer learning technique was applied to initialize the 

model using parameters optimized by a single-class model [29] trained on 1200 labelled 

placental volumes. The vasculature was segmented by a region growing algorithm from the 

3D power Doppler signal. Based on the representative vessels at a certain distance from the 

UPI, the perfusion of placental bed was estimated using a validated technique known as 

FMBV (fractional moving blood volume) [43].

Hu et al. [32] proposed a FCNN based on the U-net architecture for 2D placental ultrasound 

segmentation. The U-net had a novel convolutional layer weighted by automated acoustic 

shadow detection, which helped to recognize ultrasound artifacts. The dataset used for 

evaluation contained 1364 fetal ultrasound images acquired from 247 patients over 47 

months. The dataset was quite diverse as the image data was acquired from different 

machines operated by different specialists, and presented scanning of fetuses at different 

gestational ages. The proposed method was first applied across the entire dataset and then 

over a subset of images containing acoustic shadows. In both cases, the acoustic shadow 

detection scheme was proven to be able to improve segmentation accuracy.

Torrents-Barrena et al. [33] proposed the first fully-automated framework to segment 

both the placenta and the fetoplacental vasculature in 3D ultrasound, demonstrating that 

ultrasound enables the assessment of twin-to-twin transfusion syndrome by providing 

placental vessel mapping. A conditional Generative Adversarial Network was adopted to 

identify the placenta, and a Modified Spatial Kernelized Fuzzy C-Means combined with 

Markov Random Fields was used to extract the vasculature. The method was applied on 

a dataset of 61 ultrasound volumes, which was heterogeneous due to different placenta 

positions, in singleton or twin pregnancies of 15 to 38 weeks’ gestation. The results achieved 

a mean Dice coefficient of 0.75±0.12 for the placenta and 0.70±0.14 for its vessels on 

images that had been pre-processed by down-sampling and cropping.

Zimmer et al. [34] focused on the placenta at late gestational age. Ultrasound scans are 

typically useful only in the early stages of pregnancy because a limited field of view only 

permits the complete capture of small placentas. To overcome this, a multi-probe system was 

used to acquire different fields of view and then combine them with a voxel-wise fusion 

algorithm to obtain a fused ultrasound volume capturing the whole placenta. The dataset 

used for evaluation was composed of 127 single 4D (3D+time) ultrasound volumes from 

30 patients covering different parts of the placenta. 42 fused volumes were derived from 

these simple volumes which extended the field of view. Both the simple and fused volumes 
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were used for evaluation of their 3D CNN based automated segmentation. The best results of 

placental volume segmentation were comparable to corresponding volumes extracted from 

MRI, achieving Dice coefficient of 0.81±0.05.

3. Discussion

The number of applications for deep learning in pregnancy ultrasound has increased rapidly 

over the last few years and they are beginning to show very promising results. Along with 

new advances in deep learning methods, new ultrasound applications are being developed to 

improve computer-aided diagnosis and enable the development of automated screening tools 

for pregnancy.

A number of Deep Learning algorithms have been presented in this review, showing 

novel approaches, state-of-the-art results and pioneering applications that have contributed 

so far to the pregnancy ultrasound analysis. Some methods rely on sophisticated hybrid 

approaches, combining different machine learning or image analysis techniques, whilst 

others rely on smart manipulation of the dataset such as fusing volumes or applying data 

augmentation. Large quality-controlled datasets are enabling single deep learning algorithms 

to be successfully developed still. However, it’s not currently possible to compare these 

methods directly, even if designed for the same task, because they all use different datasets 

and measurements.

The technological advances in medical equipment and image acquisition protocols allow 

better data acquisition to enhance the trained models. The sizes and availability of 

quality-controlled ground-truth datasets remains a significant issue to be addressed. The 

performance of deep learning methods usually depends on the number of samples. Most of 

the presented methods cannot be independently evaluated as their datasets are small and not 

widely available. In addition, models trained on one dataset might fail on another generated 

by a different manufacturer’s machine. Large, public and appropriately quality-controlled 

ultrasound datasets are needed to compare different deep learning methods and achieve 

robust performance in real world scenarios.

There is also an urgent need to implement deep learning methods to solve relevant 

clinical problems. Very few papers translate the simple application of algorithms to a 

broader, practical solution that could be widely used in clinical practice. The practical 

implementation of deep learning methods and assessment of the correlation between 

automated results and clinical outcomes should be a focus of future research.

The field of deep learning in pregnancy ultrasound is still developing. Lack of sufficient 

high-quality data and practical clinical solutions are some of the key barriers. In addition, 

the newest deep learning methods tend to be applied first to other more homogeneous 

medical imaging modalities such as CT or MRI. Therefore, there is a need for researchers 

to collaborate across modalities to transfer existing deep learning algorithms to the field 

of pregnancy ultrasound to achieve better performance and create new applications in the 

future.
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Figure 1: 
Examples of fetal head segmentation showing the ellipse fitted results on the 2D ultrasound 

sections. The manual annotation is in blue, while the automated segmentation result is in 

red. Source: Al-Bander et al. [11]
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Figure 2: 
Placenta segmentation of first-trimester pregnancy: 2D B-mode plane (left), Semi-automated 

Random Walker result (middle), OxNNet prediction result (right). Source: Looney et al. [29]

Diniz et al. Page 11

Eur Med J Reprod Health. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Diniz et al. Page 12

Table 1:

State-of-the-art works.

Publication Objective Approach

Fetal Segmentation

Namburete et al. [9] Segmentation + alignment (brain) Modified FCN

Torrents et al. [25] Segmentation (whole fetus) Several Approaches

Philip et al. [26] Segmentation + measurement (heart) 3D-U-net

Al-Bander et al. [11] Segmentation (head) Mask-RCNN + Resnet

Placental Segmentation

Qi et al. [27] Anatomy recognition ResNet

Looney et al. [28] Segmentation Parallel CNN

Looney et al. [29] Segmentation OxNNet

Oguz et al. [30] Segmentation CNN

Yin et al. [31] Anatomy recognition Multi-class FCN

Hu et al. [32] Segmentation Modified U-Net

Torrents et al. [33] Segmentation CGAN

Zimmer et al. [34] Segmentation 3D CNN
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