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Abstract
When faced with the investigation of the preferential binding of a series of ligands against a known target, the solution is not always
evident from single structure analysis. An ensemble of structures generated from computer simulations is valuable; however, visual
analysis of the extensive structural data can be overwhelming. Rapid analysis of trajectory data, with tools available in the Galaxy
platform, can be used to understand key features and compare differences that inform the preferential ligand structure that favors
binding. We illustrate this informatics approach by investigating the in-silico binding of a peptide and glycopeptide epitope of the
glycoprotein Mucin 1 (MUC1) binding with the antibody AR20.5. To study the binding, we performed molecular dynamics simula-
tions using OpenMM and then used the Galaxy platform for data analysis. The same analysis tools are applied to each of the simu-
lation trajectories and this process was streamlined by using Galaxy workflows. The conformations of the antigens were analyzed
using root-mean-square deviation, end-to-end distance, Ramachandran plots, and hydrogen bonding analysis. Additionally, RMSF
and clustering analysis were carried out. These analyses were used to rapidly assess key features of the system, interrogate the
dynamic structure of the ligand, and determine the role of glycosylation on the conformational equilibrium. The glycopeptide con-
formations in solution change relative to the peptide; thus a partially pre-structuring is seen prior to binding. Although the bound
conformation of peptide and glycopeptide is similar, the glycopeptide fluctuates less and resides in specific conformers for more ex-
tended periods. This structural analysis which gives a high-level view of the features in the system under observation, could be
readily applied to other binding problems as part of a general strategy in drug design or mechanistic analysis.
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Introduction
A typical sequence of events in research and discovery is
noticing a critical biological interaction, searching for structural
data, and then searching for the molecular rationale. This is the

connection between biology, chemical biology, and chemistry.
The Galaxy project is a popular open web-based platform for
accessible, reproducible, and transparent computational
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research [1]. Originally built to support bioinformatics, Galaxy
now supports a much more expansive community including
proteomics [2], metabolomics [3], cheminformatics [4],
glycoinformatics [5], and chemistry [6]. Of value to these
communities are the broad range of tools and ways to connect
tools (workflows) in Galaxy that enable diverse, multidiscipli-
nary research. In this paper, we show how an informatics ap-
proach provides a high-level overview, thus enabling rapid ob-
servations of changes in molecular details pertinent to the
system under investigation. We apply this approach to the
binding of glycosylated molecules for the well-known system of
mucin binding to the AR20.5 murine antibody.

The binding of glycosylated biomolecules is of increasing
interest as glycans are found to be involved in cellular func-
tioning and messaging. The mucins, which are cell surface-as-
sociated glycoproteins, are found in mucous secretions and are
heavily O-glycosylated [7]. Mucins serve several functions: in-
cluding protecting the body from pathogens by forming chemi-
cal barriers and cellular signaling. Mucin 1 (MUC1) is tethered
to the cellular membrane and is found to be aberrantly glycosy-
lated and overexpressed in several epithelial cancers [8].
Further, it is thought to participate in the hyperactivation of
selected intracellular signal transduction pathways that promote
tumorigenicity [9]. MUC1 is a cancer biomarker that can be
detected by serum biomarker assays (such as the CA15-3 test
[10,11]). The mode of binding between MUC1 and antibodies
has received much attention, and the specificity of this interac-
tion is of interest in improving the performance of these bio-
marker assays [12,13].

The extracellular domain of MUC1 contains a variable number
of tandem repeats (VNTR). The VNTR region is comprised of a
repeating sequence of 20 amino acids (–His-Gly-Val-Thr-Ser-
Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-
Ala–)n, and there are five sites where O-glycosylation may
occur (indicated in bold). In cancerous cells, the glycans tend to
be truncated or have additional sialylation [14]. For example, in
mammary epithelial cells, the mixture of O-glycans that glyco-
sylate mucins are extended core 2 structures, while in breast
cancer cells, O-glycan mass decreases (hypoglycosylation), and
there is an increase in abundance of sialylated core 1 [15]. The
upregulation of Tn (αGalNAc) and STn (αNeuAc-2,6-
αGalNAc) antigens are commonly associated with cancerous
cells [14].

Movahedin et al. confirmed that the glycosylation of MUC1
influences its binding to the AR20.5 murine antibody [16],
specifically the Tn-antigen binds more strongly than the nongly-
cosylated antigen. AR20.5 is known to bind a specific epitope
within the MUC1 VNTR domain. Thus, a synthetic 8-amino

acid peptide (APDTRPAP) and the corresponding Tn glycopep-
tide were synthesized. It was found from the co-crystallization
of the AR20.5 antigen-binding fragment (Fab) with the MUC1
peptide and glycopeptide that the glycan moiety of the glyco-
peptide did not bind to the antibody (Figure 1 and PDB
ID:5T6P, 5T78). This is unusual considering that in previous
experiments of murine antibody SM3 that Brooks [17] found
the glycan forms part of the epitope and binds directly to the
antibody. Movahedin et al. hypothesized that the glycan modu-
lates the conformation of the peptide portion of the antigen and
does not bind directly.

Figure 1: A representation of mucin glycopeptide bound to AR20.5
antibody. Chain A is represented as a molecular surface colored by
secondary structure, chain B is represented in cartoon and colored by
secondary structure. The mucin peptide is represented as licorice. The
Tn glycan (N-acetylgalactosamine) is represented as licorice, and the
sugar ring is highlighted with the paper chain representation [18,19].

Previous studies have shown that O-glycosylation may provide
increased physical stability [20], rigid conformations for pro-
tein stability [21], induce the formation of stiff and extended
peptide conformations [22], and may affect peptide conforma-
tions near the glycosylation site and at distant sites [23]. In
glycopeptide enkephalin analogs, the only observed conforma-
tional effects due to O-glycosylation were on the residue of
attachment and its neighboring residue [24]. While for prion
peptides, the O-glycosylation (α-GalNAc) is able to affect the
structural transition and suppresses the formation of amyloid
fibril formation [25]. The solution structure of O-glycosylated
prion peptide was not shifted significantly, with only minor
shifts seen in the vicinity of the glycosylation site. Yet there is a
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stabilization of the β-structure relative to the random coil and
the effects of the glycosylation were hypothesized to relate to
the conformational properties of the peptides in solution (as
opposed to their equilibrium structures in solution) [25].

A comprehensive structural study of the O-glycosylation-in-
duced changes in a mucin octapeptide showed that the peptide
conformation depended on the extent of glycosylation. Glyco-
sylation induces small changes in protein structure and shifts it
from a random to a more turn-like structure [26]. Kirnasky et al.
noted that O-glycosylation slightly affected the conformational
equilibrium of the peptide backbone near the glycosylated
residue for a 15-residue mucin peptide. The APDTRP fragment
resembled an S-shaped bend and a clustering of low-energy
conformations revealed structural similarities between glycosy-
lated and nonglycosylated peptides [23].

The work by Movahedin et al. and others [14,16] provides a
foundation for further investigation into the binding of glyco-
peptide antigens to antibodies using computational modeling.
Molecular dynamics (MD) simulations and analysis thereof are
a well-known ingredient of the in-silico process for mechanis-
tic screening of glycopeptide fragment binding to antibodies. In
this work, the peptide only antigen (Ala-Pro-Asp-Thr-Arg-Pro-
Ala-Pro, APDTRPAP) and the Tn glycosylated antigen
(APDT(Tn)RPAP) are considered in solution and complex with
the AR20.5 antibody. The Tn-antigen is of interest as it is often
found upregulated in breast cancer [11,13]. We use MD simula-
tions to investigate the conformational behavior of
(glyco)peptide antigens bound to the AR20.5 antibody and to
investigate the hypothesis that the glycan modulates the confor-
mation of the peptide portion of the antigen. Primarily show-
casing a structural analytics approach, we aim to use the tools
and workflows available as part of the Galaxy project to analyze
MD simulations to find out if the sugar moiety of the
Tn-antigen binds directly to the antibody. Further, if the sugar
does not bind directly (as found previously), then we will use
these analyses to observe how the sugar modulates binding.

Methods
The inputs, simulation scripts, Galaxy workflows (a series of
tools and dataset actions that run in sequence), and data for
these simulations are available at https://github.com/chrisbar-
nettster/bjoc-paper-2020-sm.

Simulation
There is an increasing number of software available to assist
with the building up of glycosylated biomolecular systems. As
opposed to manual preparation, there are glycan-specific tools
and toolkits such as doGlycans [27], Glycosylator [28], and
online platforms such as GLYCAM-WEB [29] and CHARMM-

GUI [30]. In this work, the CHARMM-GUI server [30] which
includes several helper tools (PDB Manipulator [31] and
Glycan Reader [32,33]), was used to build these systems and
generate input files [34] for use with OpenMM.

Five systems were built in CHARMM-GUI based on initial
structures from the Protein Data bank (PDB ID:5T6P, 5T78).
The assumption was made that the Tn-antigen binds as per the
PDB structure, and other modes of binding are not possible. The
solvated receptor, solvated antigens (both the nonglycosylated
and Tn-antigen), and a solvated complex (with both antigens)
were built in 0.15 M KCl aqueous solution at 310.15 K (physio-
logical temperature). Missing amino acid residues were added.
Energy minimization and MD (equilibration and production)
simulations were performed using OpenMM [35] and the
CHARMM36 force field [36] using the OpenCL platform with
mixed precision. Equilibration and production dynamics were
carried out as per the scripts provided with CHARMM-GUI,
except for adjustments to the time step and number of iterations.
The calculations were carried out using Nvidia V100 GPUs.

The equilibration step included 5000 steps of minimization
follows by 25000 steps of NVT dynamics (constant volume and
temperature) with a time step of 0.001 ps. The particle mesh
Ewald (PME) method was used. Nonbonded interactions were
cut-off using the force-switching method from 10 Å to 12 Å,
and hydrogen bonding constraints applied. During equilibration,
the protein backbone and side chains were restrained (force
constants of 400.0 and 40.0 kJ mol−1 nm−2 were used, respec-
tively). The production dynamics were simulated using an NpT
ensemble and using a time step of 0.002 ps. The antigen–anti-
body complex in solution was run for 210 ns, while the antigen
was run for 500 ns. The antibody was run for 100 ns.

Analysis
The majority of the analyses was carried out using Galaxy, the
popular open web-based platform for bioinformatics and
computational data analysis, which enables the creation of
repeatable analysis pipelines (workflows). There are several
well-known molecular  dynamics analysis  packages
(MDAnalysis [37], Bio3D [38] and MDTraj [39]) which are
available as computational chemistry analysis tools in Galaxy
[6], and these were used to analyze the molecular dynamics
trajectories.

The root-mean-square deviation (RMSD) is calculated to
measure the stability and conformation of a set of selected
atoms. The RMSD is a standard measure of the structural dis-
tance between coordinate sets that measures the average dis-
tance between a group of atoms [40]. The peptide portion of the
antigens was selected for analysis. The root-mean-square-fluc-
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tuation (RMSF) represents the deviation at a reference position
over time and was calculated in order to measure the variability
of the carbon backbone (C-α atoms were selected) of the
peptide portion of the antigen (Figure 2).

The end-to-end distance (displacement length) was used as a
metric to understand the mobility and conformation of the
peptide portion of the antigen throughout the simulation. This is
defined as the carbon–nitrogen distance between the first and
last amino acid residues of the antigen. A time-series analysis
provides some insight, while a histogram provides a clearer
understanding of the most populated conformations (Figure 3).

A Ramachandran plot [41] is a well-known method for investi-
gating the φ–ψ (phi–psi dihedral angle) preferences around pro-
tein backbones (Figure 4). All φ–ψ angles for the peptide
portion of the antigens were measured for each frame of the
simulation and aggregated per residue. The glycosidic-linkage
dihedral angles of the Tn-antigen (in solution and bound to anti-
body) were also measured. A standard hydrogen-bonding analy-
sis using MDAnalysis and VMD was carried out with the
default angle cut-off and distance cut-off.

A cluster analysis of the peptide portion of the antigen was
carried out (Figure 5) using TTClust [42]. The clusters were
chosen automatically based on the carbon backbone of the
peptide portion of the antigen and clustered using the Ward
algorithm.

Results
The antigens were simulated in solution to understand the
innate flexibility prior to binding to the antibody, and then also
simulated in the complex with AR20.5 MUC1 antibody to
understand the effect of glycosylation on antigen conformation
during binding. With the rationale that a high-level overview
can be used to understand the molecular changes, various
analyses were considered: root-mean-square, end-to-end dis-
tance, clustering, φ–ψ backbone dihedral angles, and hydrogen-
bonding interactions. These analyses focused primarily on the
antigen as the antibody conformation does not change signifi-
cantly in the time frame of the simulation. The peptide-only
antigen will be referred to as the ‘antigen’ while the Tn-glyco-
sylated antigen will be referred to as the ‘Tn-antigen’.

Root-mean-square-analysis
In solution (unbound), the RMSD (Figure 2) has a broad spread
and a similar center for both the antigen and Tn-antigen. It is
readily apparent that the glycosylated antigen has a bimodal dis-
tribution (secondary peak at 5.7 Å), indicating at least one other
interesting conformation. On consideration of the RMSD for the
bound antigens, a narrowing in the distributions is noted. Bound

Tn-antigen (Figure 2F) has the narrowest distribution, with a
spread from 0.8 Å to 1.6 Å; this unimodal distribution is
centered at 1.25 Å. There is no longer a secondary peak, indi-
cating that there is restricted movement on binding. The bound
antigen (Figure 2E), instead has a bimodal distribution with a
significant population centered at 1.25 Å, a minor population
centered at 2.25 Å, and a broad tail that extends to 3.5 Å. While
there is restricted movement on binding, the antigen shows
unexpected flexibility and a secondary peak at 2.25 Å. From the
RMSD, we can infer there is a much tighter range of structures
for both antigens when bound than in solution (this should be
apparent as there is restricted motion due to the binding of the
antigen to the antibody) and the bound Tn-antigen has a more
defined and stable conformation.

The RMSFs of the two antigens in solution (Figure 2C and D)
have a similar trend with fluctuations ranging between 1.4 Å
and 3 Å. Both have large fluctuations, especially for Ala1, Pro6,
and Pro8. The Tn-antigen RMSF fluctuates more than the
antigen especially for Ala1, Thr4, and Pro8, respectively. When
bound, both antigens show restricted fluctuations (Figure 2G
and H), with the Tn-antigen showing less fluctuation about
each residue. The first and last residues still fluctuate but all
RMSF values are less than 1.1 Å indicating relatively minor
fluctuations occur for the C-α carbons of the peptide backbone.
Another noticeable change is the shift in Pro6, which fluctuated
significantly in solution, and now does not. The antigen
fluctuates most at the first residue, Ala1, and least at Asp3
and Thr4, while the Tn-antigen fluctuates most for the
first and last residues, Ala1 and Pro8, and least for Asp3 and
Thr4.

End-to-end analysis
In solution (Figure 3A and B), the displacement lengths of the
antigens have a similar range (3.0 Å to 25.0 Å vs. 6.5 Å to
25.0 Å), and both antigens adopt a wide range of conforma-
tions with a preference for extended structures. There is a ten-
dency for the Tn-antigen to also prefer a compact conformation,
as per the sampling seen at 9.5 Å in the histogram (Figure 3B).
The antigen has a left-skewed distribution centered at 19.5 Å,
while the Tn-antigen could be bimodal (see the sampling at
9.5 Å and 19.5 Å) or a left-skewed unimodal distribution
centered at 19.5 Å.

In contrast, the bound antigens have a much narrower spread
(Figure 3C and D). The end-to-end distance for the antigen
ranges from 12.5 Å to 22.5 Å, with a distribution centered at
18.9 Å; while the Tn-antigen end-to-end distance ranges from
16.0 Å to 22.0 Å and is centered at 19.5 Å. This is a short
peptide so the head and tail regions do fluctuate which could
explain the significant spread in the end-to-end distance even
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Figure 2: A comparison of root mean analyses for the antigen and Tn-antigen in solution (unbound) and in antibody (bound). RMSD histograms in
solution (A, B) and antibody (E, F). RMSF’s in solution (C, D) and antibody (G, H). The graphs on the left are for the antigen and those in the right
panel are for the Tn-antigen.

though the antigen is bound to the antibody. Nevertheless, the
Tn-antigen shows a slightly narrower spread and a more
compact ensemble of structures, but otherwise, the end-to-end
distance is very similar for both bound antigens.

Ramachandran analysis
The φ–ψ angles of the antigens are considered using a
Ramachandran plot. Figure 4 shows a Ramachandran plot for
two key amino acids, the glycosylated threonine (Thr4) and
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Figure 3: End-to-end time series and histogram for the antigen and Tn-antigen in solution (A, B) and the antibody (C, D). Plots for the antigen are in
(A, C) and for the Tn-antigen in (B, D).

neighboring aspartate (Asp3), and considers the φ–ψ angles
over all frames of the simulation grouped for these residues.
Detailed Ramachandran plots are available (Figures S1 and S2
in Supporting Information File 1) for all residues that can be
measured (residues 2–8).

Ramachandran plots show that the φ–ψ distribution for the anti-
gens differs in solution but is the same when bound to the anti-
body. This is a prestructuring effect and is likely an important
contributor to the improved binding affinities seen for the
Tn-antigen.

In solution, the third residue (Asp3) prefers (−60°, 135°) for the
antigen (Figure 4A and B) with some sampling at (−60°, −40°)
and minimal sampling at (60°, 60°). When glycosylated, the ψ
sampling shifts to become a balanced bimodal distribution
(Figure 4C and D) with similar sampling at (−60°, 135°) and
(−60°, −40°), and minimal sampling seen at (60°, 160°) and

(60°, −170°). Note that the probability distribution gives the
best indication of relevant regions. The fourth residue (Thr4)
shows multimodal sampling in φ and a bimodal distribution in
ψ, with conformers at (−100°, 0°) and (−60°, 130°) being
preferred for the antigen (Figure 4E and F). However, when
glycosylated the sampling of Thr is restricted (Figure 4G and
H), with a strong preference for (−120°, 120°) and the ψ distri-
bution is effectively unimodal.

The antibody prefers that both antigens adopt a particular shape
to fit, and this is seen in the φ–ψ distributions, which shift for
Asp3 and Thr4. When bound, both antigens have an almost
identical φ–ψ distribution except that the peaks are slightly
narrower for the Tn-antigen. In some cases, the preference stays
the same and reduced flexibility is observed, for example, Pro2
(Figure S1 and S2 in Supporting Information File 1). In other
cases, the conformational preferences shift on binding but this
shows no correlation to the effect of glycosylation, for example,
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Figure 4: A comparison of Ramachandran analyses for two key amino acids, Asp3 and Thr4. The first row (A–D) illustrates the φ–ψ angles for amino
acid 3 of the peptide, aspartate, with a scatter plot showing the allowed φ–ψ regions highlighted in blue (A), and a probability density Ramachandran
plot (B) for the antigen, and a scatter plot (C) and probability density Ramachandran plot (D) for the Tn-antigen. While the second row (E–H) illus-
trates the φ–ψ angles for amino acid 4 of the peptide, threonine. The left panel of Ramachandran plots are for the antigen, and the right panel are for
the Tn-antigen. The first two rows are for the antigens in solution (unbound, A–H), while the final two rows are for the antigens bound to the antibody
(I–P).

Pro6, Ala7 (Figure S1 and S2 in Supporting Information File 1),
and finally, the conformational preference seen for glycosyla-
tion in solution aligns with the preference seen for both bound
antigens, for example, Asp3 and Thr4 (Figure 4I–P).

For Asp3, the φ–ψ preference for both bound antigens is (−60°,
−40°), which correlates with the shift seen on glycosylation in
solution where the φ–ψ preference moved from (−60°, 135°) to
sample an additional region of phase space and a combination
of conformations at (−60°, −40°) and (−60°, 135°). For Thr4,
the φ–ψ preference for both bound antigens is (−65°, 140°)
which correlates with the shift seen on glycosylation in solution
where the φ–ψ preference moved from (−100°, 0°) and (−60°,
130°) to (−120°, 120°). The antibody binds both glycosylated

and unglycosylated antigen with the same conformational pref-
erence at Asp3 and Thr4 which correlates with the preferred
states seen for the glycosylated antigen in solution. There is
some evidence of a pre-structuring or pre-organization effect,
where O-glycosylation shifts the conformational equilibrium of
the peptide towards conformations that are pre-organized for
antibody binding.

A Ramachandran plot can be used to understand the role of the
sugar moiety, by comparison of the dihedral angle distribution
of the glycosidic linkage between the glycan and peptide
portion of the Tn-antigen (Figure S3 in Supporting Information
File 1). In solution, there is a preference for (70°, 100°) with
limited sampling observed in the negative regions of the ψ dis-
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Figure 5: Distribution of clusters, found using TTClust, for the antigen and Tn-antigen in solution (A, B) and when bound to the antibody (D, E). The
conformation of the clusters for solution (C) and bound (F) where the antigen is drawn as a blue ribbon with first cluster conformation in opaque blue.
The Tn-antigen is drawn as a green ribbon with first cluster conformation in opaque green. The sugar is drawn without hydrogens in licorice and the
sugar ring is highlighted with the paper chain representation [18,19].

tribution. On binding, this preference is limited and changes
slightly to (70°, 120°) with no sampling observed in the nega-
tive regions of the φ distribution.

Cluster analysis
A cluster analysis of the solution structures yields 5 clusters for
the antigen and 4 clusters for the Tn-antigen (Figure 5A and B).
The predominant conformer in both antigens is the extended

form (Figure 5C), while for the Tn-antigen, the fourth cluster
exhibits a more compact conformation (a transparent green
conformer in Figure 5C) as noted in previous analysis.

A cluster analysis of the bound antigens yields 5 clusters for the
antigen and 4 clusters for the Tn-antigen (Figure 5D and E).
The predominant conformer in both antigens is similar
(Figure 5F), as noted in previous analysis. For the antigen, the



Beilstein J. Org. Chem. 2020, 16, 2540–2550.

2548

first cluster dominates (43%) with the second cluster about half
as many members (22%), and the third cluster accounting for
9% of all conformations analyzed. For the Tn-antigen, the first
and second clusters dominate accounting for respectively 33%
and 44% of all conformations analyzed.

The cluster analysis indicates key conformations of the anti-
gens seen in solution and when bound. In solution, the
Tn-antigen can adopt a compact conformation while both anti-
gens adopt extended structures when bound to the antibody.
When considering the population count (Figure 5D and E) and
residence time of the clusters (Figures S4 and S5 in Supporting
Information File 1), the bound Tn-antigen is able to stay resi-
dent in the dominant conformation without regularly flipping to
other conformations.

Hydrogen bonding
The specifics of intermolecular interactions can also be consid-
ered, and here we utilized a hydrogen-bonding analysis to
consider how the sugar moiety could interact with the antibody
(Tables S1–S7 in Supporting Information File 1).

In solution, hydrogen bonds occur within the antigen between
Arg5–Asp3 and Arg5–Pro8 (in order donor–acceptor) with
occupancies of 31.83% and 14.32% (and 13.67%). For the
Tn-antigen, the peptide portion has hydrogen bonds between
Arg5–Pro8 (26.69% and 26.58%), Arg5–Asp3 (12.45%), an
Arg5–Pro2 interaction is observed with an occupancy of 7.13%,
and an intramolecular hydrogen bond between the C3 alcohol
and the carbonyl of the N-acetyl moiety of the GalNAc has an
occupancy of 6.92%. A shift in hydrogen-bonding populations
on glycosylation and the appearance of the Arg5–Pro2 (7.13%)
interaction aligns with the compact structure noted previously
for the Tn-antigen.

When bound, additional intramolecular hydrogen bonds are ob-
served for the Tn-antigen with interactions between the
GalNAc–Thr4 (NH of the acetyl group to carbonyl group) and
GalNAc–GalNAc (NH of the acetyl group and the C3 alcohol
with the carbonyl of the N-acetyl moiety), which occur with
occupancies of 23.04% and 29.08%, respectively. These two
hydrogen bonds may play a crucial role in maintaining the con-
formation of the Tn-antigen. There are no intramolecular hydro-
gen bonds between the peptide moiety of the antigens; these are
replaced by hydrogen-bonding between the antigen and chain A
of the antibody. The following hydrogen bonds occur between
the antigen and antibody: Arg5–Glu39 (141.21%, above 100%
as counting both acceptor sites on Arg), Lys58–Asp3 (44.44%),
Tyr37–Pro2 (42.55%), Arg55–Asp3 (38.11%), and Tyr54–Asp3
(28.51%). The following hydrogen bonds occur between the
Tn-antigen and chain A of the antibody: Arg5–Glu39 (137.49%,

above 100% as counting both acceptor sites on Arg),
Lys58–Asp3 (42.80%), Tyr37–Pro2 (46.73%), Arg55–Asp3
(37.77%), and Tyr54–Asp3 (31.44%). A hydrogen bond
(0.15%) was observed between the hydroxy group of Tyr100 of
chain B of the antibody and the 6-hydroxy group of the
GalNAc. While seemingly short-lived, it occurs with some fre-
quency throughout the simulation (see Figure S6 in Supporting
Information File 1). Movahedin et al. hypothesized that the
glycan modulates the conformation of the peptide portion of the
Tn-antigen and does not bind directly, noting that in the crystal
structure GalNAc is positioned 4 Å away from the side chain of
Tyr100, and indicating that any dispersion interactions would
be insufficient to explain a 20-fold increase in affinity. It is
unlikely that this hydrogen bond explains a 20-fold increase in
affinity yet note that the mobility of the glycan moiety allows
the hydrogen-bond interaction to occur. The hydrogen-bonding
preferences and occupancies between the antigens and the anti-
body are very similar.

Discussion
RMSD, RMSF, end-to-end distance, and Ramachandran
analyses support that the Tn-antigen has slightly less conforma-
tional play than the nonglycosylated antigen when bound to the
antibody. The analysis of the φ–ψ preference showed that the
antibody binds both glycosylated and unglycosylated antigen
with the same conformational preference (at Asp3 and Thr4) as
that of the glycosylated antigen in solution. There is some evi-
dence of a prestructuring or preorganization effect, where
O-glycosylation shifts the conformational equilibrium of the
peptide towards conformations that are preorganized for anti-
body binding. This should decrease the overall entropic penalty
upon binding, and therefore would explain an increased binding
affinity for the glycosylated antigen.

A cluster analysis showed that the dominant conformation for
the bound antigens are similar. Intramolecular hydrogen-bond-
ing interactions within GalNAc were more dominant in the anti-
body (have a higher occupation) than in solution. An intramo-
lecular hydrogen bond within the Tn-antigen between the
GalNAc–Thr4 (NH of the acetyl group to carbonyl group) may
be responsible for maintaining the conformation of the
Tn-antigen. The role of the sugar in excluding water was not in-
vestigated. A short-lived intermolecular hydrogen bond (0.15%)
was observed between Tyr100 and GalNAc, and this is unlikely
to be significant. These results correlated with the hypothesis
put forward previously that glycosylation alters the conforma-
tional equilibrium of the antigen.

Conclusion
We have shown how an informatics approach can be used to
rapidly obtain key indicators of structural features for under-
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standing the molecular level behavior of a system. We illus-
trated this informatics approach for the binding of glycosylated
molecules, in particular for variably glycosylated mucin in solu-
tion and when bound to an antibody. RMSD, end-to-end dis-
tance, Ramachandran analysis, and hydrogen-bonding analyses
were carried out using the Galaxy platform. Additionally,
RMSF and cluster analysis were carried out. These analyses
were used to gain rapid insight into the behavior of the system.
The solution conformations of the Tn-antigen and the antigen
were generally extended, yet the Tn-antigen was found to sam-
ple a more compact conformation. When bound to the antibody,
both antigens had considerably less freedom than when in solu-
tion, as expected, and the Tn-antigen had less conformational
play. However, this was not the result of hydrogen-bonding
interactions between the glycan and the antibody or significant-
ly different interactions between the peptide portion of the
Tn-antigen and the antibody. Instead, contributing factors
included an intramolecular hydrogen-bonding interaction be-
tween GalNAc and Thr4, and a preorganization effect (seen
from Ramachandran analysis), where O-glycosylation shifted
the conformational equilibrium of the peptide towards confor-
mations that are preorganized for antibody binding. The results
agreed with previous findings that glycosylation may affect
peptide conformations near the glycosylation site and corre-
lated with the hypothesis that glycosylation alters the conforma-
tional equilibrium of the antigen. This structural analysis which
gives a high-level view of the features in the system under ob-
servation, could be readily applied to other binding problems as
part of a general strategy in drug design or mechanistic analysis.
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