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Abstract
Background: Wearable sensors allow researchers to remotely capture digital health data, in-
cluding physical activity, which may identify digital biomarkers to differentiate healthy and 
clinical cohorts. To date, research has focused on high-level data (e.g., overall step counts) 
which may limit our insights to whether people move differently, rather than how they move 
differently. Objective: This study therefore aimed to use actigraphy data to thoroughly exam-
ine activity patterns during the first hours following waking in arthritis patients (n = 45) and 
healthy controls (n = 30). Methods: Participants wore an Actigraph GT9X Link for 28 days. Ac-
tivity counts were analysed and compared over varying epochs, ranging from 15 min to 4 h, 
starting with waking in the morning. The sum, and a measure of rate of change of cumulative 
activity in the period immediately after waking (area under the curve [AUC]) for each time 
period, was calculated for each participant, each day, and individual and group means were 
calculated. Two-tailed independent t tests determined differences between the groups. Re-
sults: No differences were seen for summed activity counts across any time period studied. 
However, differences were noted in the AUC analysis for the discrete measures of relative ac-
tivity. Specifically, within the first 15, 30, 45, and 60 min following waking, the AUC for activ-
ity counts was significantly higher in arthritis patients compared to controls, particularly at 
the 30 min period (t = –4.24, p = 0.0002). Thus, while both cohorts moved the same amount, 
the way in which they moved was different. Conclusion: This study is the first to show that a 
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detailed analysis of actigraphy variables could identify activity pattern changes associated 
with arthritis, where the high-level daily summaries did not. Results suggest discrete variables 
derived from raw data may be useful to help identify clinical cohorts and should be explored 
further to determine if they may be effective clinical biomarkers. © 2020 The Author(s)

Published by S. Karger AG, Basel

Introduction

The sustained growth of chronic disease places significant burden on global health 
resources [1], resulting in the need to identify and develop more effective forms of treatment 
and prevention strategies. In response, the development of biomarkers, defined as “charac-
teristics that are objectively measured and evaluated as indicators of normal biologic, patho-
logic, or biological responses to a therapeutic intervention” [2], has demonstrated promise as 
an effective way to help capture disease-specific, clinically relevant changes in cohorts over 
time. More recently, advances in mobile and digital technology have led to the creation of a 
new class of biomarkers, digital biomarkers, which are prognostic or diagnostic measure-
ments of health collected using digital means [2]. 

Digital biomarkers offer researchers and clinicians access to large volumes of objective 
data that can be captured relatively passively within the context of free-living “normal” condi-
tions [3, 4]. As the algorithms and hardware of digital devices improve, so too does their 
potential to offer more nuanced and comprehensive insights into the characteristics of 
diseases [5]. This may also be beneficial to patient cohorts, through the identification of clin-
ically meaningful parameters in their specific conditions. Indeed, identifying information that 
is important to patients is a primary goal of future drug and treatment developments [6]. 
However, significant challenges remain, including: how best to use the data derived from 
these devices [2, 4], ensuring reliability and reproducibility of results [2, 3, 7], an imposed 
reliance on the proprietary algorithms of individual devices, and the selection of clinically 
meaningful endpoints. Thus, identifying specific digital biomarkers that are best able to 
differentiate between healthy and clinical cohorts is a critical first step in this process. This 
may support the development of new models for clinical trials to subsequently test the efficacy 
of these markers. Once achieved, the next step is to understand how well these biomarkers 
capture change in patient status over time, or as a result of therapeutic intervention. 

Physical activity (PA) is one area of healthcare where there has been an explosion of 
digital data collection over recent years, as advances in wearable sensor technology have led 
to the wide availability of both medical and consumer-based devices. Recent research suggests 
that digital biomarkers may be identified using devices such as mobile phones; however, to 
date, they have relied on specific tasks rather than PA in general [8]. PA is a critical deter-
minant of health and thus is a key outcome for a range of chronic illnesses including chronic 
musculoskeletal conditions, such as arthritis. The objective measurement of PA was previ-
ously limited by a reliance on self-report or in-laboratory data [9–11]; however, wearable 
sensors now allow researchers to remotely and accurately monitor daily movement patterns 
over time using small, unobtrusive devices [9, 12]. Indeed, this area has expanded rapidly 
over the past decade as advances in usability and device specifications have supported partic-
ipant adherence [13]. These improvements therefore offer valuable opportunities to 
researchers to capture digital health data which may be used as a digital biomarker. Previous 
research has used actigraphy to explore PA patterns in specific disease cohorts [10, 14–18]. 
Establishing activity differences between healthy controls and arthritic patients though has 
been less clear, with some studies identifying differences [10, 15, 17] while others suggest 
that none or minimal exist [16, 18]. However, these results have been based on the evaluation 
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of summary-level data (e.g., overall step counts or daily activity) [19], which may limit our 
insights to simply whether people move differently, rather than how they move differently. 
Deriving a deeper understanding into how and when people move may provide researchers 
with a more valuable and sensitive insights into how conditions such as arthritis impact 
people’s behaviour and daily functional tasks. 

To identify potential digital biomarkers, it may be a valuable first step to explore whether 
certain disease characteristics can be identified through actigraphy data. Specifically for 
arthritis, morning stiffness is a commonly reported symptom [20, 21]. How, and indeed if, 
disease-specific symptoms such as this impact a person’s activity patterns is, as yet, unknown 
beyond qualitative [22] or summary-level data [10, 23]. Recent research has suggested that 
there may be a difference in the morning activity patterns between arthritis patients and 
healthy controls; however, the collected actigraphy data was listed as a percentage of the 
overall activity during the day and was measured over multiple hours up to midday, therefore 
it is not specific to the morning alone [10]. Thus, a deeper understanding as to how people 
with chronic conditions move, and what we can learn from this, requires researchers to derive 
more detailed and discrete variables from the minute-level actigraphy data that they collect, 
in order to firstly determine whether they are more sensitive to differences than summary-
level assessments such as daily activity counts. This level of data processing has not been 
previously undertaken, therefore it is unknown whether more detailed time-driven analysis 
of actigraphy data offers any value in enhancing our understanding of conditions such as 
arthritis, and subsequently whether these variables may be utilised in future clinical trials as 
digital biomarkers. The aim of this study was therefore to use actigraphy data to perform a 
thorough examination of activity patterns during this morning period in patients with arthritis 
and healthy controls. Groups’ actigraphy variables were analysed and compared over varying 
epochs, ranging from 15 min to 4 h, starting with waking in the morning.

Materials and Methods

Ethical approval for this study was granted by the Human Ethics Board of the local 
research institution. The participants and data within this study are the same as those previ-
ously reported elsewhere [24]. 

Study Design and Participants
This was a non-interventional 4-week longitudinal study that took place between March 

and September 2016. Healthy volunteers (n = 30) were recruited through convenience 
sampling, using notices placed in local environments. Participants with arthritis were 
recruited through Rheumatology Department at Tallaght Hospital, Dublin, Ireland (n = 45). 
Arthritis participants were required to fulfil disease-specific classification criteria as deter-
mined by the rheumatologist within the hospital clinic (Table 1). Prior to inclusion within the 
study, all participants underwent a clinical assessment and provided written informed 
consent. As this was an exploratory study, no formal sample size calculation was performed. 
Basic participant demographic information (i.e., height, weight, clinical characteristics) were 
collected at baseline. 

Procedures
The participants were provided with an Actigraph GT9X Link wrist-worn sensor which 

they were asked to wear continuously (except when showering and charging) for the duration 
of the study (4 weeks). The participants were required to charge the monitors but otherwise 
did not have to engage with the devices. Activity feedback from the device was disabled so as 
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not to influence the participants’ normal daily activities. As reported elsewhere, a smart-
phone app (CentrosHealth, Boston, MA, USA) was used to collect daily patient-reported 
outcomes (PROs) regarding the degree of pain and stiffness perceived, using 8 questions [21]. 

Data Processing and Analysis
Actigraph raw accelerometer data gives measurements of the movements at the wrist in 

the x, y, and z axes, indicating the activity levels of the participant. Raw accelerometer data 
was collected at 30 Hz. Full processing details of this raw data are reported elsewhere [25]. 
To reduce variability, the raw data was re-calibrated using a method adapted from van Hees 
et al. [26]. The calibrated acceleration data was imported back into the ActiLife software to 
get the corrected 60-s epoch activity counts for the x, y, and z axes. To facilitate sleep detection, 
and for more convenient visualisation, study days were converted to data analysis days 
(DADs). A DAD started at 18: 00: 033 and ended on 18: 00: 000 the following day. The day on 
which recording starts is set to DAD 0, so that DAD 1 is the first day within the study with 24 
h of data (assuming full compliance; all deployments were completed before 18: 00). The 60-s 
epochs were then used to derive additional actigraphy variables within the DAD. 

Each 60-s epoch of activity data was classified as an epoch during which the Actigraph 
was worn or not worn. Activity counts for each minute over the minute period following 
waking were extracted for each DAD for each participant. Sleep was identified using both 
Cole-Kripke and Tudor-Locke algorithms as described elsewhere [22]. Activity counts were 
calculated by a proprietary algorithm for wrist-worn devices used in the ActiLife software 
that first applied a band-pass filter to the sensor data, eliminating both very slow and very 
rapid changes in acceleration, after which each value above a certain threshold is counted. A 
modified Choi algorithm was used to detect non-wear [22]. A person was included in the 
analysis if at least 80% of the total number of analysis days (n = 28) were available in the data. 

Cumulative activity counts for successive 60-s epochs were plotted for each of the 
following time periods following waking: 15, 30, 45, 60, 120, 240, and 1,440 min. The sum, 
and area under the curve (AUC), for activity counts for each of these time periods was calcu-

Table 1. Inclusion and exclusion criteria

Healthy participants
Inclusion criteria
Adult (aged 18–80 years)
Independent in daily activities 
No history of diagnosis or treatment of arthritis
Not currently receiving active treatments for disabling illness

Arthritis participants
Inclusion/classification criteria
Adult (aged 18–80 years)
Attending the Rheumatology Department of Tallaght Hospital with one of the following: rheumatoid 
arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), ankylosing spondylitis (according to the below 
criteria)
– Rheumatoid arthritis – RA 2010 ACR/EULAR criteria [19]
– Osteoarthritis – ACR classification OA of one or more hip or knee [22]
– Psoriatic arthritis – Psoriatic arthritis CASPAR classification criteria [20]
– Ankylosing spondylitis – Ankylosing spondylitis ASAS 2012 criteria for axial spondyloarthopathy [21]

Exclusion criteria
Additional non-arthritic conditions that may impact the participant’s physical activity
No capacity to give informed consent
Pregnant at the time of recruitment



82Digit Biomark 2020;4:78–88

 
Keogh et al.: Deep Understanding of Activity Patterns Using Actigraphy Data

www.karger.com/dib
© 2020 The Author(s). Published by S. Karger AG, BaselDOI: 10.1159/000509724

lated for each participant, for each day, and individual and group means for each of the two 
dependent variables were calculated. The purpose of the AUC analysis was to establish the 
rate of change of activity. The percentage of time spent in each of the following activity cate-
gories was calculated for the daily summary data according to the following thresholds: 
0–1,800 inactive, 1,801–2,690 light, 2,691–6,166 moderate, > 6,166 vigorous. A χ2 test 
analysed the differences between both groups for each of the activity categories. Two-tailed 
independent t tests were performed to determine differences between patient and control 
groups for: (1) both variables over the different periods of time, and (2) for the differences 
between patient and control groups for the PROs. 

The relationship between the daily aggregates of morning activity and PROs was tested 
by fitting a mixed-effects model with random intercept, where the dependent variable was 
the PRO, the independent variable was the activity aggregates, and the random intercept was 
a patient-wise offset. This model assigned a different intercept to each patient, while the same 
slope was used for all participants. The PROs were tested one by one, and the same for the 
activity aggregate.

Results

Participant demographics are outlined within Table 2. The participants wore the sensors 
91.5% of the time on average [24]. Of those recruited, 43 (95.6%), reached the minimum 
threshold of 80% of the total available analysis days. The two participants who did not reach 
this threshold were from the arthritis cohort. 

No differences were seen between healthy controls and arthritic patients across for 
summed activity counts for any of the time periods studied, ranging from 15 min following 
waking to a full day (Table 3). Limited differences were noted between the groups for the time 
spent in each of the activity categories, with differences (p < 0.05) noted for vigorous activity 
at both 120 and 240 min (Fig. 1). However, differences between the cohorts were noted in the 
AUC analysis for the discrete measures of relative activity (Fig. 2). Specifically, within the first 
15, 30, 45, and 60 min following waking, the AUC for activity counts was significantly higher 
in patients with arthritis compared to controls (Table 3). This result was particularly 

Table 2. Baseline demographic details of the participants

Healthy 
participants 
(n = 15)

Arthritic participants

OA (n = 10) RA (n = 18) PsA (n = 2)

Sex
Male
Female

5 (33.3)
10 (66.6)

4 (40)
6 (60)

5 (18)
13 (72)

0 (0)
2 (100)

Mean age ± SD, years 48.0±48.6 (31–71) 60.7±4.5 (55–70) 50.7±11.4 (33–75) 32; 63
Body mass index ± SD 22.9±3.0 (18.6–29.1) 27.9±5.7 (19.0–39.7) 28.1±4.85 (21.1–38.5) 29.4; 29.4
Disease duration ± SD, days N/A 1,936±2,531 (216–7,407) 3,246±3703 (89–12,181) 1,809; N/R
Disease classification N/A 4 minimala

4 mild
2 moderate

3 remissionb

6 low
6 moderate
2 high

1 remissionb

1 low

Mean SF-36 baseline scorec ± SD N/A
Physical component 56.3±3.3 (50.4–61.9) 36.0±11.3 (18.7–54.9) 38.0±8.8 (25.7–57.1) N/R
Mental component 53.9±5.0 (45.3–61.8) 50.2±9.5 (39.0–62.5) 51.8±7.6 (34.9–64.0) N/R

Values are given as n (%) or as mean ± SD (range). a Using Kellegren and Lawrence classification [25]; b calculated using the 28 joint Disease Activity Score [26]; 
c no difference between baseline and exit scores using Wilcoxon sign rank test. OA, osteoarthritis; RA, rheumatoid arthritis; PsA, psoriatic arthritis. N/R, not 
reported; N/A, not applicable.
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noticeable in the 30-min period following waking (t = –3.24, p = 0.0002). Table 4 depicts the 
differences between groups for the PRO data, reported as means across the full 28 days of 
testing. Significant differences in pain and stiffness were noted between the groups (p < 
0.005). No correlation between PROs and activity counts were seen. No clear relationship 
between activity counts and PROs was seen. 

Discussion/Conclusion

This study is the first to show that a detailed analysis of actigraphy variables could 
identify activity pattern changes associated with arthritis, where the daily summaries did not. 
These results suggest that the use of discrete variables may be a useful tool to help identify 
clinical cohorts and, thus, should be explored further to determine if they may be used as an 
effective clinical biomarker. 

Despite the ubiquitous presence of wearable sensors, limited research exists that directly 
compares the activity patterns of healthy adults and arthritis patients over sustained periods 
of time, while no other study has yet considered whether this data can be explored further to 
identify meaningful digital biomarkers. Although a recent study using mobile phones to 
identify biomarkers shows promise, it focused on specific, short-duration walking tasks 
rather than general PA, and was limited by its low success rate in meeting data collection 
quality criteria [8]. In studies that have investigated general PA patterns, arthritis patients 
have been shown to move significantly less than their healthy counterparts [15, 16], a result 
not replicated in this study. However, key differences exist which may partially explain these 
discrepancies. First, previous studies typically evaluated activity over a shorter duration of 
time, ranging from < 1 week [16] to 14 days [10], or focused on self-report measures of activity 
[27]. More habitual and normal patterns of activity may emerge with time; however, as 

Table 3. Differences in activity countsa between healthy controls and arthritis patients

Dependant variable Healthy controls Arthritis patients t test p value

Average daily activity counts
Time following waking

15 min 390,64.2 (9,570.17) 42,895.5 (12,568.1) –0.96 0.34
30 min 86,338.6 (20,113.9) 81,937.6 (21,053.8) 0.60 0.56
45 min 135,363.0 (30,286.5) 121,423.0 (31,688.4) 1.24 0.22
60 min 184,561.0 (41,770.7) 163,870.0 (47,302.2) 1.26 0.22
120 min 382,895.0 (104,630.0) 358,015.0 (98,553.7) 0.66 0.52
240 min 748,328.0 (199,125.0) 738,955.0 (180,628) 0.13 0.90
1,440 min 2,896,070.0 (463,906.0) 2,653,530.0 (476,761.0) 1.08 0.30

AUC activity counts
Time following waking

15 min 7.84 (0.78) 7.52 (0.52) 1.32 0.20
30 min 14.73 (0.91) 15.92 (0.99) –3.52 0.002**
45 min 22.00 (1.12) 23.64 (1.69) –3.32 0.002**
60 min 28.67 (1.96) 30.58 (2.49) –2.39 0.02*
120 min 59.34 (4.36) 58.74 (4.27) 0.37 0.71
240 min 122.82 (7.29) 117.67 (6.85) 1.90 0.07
1,440 min 950.42 (25.96) 959.74 (27.53) –0.75 0.46

Values are given as mean (SD). a Activity count as determined by the proprietary algorithm from ActiLife 
software. * p < 0.05; ** p < 0.005.
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baseline activity was not controlled for within this study, it is unclear whether this was the 
case in this cohort. Furthermore, previous research typically focused on a single arthritic 
cohort (e.g., specifically rheumatoid arthritis), rather than the variety of arthritic conditions 
evaluated in this study. Additionally, the cohort tested in this study was younger [15], was 
classed as lightly or moderately active [10], while the majority were all classified as being 
stable or with low disease activity [10], when compared to previous research. It is possible 
that participants in this study were less symptomatic or were more likely to still be of working 
age and therefore may be expected to have similar movement patterns during the day, irre-
spective of any symptoms they may be experiencing. 

Due to the variability in how daily activity may be reported or measured, the purpose of 
this study was to determine whether more discrete measures of activity were able to distin-
guish between healthy and clinical cohorts as the summary-level data does not explain how 
people move, but simply whether they move or not. In this way, the exploratory results from 
this study are potentially significant, as they highlight there is value in diving deeper into the 
data to understand how conditions such as arthritis may influence behaviour. In particular, 
it was decided to focus on activities following waking as this is an area that may often be 
symptomatic within arthritis patients. The assessment of the AUC for these discrete variables 
highlighted some statistically significant differences between the two cohorts. Interestingly, 
arthritis patients demonstrated higher activity counts, compared to their healthy counter-
parts within the early hours of waking. This difference was particularly noticeable in the first 
30 min following waking. This is in contrast to previously published research [10]. However, 
previous research reported differences in sedentary time across the day between healthy and 
arthritic participants, who were all classified as sedentary. In contrast, this study has demon-
strated that although in each examined time period both cohorts move the same amount, the 
manner in which they distribute their activity over time differs. Specifically, arthritis patients 
move more, earlier in the examined time periods. This initially appears counter-intuitive as 

Table 4. Differences in patient-reported outcomes (PRO) between healthy controls and arthritis patients, reported as mean 
values across the full 28 days of testing

Dependant variable Healthy 
controls

Arthritis 
patients

t test p value

Paina

In the last 24 h, reported in the evening 0.33 (0.82) 3.64 (2.8) 25.56 <0.0005
During the day, reported in the evening 0.29 (0.60) 3.54 (2.74) 26.20 <0.0005
Overnight, reported in the morning 0.24 (0.68) 3.17 (2.62) 25.36 <0.0005
In the morning, reported upon waking 0.32 (0.71) 3.32 (2.65) 26.64 <0.0005

Stiffnessb

Duration of stiffness (maximum number of minutes) 27.27 (42.34) 233.68 (468.68) 9.35 <0.0005
30 min (% of participants) 0.0 0.4
30 min to 1 h (% of participants) 0.0 0.0
1–2 h (% of participants) 21.2 22.6
2–4 h (% of participants) 12.1 19.6
4 h (% of participants) 0.0 4.5
All day (% of participants) 0.0 12.9
None (% of participants) 66.7 40.0

Severity of stiffness during the day, reported in the evening 0.33 (0.52) 1.73 (0.94) 27.56 <0.0005
Intensity of stiffness in the morning, reported upon waking 0.41 (0.56) 1.66 (0.56) 25.60 <0.0005

Values are given as mean (SD) unless indicated otherwise. a Pain was reported on a 10-point Likert scale, where 0 = no pain; 
b stiffness was rated on a scale of 0–4 with severity increasing with the score.
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morning stiffness is a common symptom in arthritis, and so it would be expected that such 
stiffness would limit this observed greater movement early in the morning, especially within 
the first hour [22]. Indeed, qualitative research has suggested that morning stiffness severely 
impacts functional tasks including work [22]. For instance, an antalgic gait or short cadence 
due to pain or stiffness may result in greater steps in the morning until symptoms ease. 

However, functional limitations typically correlate with the severity of self-reported 
symptoms [20, 28], yet no correlations were seen between PROs and activity accounts in this 
study, despite the differences in PROs between the cohorts. This suggests that this early 
morning difference in activity patterns may be a habitual coping strategy. It is possible that 
arthritis patients, through lived experiences of their condition, know that they need to react 
to their symptoms whether positive or negative. For example, if participants feel well upon 
waking, they may try to ensure that they start their tasks and functional activities early due 
to the variable nature of the condition [21, 29], in order to get ahead of the condition. Alter-
natively, participants with high stiffness may attempt to do more than usual earlier in the 
morning as they are aware of the benefits that being active has on their symptoms [21, 29–31]. 
Finally, it may be that the day-to-day fluctuations in self-reported pain simply do not affect 
the way people are organizing their early morning activities, and that participants with 
arthritis know that they need to “go on as usual” and thus will work against the stiffness or 
other morning symptoms in order to ensure that they are up and functioning as much as they 
can so as to allow them continue with the rest of their day [29, 32, 33]. Nevertheless, it cannot 
be excluded that in the presence of significant variations in pain/stiffness, the early-morning 
activity would be significantly affected.

It is clear from the literature that participants with arthritic conditions will use a variety 
of strategies to help them cope with their condition [26–30], and it may be expected that these 
strategies may be evident in behaviours such as their movement patterns. Previously, the 
subtlety of these strategies may not have been obvious in summary-level activity data. Thus, 
it is likely that the strategies employed by participants are manifested by how they move, 
rather than whether they move, thus subtle differences require subtle assessments in order 
to accurately capture them and, by association, understand them. 

Irrespective of whether participants were reacting to increased or decreased symptoms, 
this study has highlighted that in the morning they appear to distribute their movements 
differently to healthy controls. A main strength of this study is that participants were moni-
tored over a 28-day period, thus we can be confident that the findings are reflective of their 
normal behaviours. However, as this was an exploratory study, no power calculation had 
been performed. Thus, future work needs to evaluate these patterns within a large cohort to 
confirm its presence further. Furthermore, baseline activity and disease severity were not 
controlled for within this analysis. Nonetheless, this study has demonstrated the potential 
usefulness of monitoring discrete-level data to compare and differentiate clinical and healthy 
cohorts. With further investigation, this may help identify meaningful behavioural digital 
biomarkers that can be used in clinical trials to establish intervention effectiveness. 
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