
Detection of Mild Cognitive Impairment and Alzheimer’s Disease 
using Dual-task Gait Assessments and Machine Learning

Behnaz Ghoraani, Ph.D.a,*, Lillian N. Boettchera, Murtadha D. Hssayenia, Amie Rosenfeld, 
D.P.T.b, Magdalena I. Tolea, Ph.D.b, James E. Galvin, M.D., M.P.H.b

aDepartment of Computer and Electrical Engineering and Computer Science, Florida Atlantic 
University, Boca Raton, FL 33431 US

bComprehensive Center for Brain Health, Department of Neurology, University of Miami, Miami, 
FL 33136 US

Abstract

Objective: Early detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) 

can increase access to treatment and assist in advance care planning. However, the development of 

a diagnostic system that d7oes not heavily depend on cognitive testing is a major challenge. We 

describe a diagnostic algorithm based solely on gait and machine learning to detect MCI and AD 

from healthy.

Methods: We collected “single-tasking” gait (walking) and “dual-tasking” gait (walking with 

cognitive tasks) from 32 healthy, 26 MCI, and 20 AD participants using a computerized walkway. 

Each participant was assessed with the Montreal Cognitive Assessment (MoCA). A set of gait 

features (e.g., mean, variance and asymmetry) were extracted. Significant features for three 

classifications of MCI/healthy, AD/healthy, and AD/MCI were identified. A support vector 

machine model in a one-vs.-one manner was trained for each classification, and the majority vote 

of the three models was assigned as healthy, MCI, or AD.

Results: The average classification accuracy of 5-fold cross-validation using only the gait 

features was 78% (77% F1-score), which was plausible when compared with the MoCA score 
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with 83% accuracy (84% F1-score). The performance of healthy vs. MCI or AD was 86% (88% 

F1-score), which was comparable to 88% accuracy (90% F1-score) with MoCA.

Conclusion: Our results indicate the potential of machine learning and gait assessments as 

objective cognitive screening and diagnostic tools.

Significance: Gait-based cognitive screening can be easily adapted into clinical settings and may 

lead to early identification of cognitive impairment, so that early intervention strategies can be 

initiated.
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Introduction

Alzheimer’s disease (AD), the most common cause of dementia, is one of the most prevalent 

causes of mortality in the United States. In 2018, AD accounted for 30.5 deaths per 100,000 

people nationwide [1]. Mild cognitive impairment (MCI) is abnormal cognitive decline 

beyond expected decline of normal aging that represents a prodromal stage of AD with an 

estimated community prevalence of 21% for those over age 65 [2]. The rate of progression 

to AD in people with MCI is an estimated 10-15% per year, which is much higher than the 

rate of 1% to 2% seen in general population [3] [4]. However, early diagnosis remains a 

difficult task. By the time AD is diagnosed, sufficient neuronal injury has occurred to the 

extent that reversal of the disease is unlikely [5]. In this paper, we developed a new method 

for early diagnosis of MCI and AD that coupled with emerging therapies, could help 

intervene and slow, or perhaps even halt, the progression [6].

Current clinical practices typically use cognitive tests, such as Montreal Cognitive 

Assessment (MoCA) [7], to screen patients for MCI and AD. The challenge with these 

cognitive tests is that they may not be efficient at identifying early-stages of cognitive 

impairment because when applied to general populations, the cutoff scores have to be 

adjusted for each individual according to education level and cultural background and may 

be less sensitive to subtle cognitive changes and activities of daily living in the earlier stages 

of cognitive impairment [8]. Moreover, these tests require training for proper administration 

and are usually performed after cognitive decline becomes noticeable or is offered as a 

complaint by the patient or a family member. Less than half of older adults are currently 

screened and diagnosed for cognitive decline, and impairment is most frequently diagnosed 

at the mild-to-moderate stages of disease [9]. The focus of this study was to develop an MCI 

and AD detection method that can be performed by primary providers who may be untrained 

or uncomfortable performing cognitive assessments [10].

Gait has been shown to have a robust relationship with cognition [11] [12]. Unlike cognitive 

tests, gait assessment is a common component of physical examinations across a variety of 

medical disciplines. Walking is a process that requires memory, executive function, motor 

coordination, and attention, and hence dual-task gait, which refers to walking while 

performing an attention-demanding task, has shown to be affected more in individuals with 
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cognitive impairment than in those without cognitive deficits [13]. Therefore, the dual-task 

assessment has been used to detect individuals with an abnormal cognitive decline via 

assessment of decline in performance from single-(e.g. walking) to dual-task walking tests 

(e.g., walking while subtracting) [14]. However, most studies investigated the association 

between gait performance and cognitive decline using statistical approaches [15] [16]. They 

used methods such as analysis of variance to identify aspects of gait that significantly 

change with increased cognitive load without providing an aggregated model to discriminate 

AD or MCI subjects from the healthy controls. We hypothesize that using machine learning 

approaches we could translate automatically and objectively the gait data from the dual-task 

assessments into clinically actionable knowledge about an individuals’ cognitive state. Our 

rationale is that developing a model that does not require cognitive testing and is solely 

based on gait assessments may lead to more effective cognitive screening and diagnostic 

tools that can be easily adapted into the clinical care setting [17].

The contribution of this paper is twofold. First, we extract existing and novel gait features 

from the single and dual-tasking gait data and determine the gait features that are important 

in developing a machine learning-based detection of healthy, MCI, and AD groups. Second, 

we develop a machine learning technique that associates these significant gait features from 

the single and dual-tasking gait to a clinical diagnosis: AD, MCI, or healthy. Our approach is 

novel because to our best knowledge, no research study has explored the advantage of 

machine learning techniques on dual-task gait assessment data to detect MCI and AD 

subjects. Machine learning has been shown to be successful in detecting MCI subjects using 

different types of subjects’ data such as MRI, diffusion tensor imaging, and 

electroencephalogram (EEG) (reviewed in [18]). However, these methods rely on expensive 

clinical protocols to collect data with extensive infrastructure and expensive medical 

equipment. Our technique can objectively detect subjects with AD or MCI from healthy 

subjects based on the gait data as the subjects perform a series of single and dual-task 

assessments. This will enable tools that can be performed by primary providers to detect 

MCI or AD subjects without using subjective cognitive assessments

2. Materials and Methods

Figure 1 provides an illustrative description of our approach to detect cognitive status based 

on gait assessments.

2.1 Dataset

Data from a retrospective cohort of community-dwelling older adults participating in 

dementia research in an academic research setting were used in this study. The cohort 

consisted of 78 participants with 32 healthy, 26 MCI, and 20 AD. None of the participants 

had clinically detectable mobility impairments. Various gait characteristics were measured 

using a computerized walkway consisting of a pressure sensitive mat with a size of 20 ft. 

long x 4 ft. wide and a gait analysis software. For 35 subjects, a Zenomat system 

(ProtoKinetics LLC) was used and a GAITRite system (CIR Systems, PA) for the other 43 

participants. Previous studies have shown that the two systems have minimal differences in 

providing the gait characteristics that were used in our study [19]. The study was approved 
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by the Institutional Review Board at Florida Atlantic University and was completed in 

accordance with the Helsinki Declaration.

2.2 Procedures

Cognition: Each subject was assessed with the MoCA test, which assesses performance on 

several cognitive domains including executive function, memory, orientation, attention, 

language, and visuospatial abilities, and is commonly used as a measure of global cognitive 

function. Total scores are derived by summing up individual cognitive domain scores and 

range from 0 to 30, with higher scores indicating better performance. It takes approximately 

10 to 12 minutes to complete.

Gait: Subjects performed a series of single and dual-task assessments as their gait 

characteristics were measured and recorded using the computerized walkway. Participants 

were instructed to complete three trials of consecutive walking: single task normal speed 

walking (normal walking), dual-task normal speed walking while performing a verbal task 

(saying the alphabet out loud), and a second dual-task normal speed walking while 

performing a working memory dual-task (counting backward out loud from 100 by 3s). 

Table 1 provides the participants’ demographics.

2.3 Feature Extraction

We used the ProtoKinetics Movement Analysis Software (PKMAS) software to extract gait 

features from the Zenomat system and GAITRite software for the GAITRite system. For 

every trial, we extracted the mean, standard deviation (SD), and asymmetry for the following 

eight gait characteristics: stride time, step time, single support time, swing time, double 

support time, stance time, stride length, and step length. Asymmetry was calculated as the 

ratio of the left to right leg mean values. In addition, we calculated velocity (meters per 

second) and cadence (number of steps per minute) from the gait data of each trial. We also 

calculated the dual-task cost as the rate of change in each of the above metrics from trial 1 to 

trial 2 and 3 as well as trial 2 to 3 as (trial i-trial j)/trial i. This process resulted in a total of 

108 gait features for every participant.

2.4 Feature Selection

We selected a set of uncorrelated significant features for each of the three classification tasks 

of: healthy to MCI, healthy to AD, and MCI to AD in two steps. For every classification 

task, in step 1, we calculated the P-value using chi square (χ2) or t tests (as deemed 

appropriate) between the two comparison groups and identified the significant features as 

the ones with a P-value<0.05. Figure 2 shows the step 1 process for identification of the 

features with a P-valuc<0.05 as indicated by a bracket for the step time gait features.

However, given that some of the extracted gait features such as double support and stance 

time or single support and swing time are correlated, in step 2, we identified the set of 

significant features with a correlation coefficient of greater than 90% and selected the 

significant feature with the lowest P-value, which were then used for training the 

classification model. Figure 3 illustrates the step 2 process for selection of the uncorrelated 

significant features. For visualization purposes, we are only showing the selection step 
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between the double support and stance mean features in each trial for discrimination of the 

three classes; however, the concept applies to all the features. To better visualize the 

significance of each feature, we have shown one over the P-value as the significance value of 

each feature. Hence, a higher significance value indicates a lower P-value and a more 

significant feature.

2.5 Machine Learning with Gait Features

We used an SVM-based classification technique to detect healthy, MCI, and AD subjects 

based on their gait features. SVM is a powerful binary classification tool, which consists of a 

training and a testing stage. In the training stage, SVM uses sample data from both classes to 

generate a hyperplane in the data feature space, with each side of the hyperplane 

representing one of the classes. In the testing stage, SVM uses the generated hyperplane to 

classify new data points. When the data is not linearly separable, SVM uses a kernel 

function to map the feature vectors to a higher dimensionality space with a better separation. 

To avoid overfitting, a regularization parameter, C, is introduced as a tradeoff between 

misclassification and overfitting. The best hyperplane is chosen to maximize the distance 

between the nearest points of each class to the hyperplane and minimize any generalization 

errors when new data points are presented to the SVM. In this work, we used three SVMs in 

a one-vs-one manner. This design will enable the integration of the information learned 

about the significant features between two groups in developing the classification model. We 

trained one model for each of the following classification tasks: MCI vs. healthy, AD vs. 

healthy, and AD vs. MCI. For each classification task, we used the selected gait features for 

training the SVM classifier. In the testing stage, the three trained SVMs were applied to the 

gait features of a new subject, and the majority vote of the three SVMs was used to associate 

a diagnostic label (healthy, MCI, or AD). To account for cases where the three diagnoses are 

equally voted, we used the approach by Platt et al. [20] to assign a posterior class probability 

to each classification. Hence, when a subject was equally voted to healthy, MCI, and AD, we 

assigned the diagnosis with the highest probability as the diagnostic label.

Parameter Selection: There are several hyperparameters to control the shape of the 

hyperplane classifier in an SVM: whether a linear separation is sufficient or a kernel is 

needed; regularization parameter (C); and any parameters that are associated with the kernel. 

In this work, we used the Gaussian radial basis function (RBF) with a gamma parameter (γ) 

to control the shape of the kernel. For every SVM, the hyperparameters (linear or an RBF 

kernel, C ∈ 2{−2,…,2}, and γ ∈ 2{−4,…,4} were selected based on a five-fold validation of the 

training data.

2.6 Machine Learning with MoCA Score

For comparison purposes, we developed a second SVM-based classifier to detect healthy, 

MCI, and AD subjects based on their MoCA cognitive assessment scores only. All the 

training and testing stages as well as the hyperparameters’ selection techniques described in 

section 2.5 were applied when using the MoCA score.
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3. Results

We applied the developed gait feature selection and classification on the single and dual-task 

gait assessment data explained in Section 2. Presented in Figure 2 are select results from step 

1 of the feature identification process. As the figure indicates, the step time mean in trial 3 

was larger for the MCI and AD subjects in comparison with the healthy subjects and 

significant for the discrimination of healthy from the MCI and AD subjects (Figure 2A). 

However, step time SD significantly increased from healthy to AD at all the three trials and 

to MCI at trial 1 and 3 (Figure 2B). The step time asymmetry was significant between the 

healthy and MCI subjects at trial 1 (Figure 2C). There was also a significant decline in the 

step time from trial 1 to trial 3 when healthy subjects were compared to the MCI and AD 

groups (Figure 2D). As a result, a total of 11 significant features were identified from the 

step time gait characteristics, where five of them discriminate healthy vs. MCI, five healthy 

vs. AD, and one for MCI vs. AD. Step 2 in the process of feature selection is presented in 

Figure 3, for a select pair of correlated features: double support and stance mean. As 

indicated in the figure, when separating the healthy from MCI group (Figure 3A), the stance 

mean-values of all the three trials and the double support mean of trial 2 were significant. 

However, the double support mean feature from trial 2 was not selected as it has a 

correlation coefficient of greater than 0.9 with the stance feature but its significance value is 

less than the stance feature. In a similar process, the double support mean of trial 2 from the 

healthy vs. AD discrimination was not selected either (Figure 3B). A summary of all the 

significant features and features selected for the three classification groups is presented in 

Figure 4. About 40-50% of the significant features had a high correlation with the other 

features and were not selected for developing the machine learning classifiers.

Further investigation as shown in Figure 5 indicated that the correlated features were mostly 

the mean values and were removed after considering the correlation. Figure 5 shows the 

distribution of the significant features (Figure 5A) and selected features (Figure 5B) per 

mean, SD, asymmetry, and dual-task cost. We found that in some cases (healthy vs. AD), 

over half of the significant features were correlated and not selected. Figure 6 provides the 

significance of the gait features extracted from every trial as well as the ones representing 

the dual-task cost. The vertical axes provide the average of the one over P-values of all the 

selected features in the same category. We found that trial 3 provided the most significant 

features for differentiating MCI from healthy subjects (Figure 6A), dual-task cost provided 

the most significant features for differentiating AD from healthy subjects (Figure 6B), while 

trial 1 was significant in separating AD from MCI subjects (Figure 6C).

Next, we trained three SVMs based on the selected gait features from 80% of the subjects in 

each of the healthy, MCI, and AD groups, and tested them on the remaining 20% subjects. 

For implementation, we used LIBSM toolbox in MATLAB [21]. Repeating this process five 

times, every time with a different set of training and testing subsets, resulted in an average 

classification accuracy of 78% and F1-score of 77%. The average classification accuracy and 

F1-score when using the MoCA scores only were 83% and 84%, respectively. The SVM 

selected the MoCA cut off of <26 for classifying MCI from healthy, <19 for AD from MCI, 

and <22 for AD from healthy. Table 2 provides the classification distribution using the 

MoCA score. For comparison purposes, we repeated the experiment using all the gait 
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features instead of the selected significant features. This experiment resulted in a much 

lower average accuracy of 69% indicating the importance of one-vs-one classification design 

used in our approach. In addition to the three classification accuracy results, we combined 

the MCI and AD as one group and in Table 2 reported the classification results for healthy 

vs. MCI/AD subjects when using only the gait features and only the MoCA scores.

4. Discussion

Early detection of persons with MCI and AD remains a great challenge, both in primary care 

and specialty practices. We developed an approach based on dual-tasking gait assessments 

and machine learning that can detect MCI and AD and discriminate them from healthy 

subjects. As hypothesized, we were able to use dual-tasking gait assessment data and a 

machine learning approach and developed the first automated and objective algorithm to 

detect healthy vs. MCI vs. AD subjects based on only their gait data. Our approach resulted 

in a plausible average classification accuracy of 78% using only gait assessments (Table 2). 

We performed a comprehensive investigation of the gait characteristics with respect to the 

disease stage at MCI and AD and made several interesting observations.

Change in single- and dual-task gait:

Our investigations showed that most of the gait features from single and dual-task gait were 

significant in discriminating between healthy vs. MCI, healthy vs. AD, and MCI vs. AD 

subjects. As shown in Figure 4A, more significant changes were associated when comparing 

the healthy gait to the AD gait (with 50 features) in comparison to the healthy to MCI gait 

(43 features) and MCI to AD gait (22 features). Velocity was previously reported to have a 

significant decline in all the three classifications (healthy to MCI or AD [22] and MCI to AD 

[23]), and we observed a similar behavior (Figure 4A). However, more complex cognitive 

tasks seem to be required to elicit the gait speed differences between healthy from 

cognitively declined subjects. The dual-task cost in velocity from trial 1 to trial 2 was not 

significant in differentiating healthy from MCI or AD, while it was significant from trial 1 to 

3. Also, we did not find any significant decline in the velocity from single to dual tasking 

between the MCI and AD subjects although the velocity was consistency lower for the AD 

subjects.

Important gait features:

An interesting observation after removing the correlated features is that about 50% of the 

significant features were correlated, resulting in 25 uncorrelated significant features for 

healthy vs. MCI and healthy vs. AD and only 13 for MCI vs. AD (Figure 4B). This was 

expected as some of the extracted features (e.g., stance and double support time, swing and 

single support time) quantify a similar gait characteristic. Step time, swing time, double 

support, stance, and step length were the gait characteristics with the most number of 

features for healthy vs. MCI or AD plus stride time for healthy vs. AD classification. The 

gait features with the most number of features were velocity, double support, stance, stride 

length, and step length for MCI vs. AD.
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Gait variability:

Gait variability was the most significant feature in detecting cognitive decline (Figure 5). In 

case of healthy vs. AD, 60% (15 out of 25) of the selected features were from the gait 

standard deviation, 46% (6 out of 13) for MCI vs. AD and 44% (11 out of 25) for healthy vs. 

MCI. Beauchet et al. [24] have also shown gait variability increases significantly for 

cognitively declined subjects, and the work by Sheridan et al. [25] has shown that the effect 

of cognitive decline on gait variability is larger than the gait mean performance.

Gait asymmetry:

In some studies, gait asymmetry properties have suggested to be useful only in detecting gait 

pathology with a unilateral onset [26] and have been used in detecting different dementia 

subtypes [27]. However, our study agrees with the work by Maquet et al. [28], which 

suggested that healthy subjects have a significantly better symmetry than MCI and AD 

subjects. In our cohort, we found that the gait asymmetry increases with cognitive decline 

(Figure 5). Step length asymmetry significantly increased from healthy to MCI and MCI to 

AD. Stance and swing asymmetry were also significantly higher in AD compared to MCI.

Change in gait performance with disease progression:

Our further investigation shows that there is a more significant decline in the single and 

dual-task performance as the disease progresses. As shown in Figure 6, the significance 

value of the healthy vs. AD gait features in all the three trials was higher than the healthy vs. 

MCI, suggesting that gait impairment as measured by dual-tasking may increase as 

individuals transition from MCI to AD. In addition, the performance decline of the MCI 

subjects becomes more evident with the increase of the cognitive load in trial 2 and then trial 

3 (Figure 6A), but as the disease advances to AD, the decline becomes more evident even in 

trial 1 without adding a cognitive load (Figure 6B–C). Moreover, the dual-task cost from 

trail 1 to trial 2 and to trial 3 increases more for AD subjects than the MCI subjects (Figure 

6C). A similar behavior was reported by Montero-Odasso et al. [15], where the authors 

reported that a significant gait change is associated with AD.

Comparisons with the state-of-the-art:

A few examples of the machine learning applications related to gait characterization and 

cognitive decline include age-sensitive classification of single vs. dual-task gait [29], 

estimation of the Mini-Mental State Examination cognitive score from gait [30], and 

detection of healthy from AD [31]. To the authors’ knowledge, the only machine learning 

approach directly related to our approach is the work by Costa et al. [31], where healthy 

subjects were distinguished from AD subjects with an average classification accuracy of 

78.9% based on their postural kinematics. We compared our approach to a classification 

based on cognitive assessment scores. The machine learning algorithm picked a cutoff of 26 

for detecting MCI from healthy, which is comparable to the reported 25-26 for screening 

MCI subjects [32] [33]. The algorithm selected a cut off of 19 for detecting AD from MCI 

subjects; however, there is no set cutoff in the literature to compare to. The classifier based 

on MoCA resulted in 83% accuracy. As expected from the fewer selected features (Figure 

4), the discrimination of MCI from AD is more challenging using only the gait features. The 
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average classification accuracy of healthy vs. MCI or AD subjects was increased to 86% 

with an F1-score of 88% when using only the gait features, which is comparable to 88% 

average accuracy and 90% F1-score with MoCA (Table 2).

5. Conclusion

The aim of this study was to develop an automated and objective method for detecting MCI, 

and AD subjects and discriminating them from healthy controls. For this purpose, we 

collected gait data from a total of 78 elderly subjects as they performed a series of single and 

dual-task walking. We extracted a total of 108 gait features from each subject and identified 

the uncorrelated significant features. Next, we used a machine learning approach to detect 

the clinical diagnosis from the selected gait features. The approach resulted in 25 

uncorrelated significant gait features for discriminating healthy vs. MCI and healthy vs. AD, 

and 13 for MCI vs. AD. The five-fold classification accuracy was 78% using the selected 

gait features, which was slightly lower than 83% when using the cognitive assessment score. 

This work is the first work towards the selection of important gait features for a machine 

learning-based classification and developing an automated and objective technique for 

detection of cognitive decline in MCI and AD subjects based on only gait assessments. Gait-

based cognitive screening has practical value as gait assessments are more commonly done, 

compared with cognitive assessments, in primary care settings where the majority of patients 

are seen. Using gait as a screen for cognitive impairment can prompt clinicians to conduct 

further evaluations for diagnosing MCI and AD.
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Highlights

• Detection of mild cognitive decline (MCI) and Alzheimer’s disease (AD) 

from dual-task gait

• First application of machine learning on dual-task assessment data for MCI 

and AD

• Accuracy of 78% with 77% F1-score for detecting healthy, MCI, and AD 

using only gait

• Accuracy of 86% with 88% F1-score for detecting MCI or AD from healthy 

using only gait

• Provided several interesting insights about gait changes from healthy to MCI 

to AD
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Figure 1. 
The overall approach for detection of AD, MCI, and healthy subjects from their single and 

dual-task gait assessment data.
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Figure 2. 
Feature distribution of step time (A) mean, (B) standard deviation, and (C) asymmetry at 

trials T1, T2, and T3 as well as (D) dual-task cost from trial T1 to T2 (T1T2), T1 to T3 

(T1T3), and T2 to T3 (T2T3). The outliers are shown as an asterisks. The significant 

features were identified by brackets.
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Figure 3. 
The significance value of the double support mean and stance mean at trials 1, 2, and 3 for 

discrimination of (A) healthy from MCI subjects, (B) healthy from AD subjects, and (C) 

MCI from AD subjects. The selected features are identified by a check mark. “r” stands for 

correlation coefficient.
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Figure 4 –. 
The distribution of the (A) significant features and (B) selected features per different gait 

features and at different trials. Cost refers to dual-task cost between the trials.
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Figure 5. 
The distribution of the (A) significant features and (B) selected features per feature type of 

mean, SD, asymmetry, and dual-task cost from one trial to another.
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Figure 6. 
The average significance value of the selected gait features from each trial as well as the 

dual-task cost in differentiating between (A) healthy from MCI, (B) healthy from AD, and 

(C) MCI from AD.
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Table 1.

Participant Characteristics of the Healthy, MCI, and AD Groups

Characteristic All (n=78) Healthy (n=32) MCI (n=26) AD (n=20)

Sex, n (%)

 Male 39 (50) 23 (71.88) 10 (38.46) 6 (30)

 Female 39 (50) 9 (28.12) 16 (61.54) 14 (70)

Age, years, mean±SD 73.30±10.63 65.13±10.53 76.81±6.03 81.40±5.88

MoCA score, mean±SD 22.03±6.18 26.72±2.44 22.42±2.33 14.00±5.71

Education, years, mean±SD 15.07±2.50 16.67±1.15 15.17±2.56 14.00±2.83
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Table 2.

Classification accuracy of the Healthy, MCI, and AD Groups

A. Classification based on only gait assessment data

Diagnosis Healthy MCI AD

Healthy 85 13 2

MCI 10 70 20

AD 5 20 75

Diagnosis Healthy MCI/AD

Healthy 85 15

MCI/AD 13 87

B. Classification based on MoCA scores

Diagnosis Healthy MCI AD

Healthy 85 15 0

MCI 16 84 0

AD 0 20 80

Diagnosis Healthy MCI/AD

Healthy 85 15

MCI/AD 9 91
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