Skip to main content
. 2020 Oct 27;37(4):965–972. doi: 10.1007/s13187-020-01907-x

Table 2.

Word count, frequency of linguistic domain characteristics, and gender bias calculation of letters of recommendation by applicant gender and race/ethnicity

Applicant gender Applicant race/ethnicity
Letter characteristics Female Male P value URM Non-URM P value
Word count1 535.89 527.07 0.34 531.76 533.72 0.55
Grindstone domain2 0.15 0.17 0.15 0.14 0.16 0.72
Standout domain 0.51 0.53 0.95 0.36 0.52 < .01
Desirability domain 0.11 0.10 0.57 0.07 0.10 0.35
Research domain 1.26 1.27 0.99 1.07 1.27 0.26
Patient care domain 0.21 0.21 0.49 0.27 0.20 0.06
Skill/knowledge domain 0.06 0.08 0.49 0.08 0.07 0.41
Efficient/organized domain 0.23 0.26 0.30 0.22 0.25 0.69
Agentic personality Domain 0.24 0.22 0.45 0.27 0.23 0.10
Communal/friendly domain 0.31 0.33 0.28 0.37 0.32 0.12
Social/familial domain 0.09 0.09 0.98 0.08 0.09 0.39
Introverted domain 0.01 0.01 0.91 0.01 0.01 0.70
Gender bias3 −0.16 −0.18 0.15 −0.14 −0.17 0.28

URM = Underrepresented minority: self-reported as Black/African American and/or Hispanic/Latino

1Word count excluding heading, salutation and signature. 2Numerical value for each domain represents the frequency with which terms contained in that particular domain appear within the letter of recommendation. Higher numbers represent increased use. 3Gender bias as calculated by http://slowe.github.io/genderbias/. Negative value represents male bias in language used. Higher absolute value corresponds with the strength of the bias