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A B S T R A C T   

With the number of affected individuals still growing world-wide, the research on COVID-19 is continuously 
expanding. The deep learning community concentrates their efforts on exploring if neural networks can 
potentially support the diagnosis using CT and radiograph images of patients’ lungs. 

The two most popular publicly available datasets for COVID-19 classification are COVID-CT and COVID-19 
Image Data Collection. In this work, we propose a new dataset which we call COVID-19 CT & Radiograph 
Image Data Stock. It contains both CT and radiograph samples of COVID-19 lung findings and combines them 
with additional data to ensure a sufficient number of diverse COVID-19-negative samples. Moreover, it is sup
plemented with a carefully defined split. 

The aim of COVID-19 CT & Radiograph Image Data Stock is to create a public pool of CT and radiograph 
images of lungs to increase the efficiency of distinguishing COVID-19 disease from other types of pneumonia and 
from healthy chest. We hope that the creation of this dataset would allow standardisation of the approach taken 
for training deep neural networks for COVID-19 classification and eventually for building more reliable models.   

1. Introduction 

At the end of 2019, a new coronavirus SARS-CoV-2 (Severe Acute 
Respiratory Syndrome Coronavirus 2) appeared in Wuhan, which then 
triggered a global pandemic. SARS-CoV-2-induced pneumonia has been 
termed COVID-19 (Coronavirus Disease 2019). The main symptoms of 
COVID-19 are high fever, dry cough, shortness of breath, muscle pain, 
diarrhea, myalgia, nasal obstruction and runny nose [1]. As of July 15, 
2020, a total of 13,690,108 confirmed cases with COVID-19 pneumonia 
have been reported globally, including 586,265 deaths (4.28%). 

The current diagnostic method for COVID-19 is real time reverse 
transcription – polymerase chain reaction (RT-PCR) [2]. The main lim
itation of this method is the insufficient amount and quality of the 
clinical material from which the nucleic acids are isolated [3]. This can 
result in false negative Results. 

Lung CT and radiograph scans are gradually recognised as an alter
native for COVID-19 diagnosis. The lungs of people infected with 
COVID-19 are characterised by consolidation, ground-glass 

opacification, bilateral involvement, peripheral and diffuse distribution. 
Lung CT scans can be used to diagnose COVID-19 in patients in acute 
and convalescent periods of disease [1]. Only patients with severe or 
permanent lung damage will show changes in CT after recovery, which 
makes it impossible to determine the percentage of the population that 
has undergone the disease based on lung scans [4]. The favorable as
pects of CT scanners are their availability in many hospitals and the 
short amount of time required to obtain the Results estimated to be 
around 15 min. The use of CT for initial diagnostics might significantly 
increase testing capabilities. On the other hand, the imaging costs are 
relatively high, which may limit the use of CT for COVID-19 diagnostics. 
Moreover, the use of CT for COVID-19 diagnostics requires thorough 
cleaning of the equipment between examinations and a large surface of 
contact increases the risk of infection, compared to the RT-PCR method 
performed in sterile conditions [5]. Despite the large number of publi
cations indicating high sensitivity and specificity of CT, the radiologists’ 
position from American College of Radiology (ACR) advises against 
putting lung CT on the first line of COVID-19 diagnostics [6]. 
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The advantages of radiograph scans for COVID-19 diagnostics 
include greater availability of radiographs, lower radiation doses to 
which the patient is subjected and a short scanning time. 

Recently, both CT and radiograph scans have been shown to enable 
training models which achieve promising Results in the COVID-19 
classification task [7,8]. 

Considering the advantages and disadvantages of both methods we 
decided to create a database containing both CT and radiograph images. 

Currently, the most popular datasets for COVID-19 classification are 
COVID-CT [9] and COVID-19 Image Data Collection [10]. These data
sets contain images of CT and radiograph chest scans of individuals 
affected with COVID-19 as well as of patients not affected with 
COVID-19. 

COVID-19 Image Data Collection contains images of both CT and 
radiograph scans. The number of CT scans is insufficient for training 
deep models. The number of radiograph images is higher but there is not 
enough negative samples. Moreover, this dataset does not define a data 
split. 

COVID-CT concentrates on CT scans and defines a data split. How
ever, it provides only a rough categorisation of samples into COVID-19- 
positive and negative cases, where negative cases can be images of 
healthy individuals or patients with a different disease. 

Training neural networks on these datasets requires including sam
ples from additional data sources such as common bacterial pneumonia 
[11] or lung nodule analysis [12,13]. 

Apostolopoulos and Mpesiana [14] used a MobileNet v2 [15] 
pre-trained on ImageNet [16] for fine-tuning on two datasets which 
were created using samples from COVID-19 Image Data Collection [10], 
COVID-19 X-ray collection available on kaggle [17], and a dataset 
containing radiograph scans of common bacterial pneumonia [11]. They 
achieved sensitivity of 98% and specificity of 96% on the dataset which 
included both common bacterial pneumonia and viral pneumonia cases 
as distractors for the COVID-19 class, and sensitivity of 99% and spec
ificity of 97% on the dataset which included only common bacterial 
pneumonia cases. 

Zhao et al. [9] pre-trained a DenseNet [18] on ChestX-ray14 [19] and 
fine-tuned it on COVID-CT. They achieve AUC of 0.82. 

He et al. [7] used models pre-trained on ImageNet, which were 
further pre-trained using contrastive self-learning [20] first on LUNA 
dataset [12,13] and then on COVID-CT, followed by fine-tuning on 
COVID-CT. This methodology allowed them to achieve AUC of 0.94 with 
DenseNet-169. 

The huge variety of scenarios in which the models are evaluated 
prevents any comparison between them. As a result, it is difficult to tell 
which design choices contribute to improved performance of some 
models and to use this knowledge to build incrementally more reliable 
solutions. 

In this work, we propose COVID-19 CT & Radiograph Image Data 
Stock, which combines data from multiple sources into a single dataset. 
The advantages of COVID-19 CT & Radiograph Image Data Stock 
include:  

• a large number of both CT and radiograph scans of COVID-19 class  
• a large number of negative samples in both modi  
• the exact class of the negative samples is known  
• the source of each sample is known  
• a data split is defined. 

Using COVID-19 CT & Radiograph Image Data Stock does not require 
employing any additional data sources. We hope that this dataset will 
allow for better understanding of the influence of individual choices on 
the final performance of COVID-19 classification models. 

To give a better insight into benefits of using COVID-19 CT & 
Radiograph Image Data Stock for training neural networks, we compare 
the performance of several popular architectures pre-trained on 
ImageNet [16] when trained on COVID-CT, COVID-19 Image Data 

Collection and COVID-19 CT & Radiograph Image Data Stock in multiple 
scenarios and show that models trained on COVID-19 CT & Radiograph 
Image Data Stock achieve better Results both in case of CT and radio
graph data. 

Our main contributions are as follows  

1. We build a rich and self-contained database for COVID-19 
classification,  

2. We train several neural networks using COVID-19 CT & Radiograph 
Image Data Stock to provide baseline benchmarks,  

3. We compare the models trained on COVID-19 CT & Radiograph 
Image Data Stock with the models trained on COVID-19 Image Data 
Collection and COVID-CT and show that models trained on COVID- 
19 CT & Radiograph Image Data Stock are more robust,  

4. We show that using a precise class information helps to improve the 
model’s ability to distinguish between COVID-19-positive and 
negative samples. 

The rest of this work is organised as follows: in section 2 we shortly 
characterize COVID-CT and COVID-19 Image Data Collection, and 
describe in detail how was COVID-19 CT & Radiograph Image Data 
Stock created. In section 3, we describe the evaluation of models trained 
on each of the datasets and in section 4, we present the Results. In 
section 5, we conclude the paper. 

2. COVID-19 CT & Radiograph Image Data Stock 

In this section, we briefly characterize COVID-CT [9] and COVID-19 
Image Data Collection [10] shortly discussing their strong and weak 
points and describe in detail how the proposed COVID-19 CT & Radio
graph Image Data Stock was created. 

COVID-CT. COVID-CT [9] is a dataset containing images derived 
from over 750 preprints on COVID-19. The images present chest CT 
scans in axial plane and are in png format. The task is to classify images 
as belonging to COVID-19-positive or negative class. This dataset has a 
defined split which allows for comparison between the models and 
reproducibility of the Results. However, it provides only a rough cate
gorisation of samples into COVID-19-positive and negative cases, where 
negative cases can be images of healthy individuals or patients with a 
different disease. 

COVID-19 Image Data Collection. COVID-19 Image Data Collection 
[10] is a dataset containing images of patients with COVID-19, patients 
with COVID-19 and acute respiratory distress syndrome (ARDS), and 
images of patients without COVID-19 but with other diseases. The im
ages present CT and radiograph scans of lungs and are in jpg or png 
format. Each image is accompanied with additional data which de
scribes image characteristic (such as view or modality) and patient 
characteristic (such as age or survival), however, most of these features 
are present only for some of the samples. The possible tasks include 
binary classification of COVID-19-positive and negative patients, and 
multi-class classification of an exact disease. This dataset does not pro
vide a data split. 

COVID-19 CT & Radiograph Image Data Stock. The aim of COVID-19 
CT & Radiograph Image Data Stock is to create a public pool of CT 
and radiograph images of lungs to increase the efficiency of dis
tinguishing COVID-19 from other types of pneumonia and from healthy 
lungs. We hope this can help to prepare a “ground” for distinguishing 
between newly discovered and already known viruses and bacteria 
strains causing pneumonia in order to improve diagnostics in the event 
of subsequent pandemics. For this reason we included COVID-19- 
negative samples of several classes which include healthy chest (nega
tive control) and various types of pneumonia (bacterial, fungal, viral). 

The images which constitute COVID-19 CT & Radiograph Image Data 
Stock were compiled from public sources. Most of the images come from 
websites with image collections and about 150 images were collected 
from online publications. The list of all sources is presented in Table 1. 
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Images were searched by entering the following phrases: COVID-19 
lung CT/radiograph images, normal chest CT/radiograph/X-RAY, bac
terial pneumonia CT/radiograph images, viral pneumonia CT/radio
graph and fungal CT/radiograph images. To qualify the image for the 
database, it must contain an accurate annotation about the disease (a 
type of pneumonia). Therefore, images from COVID-CT [9] were rejec
ted for the lack of this information. Most of the images from online 
publications were downloaded as high quality pictures directly from the 
web pages. 

The current statistics of COVID-19 CT & Radiograph Image Data 
Stock as of June 25th, 2020 are shown in Table 2. The database contains 
over eight thousand COVID-19-positive CT images and few hundred of 
COVID-19-positive radiographs. Moreover, it includes a substantial 
number of COVID-19-negative samples in four classes: healthy chest, 
bacterial pneumonia, viral pneumonia and fungal pneumonia. A few 
samples of radiographs with acute respiratory distress syndrome (ARDS) 
are also present. 

Importantly, each image in the database is accompanied with a 
precise diagnosis and a source of the image. Less than 1% of the images 
in the database (90 CTs and 35 radiographs) have markings made by 
radiologists at the site of lesions characteristic of various types of 
pneumonia. Information about presence of such markings has been 
included in the database. Examples of annotated images from COVID-19 
CT & Radiograph Image Data Stock are shown in Fig. 1. We categorised 
CT images into 3 groups: full (whole lungs visible), not full (some part of 
lungs visible) and empty (no visible lungs). Images described as not full 
or empty were marked as not suitable for diagnostics. Examples of such 
images are shown in Fig. 2. Additional attributes include such infor
mation as patient ID or type and section of the image. The full list of 
attributes is presented in Table 3. 

The COVID-19 CT & Radiograph Image Data Stock contains a 
sequence of images of a full CT lung scan. The number of full CT scans in 
each class are shown in Table 4. 

The images were split into train, valid and test sets with 70–15-15 
ratio. We ensured that images of the same patient or coming from the 
same source were included in the same subset. We tried to maintain the 

class balance and the distributions of different cross-sections (sagittal, 
axial, and coronal). The details of the data split are shown in Figs. 3 and 
4. 

The images forming the database vary in size and dimension – 
minimum and maximum width and height are given in Table 5. All 
images presented in our database are colour images with three channels. 
We used 3 channel images because models that we create to evaluate our 
dataset are pretrained on ImageNet dataset which is also trained on 3 
channel images. Images are in png, jpg, and gif formats. 

The COVID-19 CT & Radiograph Image Data Stock is available under 
the following url: https://is.dicella.com. Until the inhibition of COVID- 
19 pandemic, the database will be updated monthly. 

3. Evaluation methodology 

3.1. Data preparation 

COVID-CT. COVID-CT was downloaded on May 5, 2020. The dataset 
contains images of CT scans. We used the data split provided with the 
dataset, the details of which are presented in Table 6. 

COVID-19 Image Data Collection. COVID-19 Image Data Collection 
was downloaded on May 5, 2020. The dataset contains images of both 
radiograph and CT scans. Due to insufficient number of CT samples, only 
the images of radiograph were used during the training and evaluation. 

This dataset includes radiograph images in different sections - most 
of them are front views (posteroanterior and anteroposterior), and there 
are some in lateral view. The number of samples in lateral view is small 
and these samples were not used during training. The detailed number of 
samples in the dataset and samples used for training is presented in 
Table 7. 

The number of COVID-19-negative samples is insufficient for 
training neural networks. Therefore, following [14], we decided to 
enrich the COVID-19-negative class with radiograph images from 
dataset of common bacterial pneumonia [11]. 

The COVID-19-positive samples were split into train, validation and 
test sets following 75-15-10 ratio. To achieve class balance 177 samples 
from bacterial pneumonia dataset were included as COVID-19-negative 
samples. Subsequently, all the COVID-19-negative samples were split 
into train, validation and test sets following the same ratio and we 
ensured that samples coming from the bacterial pneumonia dataset 
would not be included in the test set. This way, the bacterial pneumonia 
dataset was used only for choosing the hyperparameters and training 
neural networks and not for the final evaluation of the models. The data 
split was performed in such a way to ensure that all the images coming 
from the same patient are assigned to the same split. 

The details of the split sizes can be found in Table 8. Please note, that 
the split defined on this dataset is different from the split used in our 
database. 

COVID-19 CT & Radiograph Image Data Stock. COVID-19 CT & 
Radiograph Image Data Stock contains images of both CT and radio
graph scans, the number of which is presented in Table 9. CT scans 
which do not show full lungs were discarded and all radiograph images 
were used. We used the split provided in the database. We trained 
separate models for radiograph and CT scans and separate models for 
binary (distinguishing between COVID-19-positive and negative sam
ples) and multiclass classification (predicting the exact class). For mul
ticlass classification we only used classes with enough samples – in case 
of CT samples of viral pneumonia were discarded, and in case of 
radiograph samples of ARDS and fungal pneumonia were discarded. The 
details of the training, validation and test sets for each scenario are 
presented in Tables 10 and 11. 

Pre-processing and normalization. Images from all the datasets were 
normalised to have zero mean and unit variance. The normalization 
parameters were calculated on the training datasets only and for each 
dataset independently and before any other modification. The images 
present in the datasets have variable aspects and sizes so to simplify the 

Table 1 
Sources of images in COVID-19 CT & Radiograph Image Data Stock.  

diagnosis CT radiograph 

healthy Radiopaedia [11] 
COVID-19 Radiopaedia SIRM, COVID-19 Resourse site for Imaging 

and Radiology, EURORAD, Radiopaedia, 
Radiology Assistant, Cases RSNA, APP Fig. 1, 
RAD2share, Yxppt, Fig. 1 COVID-19 Chest X- 
ray Dataset Initiativea [21–46], 

bacterial 
pneumonia 

Radiopaedia 
[47–50], 

Radiopaedia [11], 

viral 
pneumonia 

Radiopaedia 
[51,52], 

[11,53,54] 

fungal 
pneumonia 

Radiopaedia 
[52], 

wikipedia, Radiopaedia 

ARDS  wikipedia, Radiopaedia  

a Https://github.com/agchung/Figure1-COVID-chestxray-dataset. 

Table 2 
Detailed COVID-19 CT & Radiograph Image Data Stock description. Given are 
number of CT and radiograph images in each class and for each section along 
with the total number of images.   

CT radiograph 

coronal axial total sagittal coronal total 

healthy chest 417 1270 1687 0 1583 1583 
COVID-19 2399 5671 8070 10 323 333 
bacterial pneumonia 58 249 307 5 2801 2806 
viral pneumonia 5 39 44 0 1509 1509 
fungal pneumonia 215 1068 1283 3 12 15 
ARDS 0 0 0 0 4 4  
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application of neural networks they were all cropped to square ratio and 
resized to 512 × 512 pixels. 

3.2. Models 

We trained the following models: ResNet-18, ResNet-50 [55], 
WideResNet-50 [56], and DenseNet-169 [18]. For these models we used 

Fig. 1. Examples of annotated images from COVID-19 CT & Radiograph Image Data Stock. On the left an example of annotated CT, and on the right an example of 
annotated radiograph. 

Fig. 2. Examples of CT images categorised as full – upper right corner, not full – 
lower row, empty – upper left corner. 

Table 3 
Description of attributes present in COVID-19 CT & Radiograph Image Data 
Stock.  

Attribute Description 

patient ID internal identifier 
file name name of the file including extension 
type of image radiograph or CT 
section of image sagittal, axial or coronal 
diagnosis healthy chest, COVID-19, bacterial pneumonia, viral 

pneumonia, fungal pneumonia, or ARDS 
presence of marks presence of marks marked by radiologist 
group train/valid/test belonging to the train, valid or test group 
lung presence the entire surface of the lungs are visible, invisible lungs 

or only part of the lungs are visible 
origin URL of the paper or website where the image came from 
suitable/not suitable for 

diagnosis 
information if image is suitable or not for diagnosis  

Table 4 
Number of full CT lung scans in COVID-19 CT & Radiograph Image 
Data Stock for each class.  

class number of full CT scans 

healthy chest 10 
COVID-19 46 
bacterial pneumonia 3 
viral pneumonia 0 
fungal pneumonia 12  

Fig. 3. Distribution of classes in data splits – CT on the’top, radiograph on 
the bottom. 
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pytorch implementations and ImageNet initialisation. Additionally, we 
used DenseNet-121 from [57] which is pre-trained on seven datasets: 
ChestX-ray14 [19], PadChest [58], Chexpert [59], MIMIC-CXR [60], 
Indiana chest X-ray collection [61], dataset from [62], and the RSNA 
Pneumonia Detection Challenge dataset1 which is a subset of 
ChestX-ray8 [19]. We refer to this model as DenseNet-121+ to highlight 
that it has been pre-trained on medical datasets instead of ImageNet. 

All of the models were trained with Adam optimiser and used step 
scheduler with step size 7 and gamma equal to 0.1. ResNet-18 was 

trained with batch size equal to 32, ResNet-50 with batch size equal to 
16, and the remaining networks with batch size equal to 8. The loss 
function for all the models was cross entropy. The networks were trained 
for 100 epochs with early stopping with patience equal to 10. The other 
training parameters were chosen using random search which we 
describe next. 

Random search. Random search was used to find the best hyper
parameters for training individual networks. We considered learning 
rates in range 10e-3 - 10e-6 and the following augmentations: random 

Fig. 4. Split ratio for each class – CT on the top, radiograph on the bottom.  

Table 5 
Maximum and minimum width and height of CT and radiograph images given in 
pixels.   

CT radiograph 

minimum maximum minimum maximum 

width/height 107/85 2354/2313 156/157 4300/4298  

Table 6 
Number of COVID-19-positive and negative samples in each split of COVID-CT 
dataset.   

COVID-19-positive COVID-19-negative total 

train 191 234 425 
validation 60 58 118 
test 98 105 203  

Table 7 
Number of COVID-19-positive and negative images in COVID-19 Image Data 
Collection for CT and radiograph (full dataset). Number of radiograph images 
used for training and testing neural networks (after cleaning).   

COVID-19-positive COVID-19-negative total 

full dataset CT 43 1 44 
full dataset radiograph 253 63 316 
after cleaning radiograph 233 56 289  

Table 8 
Description of data split of COVID-19 Image Data Collection. Given are number 
of COVID-19-positive and negative samples in each split including additional 
images from bacterial pneumonia dataset.   

COVID-19 Image 
Data Collection 

bacterial 
pneumonia 

class balance total 

COVID-19 COVID-19 COVID-19 

positive negative negative 

train 195 33 162 195/195 390 
validation 22 7 15 22/22 44 
test 16 16 0 16/16 32 
total 233 56 177 233/233 466  

Table 9 
Description of COVID-19 CT & Radiograph Image Data Stock used for training 
and evaluation of neural networks. Given are number of COVID-19-positive and 
negative samples of radiograph (dataset radiograph) and CT (dataset CT full) 
data and number of CT scans used for training and evaluation (CT after 
cleaning).   

COVID-19-positive COVID-19-negative total 

dataset radiograph 333 5917 6250 
dataset CT full 8051 3228 11,279 
CT after cleaning 3980 2016 5996  

Table 10 
Data split details of COVID-19 CT & Radiograph Image Data Stock for binary and 
multiclass classifiers of radiograph scans. Given are number of images in each 
split for each class.  

binary COVID-19 COVID-19 total 

positive negative 

train 231 4143 4374 
validation 53 887 940 
test 49 887 936  

multiclass COVID-19 bacterial healthy viral total 

positive pneumonia chest pneumonia 

train 231 1966 1108 1059 4364 
validation 53 420 238 225 932 
test 49 420 237 225 935  

Table 11 
Data split details of COVID-19 CT & Radiograph Image Data Stock for binary and 
multiclass classifiers of CT scans. Given are number of images in each split for 
each class.  

binary COVID-19-positive COVID-19-negative total 

train 2749 1522 4271 
validation 626 270 896 
test 605 320 925  

multiclass COVID-19-positive fungal pneumonia healthy chest total 

train 2749 653 773 4175 
validation 626 127 130 883 
test 605 139 151 895  

1 https://www.kaggle.com/c/rsna-pneumonia-detection-challenge. 
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rotation (in the interval − 90 to 90◦), brightness (0.11 for COVID-19, 0.2 
for COVID-CT), horizontal flip, center crop and contrast (0.2). Out of 32 
possible choices of augmentations (each augmentation can be turned on 
and off which gives 25 possibilities) 5 were sampled and checked with 
each learning rate. To sum up: 20 models of each family were trained for 
each dataset. During hyperparameter search the models were trained 
only for 30 epochs which should be enough to tell apart better and worse 
performing combinations. 

In case of binary classification we have chosen the best performing 
architectures based on their AUC on the validation set, and in case of 
multiclass classification using the F1 score. The hyperparameters chosen 
for each model are presented in Appendix A. 

3.3. Metrics 

In case of binary classification we report the following metrics: 
precision, recall, F1 score, accuracy and area under ROC curve (AUC). 
We assume that the positive class is COVID-19. 

In case of multiclass classification we report: precision, recall, F1 
score, accuracy, binary AUC calculated by merging COVID-19-negative 
classes together, and multiclass AUC obtained by calculating binary AUC 
scores for each class in one-versus-rest regime and taking an unweighted 
mean of these scores.2 Again, we assume COVID-19 to be the positive 
class and the remaining classes to be negative. 

For all these metrics the higher the score, the better the performance. 

4. Results 

In this section we present the Results of binary classifiers trained on 
COVID-CT and COVID-19 Image Data Collection, and binary and mul
ticlass classifiers trained on COVID-19 CT & Radiograph Image Data 
Stock on their respective test sets. Next, we compare these models by 
evaluating their performance on an additionally constructed test set. 
Finally, we compare binary and multiclass classifiers trained on COVID- 
19 CT & Radiograph Image Data Stock on the task of binary COVID-19 
classification and show that precise label information can be used to 
improve performance on this task. 

Results of the binary classifiers trained on CTs on their respective test sets. 
The results for binary classifiers trained on images of CT scans are shown 
in Table 12. In this case, the models trained on COVID-CT usually ach
ieve better performance on their respective test set. The exceptions are 
ResNet-18 which achieves better performance on its respective test set 
when trained on COVID-19 CT & Radiograph Image Data Stock, and 
DenseNet-121+ which in both cases achieves a performance similar to a 

random classifier. These results are surprising, given that the number of 
training samples in COVID-19 CT & Radiograph Image Data Stock is 
much higher than in COVID-CT. 

A direct comparison of these models cannot be drawn from Table 12 
as they were evaluated on different test sets. To provide a more scru
pulous comparison we constructed an additional test set which will be 
described later in this section. 

Results of the binary classifiers trained on radiographs on their 
respective test sets. In Table 13 we present the results of binary classi
fiers trained on radiograph images. Models trained on COVID-19 CT & 
Radiograph Image Data Stock achieve much higher performance on 
their respective test set than the models trained on COVID-19 Image 
Data Collection. Since the methodology for optimising models on both 
datasets was exactly the same, we attribute this to a different number of 
samples in the respective training sets. It is worth noting, that the models 
trained on COVID-19 Image Data Collection utilise during training 
additional samples from a dataset of bacterial pneumonia, which was an 
arbitrary choice, while in case of the models trained on COVID-19 
CT&Radiograph Image Data Stock the additional data was already 
contained within the dataset and no arbitrary choice had to be made. 

A direct comparison between these models is not possible as they 
were evaluated on different test sets. Again we provide a more scrupu
lous comparison later in this section. 

Results of the multiclass classifiers. In Table 14 we present results of 
multiclass classifiers trained on COVID-19 CT & Radiograph Image Data 
Stock. The binary AUC was calculated by merging COVID-19-negative 
classes together. Note, that in this case misclassifying a COVID-19- 
negative sample as a sample of another COVID-19-negative class is not 
considered as an error – the task is to tell the COVID-19-positive and 
negative samples apart. The multiclass AUC gives us insight into how 
well the models separate each class from the others and the resulting 
mean is not over-influenced by the most common class in the dataset. 
The confusion matrices for the best performing models are presented in 
Fig. 5 and the confusion matrices of the remaining models are shown in 
Appendix B. 

The multiclass AUC of the presented models ranges between 0.74 for 
ResNet-50 and 0.87 for WideResNet-50. When evaluated on the task of 
binary COVID-19 classification the Results for ResNet-50, DenseNet-169 
and DenseNet-121+ are far worse with binary AUC of 0.65, 0.65 and 
0.64 respectively. It suggests that these models cannot tell COVID-19- 
positive and negative samples apart even though they might be able to 
distinguish between various COVID-19-negative classes. On the other 
hand, WideResNet-50 achieves binary AUC of 0.99 and multiclass AUC 
of 0.87 which suggests it might be a good candidate for COVID-19 
classification. However, a careful analysis of the confusion matrix for 
this model shown in Fig. 5 reveals that even though this model is able to 
correctly classify most of the COVID-19-positive samples, a substantial 
number them is categorised as being from a healthy patient. It is striking 
that images of healthy chest are more often classified as being COVID- 
19-positive (116 cases) than as belonging to its true class (only 35 cases). 

Table 12 
Test Results of binary classifiers on CT data.   

Precision Recall F1 score Accuracy AUC 

COVID-CT 
ResNet-18 0.57 0.77 0.65 0.61 0.61 
ResNet-50 0.87 0.76 0.81 0.83 0.83 
DenseNet-169 0.8 0.67 0.73 0.76 0.76 
WideResNet-50 0.85 0.80 0.82 0.83 0.83 
DenseNet-121+ 0.67 0.04 0.08 0.53 0.51 

COVID-19 CT & Radiograph Image Data Stock 
ResNet-18 0.86 0.71 0.78 0.74 0.75 
ResNet-50 0.73 0.59 0.65 0.59 0.59 
DenseNet-169 0.78 0.72 0.75 0.69 0.67 
WideResNet-50 0.77 0.99 0.87 0.81 0.72 
DenseNet-121+ 0.69 0.67 0.68 0.59 0.55  

Table 13 
Test Results of binary classifiers on radiograph data.   

Precision Recall F1 score Accuracy AUC 

COVID-19 Image Data Collection 
ResNet-18 0.6 0.75 0.67 0.62 0.63 
ResNet-50 0.60 0.75 0.67 0.62 0.63 
DenseNet-169 0.64 1 0.78 0.72 0.72 
WideResNet-50 0.62 0.94 0.75 0.69 0.69 
DenseNet-121+ 0.5 0.88 0.64 0.5 0.5 

COVID-19 CT & Radiograph Image Data Stock 
ResNet-18 0.64 1.00 0.78 0.97 0.98 
ResNet-50 0.55 1.00 0.71 0.96 0.98 
DenseNet-169 0.71 0.96 0.82 0.98 0.97 
WideResNet-50 0.73 0.96 0.83 0.98 0.97 
DenseNet-121+ 0.36 0.94 0.52 0.91 0.92  

2 In other words, we use scikit-learn implementation of roc_auc_score with 
parameter multi_class set to ‘ovr’, and parameter average set to ‘macro’. 
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In comparison to their CT counterparts, the models trained on 
radiograph data achieve a higher performance on their respective test 
set. In case of binary AUC DenseNet-121+ achieves a score of 0.94 and 
all the other models achieve a score of 0.99. In case of multiclass clas
sification the best performance is achieved by ResNets with AUC of 0.90 
and of 0.89 for ResNet-18 and ResNet-50 respectively. The confusion 
matrix for ResNet-18 is presented in Fig. 5. It can be seen that all COVID- 
19-positive images are correctly classified and only a small percentage of 
viral pneumonia images (less then 10%) was classified as COVID-19- 
positive cases. The separation between the other classes is less accu
rate – almost a half of bacterial pneumonia images is classified as viral 
pneumonia cases and over a half of healthy cases are classified as viral 
(104 cases) or bacterial pneumonia (104 cases). Interestingly, viral 
pneumonia images are mixed with bacterial pneumonia much less often 
then the other way around. 

Comparison between the models trained on COVID-CT, COVID-19 Image 
Data Collection and COVID-19 CT & Radiograph Image Data Stock. To 
compare models trained on COVID-CT, COVID-19 Image Data Collection 
and COVID-19 CT & Radiograph Image Data Stock we constructed two 
additional test sets. We used the COVID-19 CT & Radiograph Image Data 
Stock test sets and removed from them all the images which were pre
sent in training or validation sets of models trained on COVID-CT or 
COVID-19 Image Data Collection. From these reduced test sets we 
sampled images in such a way to ensure a proper class distribution. 

In case of CT data we have not found any images that were present in 
COVID-CT train or validation sets which is not surprising as this dataset 
was not used as a source of images for COVID-19 CT & Radiograph 
Image Data Stock. Since COVID-CT does not provide an exact diagnosis 
for COVID-19-negative samples we could not ensure the data distribu
tion in the reduced test set to matche the distribution in COVID-CT 
dataset. The class balance was ensured by sampling 278 COVID-19 im
ages, 139 fungal pneumonia images and 139 images of healthy chest. 
The resulting test set contains 556 images in total. 

In case of Radiograph data, 42 images from COVID-19 CT & Radio
graph Image Data Stock test set were found in the COVID-19 Image Data 
Collection train and validation sets, most of them being COVID-19- 
positive samples. To imitate the class balance and class distribution in 
the COVID-19 Image Data Collection all the remaining COVID-19- 
positive samples were used and an equal number of bacterial pneu
monia images was sampled. This resulted in a small test set of 24 images. 

We used these datasets to evaluate the performance of the binary 
classifiers trained on COVID-CT, COVID-19 Image Data Collection and 
COVID-19 CT & Radiograph Image Data Stock and the multiclass clas
sifiers trained on COVID-19 CT & Radiograph Image Data Stock. The 
Results of this evaluation are presented in Tables 15 and 16. 

In Table 15 we see that the models trained on COVID-CT achieve 
AUC similar or lower than a random classifier, with the exception being 
WideResNet-50 with AUC of 0.64. Both binary and multiclass classifiers 

Table 14 
Test Results of multiclass classifiers on radiograph and CT data from COVID-19 
CT & Radiograph Image Data Stock.   

Precision Recall F1 
score 

Accuracy Binary Multiclass 

AUC AUC 

CT 
ResNet-18 0.82 0.83 0.82 0.73 0.72 0.85 
ResNet-50 0.80 0.63 0.70 0.59 0.65 0.74 
DenseNet- 

169 
0.78 0.77 0.77 0.69 0.65 0.82 

WideResNet- 
50 

0.74 1.00 0.85 0.64 0.99 0.87 

DenseNet- 
121+

0.76 0.82 0.79 0.70 0.64 0.83 

Radiograph 
ResNet-18 0.70 1.00 0.82 0.65 0.99 0.90 
ResNet-50 0.67 1.00 0.80 0.62 0.99 0.89 
DenseNet- 

169 
0.74 1.00 0.85 0.58 0.99 0.86 

WideResNet- 
50 

0.74 1.00 0.85 0.64 0.99 0.87 

DenseNet- 
121+

0.47 0.94 0.63 0.62 0.94 0.85  

Fig. 5. Confusion matrices of best performing multiclass models. True labels are in rows, predicted labels in columns. On the left confusion matrix for WideResNet-50 
trained on CT and on the right confusion matrix for ReseNet-18 trained on radiograph. 

Table 15 
Results of models trained on COVID-CT and COVID-19 CT & Radiograph Image 
Data Stock on an additional test set.   

Precision Recall F1 score Accuracy Binary AUC 

COVID-CT 
ResNet-18 0.88 0.05 0.10 0.28 0.52 
ResNet-50 0.59 0.41 0.48 0.41 0.56 
DenseNet-169 0.12 0.02 0.04 0.21 0.43 
WideResNet-50 0.64 0.64 0.64 0.53 0.64 
DenseNet-121+ 0.24 0.10 0.14 0.19 0.38 

COVID-19 CT & Radiograph Image Data Stock binary 
ResNet-18 0.69 0.83 0.75 0.68 0.73 
ResNet-50 0.66 0.61 0.63 0.57 0.65 
DenseNet-169 0.62 0.75 0.68 0.64 0.64 
WideResNet-50 0.60 0.79 0.69 0.63 0.63 
DenseNet-121+ 0.52 0.51 0.51 0.49 0.52 

COVID-19 CT & Radiograph Image Data Stock multiclass 
ResNet-18 0.84 0.72 0.78 0.57 0.79 
ResNet-50 0.62 0.58 0.60 0.45 0.61 
DenseNet-169 0.68 0.71 0.69 0.67 0.74 
WideResNet-50 0.55 0.66 0.60 0.52 0.56 
DenseNet-121+ 0.69 0.83 0.75 0.68 0.73  

K. Misztal et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 127 (2020) 104092

8

trained on COVID-19 CT & Radiograph Image Data Stock achieve better 
Results. In this case, the worst performing binary classifier is DenseNet- 
121+ with AUC of 0.52, ResNet-18 achieves AUC of 0.73 and the 
remaining models score in rage 0.63–0.65.3 out of 5 multiclass classi
fiers achieve better AUC than their binary counterparts. The lowest AUC 
of 0.56 belongs to WideResNet-50 and the best performing model in this 
group is ResNet-18 with AUC of 0.79. 

In Table 16 we see that models trained on COVID-19 Image Data 
Collection achieve very poor Results which are similar to those of a 
random classifier. On the other hand, models trained on COVID-19 CT & 
Radiograph Image Data Stock achieve a near maximum or maximal 
possible AUC. We attribute such a vivid discrepancy to the small size of 
the testing set, which contains only 24 elements. However, even such a 
small test set allows to draw a conclusion that models trained on COVID- 
19 CT&Radiograph Image Data Stock are more robust than models 
trained on COVID-19 Image Data Collection. 

The Results of experiments shown in this section indicate that models 
trained on COVID-19 CT & Radiograph Image Data Stock are more 
robust than models trained on COVID-CT or COVID-19 Image Data 
Collection. This can be a result of a bigger or more diverse training set. 

Precise label information improves the model’s ability to distinguish be
tween COVID-19-positive and negative samples. In this section, we try to 
answer the question if including a detailed information about the clas
ses, i.e. not treating all the non-COVID samples as if they were coming 
from the same class, can help the models to better distinguish between 
COVID-19-positive and negative samples. We compare models trained in 
two scenarios: when merging all COVID-19-negative samples into one 
class and training a binary classifier, and when using the precise label 
information and training a multiclass classifier. 

If the goal of the model is to distinguish between COVID-19-positive 
and negative samples only, the samples of different COVID-19-negative 
classes can be merged into a single class and used to train a binary 
classifier. In this scenario, the task on which the model is trained does 
not differ from the task of interest. However, the samples in the COVID- 
19-negative class come from different distributions and as a result 
models might struggle to treat them as if coming from a single class. 
Moreover, the exact information about the diagnosis is never presented 
to the model and so it cannot be used to learn a better representation of 
the problem. 

To combat these issues the models can be trained to perform multi
class classification using exact label information about the diagnosis. In 
this case, the exact class-information can be used by the model to learn a 
powerful representation and samples coming from different classes do 
not need to be squished together which might make the learning process 

easier. On the other hand, for some classes the number of samples in the 
dataset might be insufficient for the model to be able to learn a good 
representation of these classes. If this is the case, such samples can be 
dropped from the dataset eventually decreasing its size. More impor
tantly, in this scenario the model is trained on a different task than the 
task of interest. 

To answer the question which of these learning paradigms brings 
better Results in case of COVID-19 classification we compared binary 
and multiclass models from the previous sections. Precisely, we evalu
ated the binary classifiers on the multiclass test set after binarising its 
classes. The results are presented in Table 17. Comparing this table with 
the results of multiclass classifiers which were presented in Table 14 we 
see that in case of radiograph classification the multiclass models 
consistently achieve a slightly better binary AUC then their binary 
counterparts. In case of CT classification ResNet-18 and DenseNet-169 
achieve slightly better results when trained as binary classifiers. On 
the other hand, ResNet-50 and DenseNet-121+ achieve slightly better 
results when trained as multiclass classifiers and WideResNet-50 ach
ieves much better results improving from AUC of 0.74 when trained as a 
binary classifier to AUC of 0.99 when trained as a multiclass classifier. 

To conclude, these Results suggest that precise label information can 
improve the performance of neural networks on the task of binary 
COVID-19 classification. 

5. Conclusion 

In this work, we proposed a new self-contained dataset for COVID-19 
classification which includes a significant number of both CT and 
radiograph images from a diverse set of classes. The dataset was con
structed ensuring a high quality of samples with each image carefully 
annotated with its precise label and source. A train-validation-test split 
is defined. The dataset is publicly available and will be updated monthly 
until the inhibition of COVID-19 pandemic. 

We fine-tuned several neural network architectures pre-trained on 
ImageNet or medical dataset to provide benchmark Results for the 
proposed dataset. We compared the performance of models trained on 
COVID-19 CT & Radiograph Image Data Stock with models trained on 
COVID-CT and COVID-19 Image Data Collection showing that models 
trained on COVID-19 CT & Radiograph Image Data Stock perform bet
ter. We compared binary and multiclass classifiers trained on COVID-19 
CT & Radiograph Image Data Stock revealing that training neural net
works with precise label information can improve the performance on 
binary COVID-19 classification task. 

The research we have developed does not allow to compare how 3D 
CT reconstruction influences classifications compared to 2D dimen
sional radiograph. Neural networks for CT were trained for each slide 
separately, which corresponds to the radiograph dimension. In the 
future we would like to investigate the whole series for patient at ones. 
Also, we would like to address several remaining questions which 

Table 16 
Results of models trained on COVID-19 Image Data Collection and COVID-19 CT 
& Radiograph Image Data Stock on an additional test set.   

Precision Recall F1 score Accuracy Binary AUC 

COVID-19 Image Data Collection 
ResNet-18 0.52 0.92 0.67 0.54 0.54 
ResNet-50 0.50 1.00 0.67 0.50 0.50 
DenseNet-169 0.00 0.00 0.00 0.50 0.50 
WideResNet-50 0.00 0.00 0.00 0.38 0.38 
DenseNet-121+ 0.50 1.00 0.67 0.50 0.50 

COVID-19 CT & Radiograph Image Data Stock binary 
ResNet-18 1.00 1.00 1.00 1.00 1.00 
ResNet-50 1.00 1.00 1.00 1.00 1.00 
DenseNet-169 1.00 0.92 0.96 0.96 0.96 
WideResNet-50 1.00 1.00 1.00 1.00 1.00 
DenseNet-121+ 0.86 1.00 0.92 0.92 0.92 

COVID-19 CT & Radiograph Image Data Stock multiclass 
ResNet-18 1.00 1.00 1.00 0.71 1.00 
ResNet-50 1.00 1.00 1.00 0.71 1.00 
DenseNet-169 1.00 1.00 1.00 0.71 1.00 
WideResNet-50 1.00 1.00 1.00 0.75 1.00 
DenseNet-121+ 0.91 0.83 0.87 0.54 0.87  

Table 17 
Results of binary classifiers trained on COVID-19 CT & Radiograph Image Data 
Stock and evaluated on COVID-19 CT & Radiograph Image Data Stock multiclass 
test sets.   

Precision Recall F1 score Accuracy Binary AUC 

Radiograph 
ResNet-18 0.76 0.96 0.85 0.50 0.97 
ResNet-50 0.57 1.00 0.73 0.50 0.98 
DenseNet-169 0.75 0.96 0.84 0.50 0.97 
WideResNet-50 0.76 0.96 0.85 0.50 0.97 
DenseNet-121+ 0.37 0.94 0.53 0.47 0.92 
CT 
ResNet-18 0.92 0.71 0.80 0.61 0.79 
ResNet-50 0.77 0.59 0.67 0.50 0.60 
DenseNet-169 0.81 0.82 0.76 0.62 0.69 
WideResNet-50 0.80 0.99 0.89 0.78 0.74 
DenseNet-121+ 0.71 0.67 0.69 0.57 0.55  
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include using additional information about the patient to build better- 
performing models or analysing how the models trained on images of 
CT and radiograph will perform when used directly on CT or radiograph 
scans. 
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Appendix A 

Here, we present the hyperparameters chosen for each model presented in the paper. A description of the methodology used to obtain these 
hyperparametrs is presented in section 3.2.  

Table 18 
Hyperparameters chosen with random search for each architecture.   

lr random rotation brightness horizontal flip center crop contrast 

COVID-19 Image Data Collection 
ResNet-18 0.001 + +

ResNet-50 0.001 + + +

DenseNet-169 0.0001 + + +

WideResNet-50 0.00001 + + +

DenseNet-121+ 0.0001 + +

COVID-19 CT & Radiograph Image Data Stock binary X-ray 
ResNet-18 0.001      
ResNet-50 0.001      
DenseNet-169 0.00001      
WideResNet-50 0.0001  + + +

DenseNet-121+ 0.001 + + +

Table 19 
Hyperparameters chosen with random search for each architecture.   

lr random rotation brightness horizontal flip center crop contrast 

COVID-19 CT & Radiograph Image Data Stock multiclass Radiograph 
ResNet-18 0.001  + +

ResNet-50 0.001      
DenseNet-169 0.001  + +

WideResNet-50 0.00001 + + +

DenseNet-121+ 0.001 +

COVID-CT       
ResNet-18 0.001  + + + +

ResNet-50 0.0001  + +

DenseNet-169 0.0001 +

WideResNet-50 0.0001  + + +

DenseNet-121+ 0.00001 +

Table 20 
Hyperparameters chosen with random search for each architecture.   

lr random rotation brightness horizontal flip center crop contrast 

COVID-19 CT & Radiograph Image Data Stock binary CT 
ResNet-18 0.001 + +

ResNet-50 0.001      
DenseNet-169 0.000001   +

WideResNet-50 0.0001 +

DenseNet-121+ 0.001   +

COVID-19 CT & Radiograph Image Data Stock multiclass CT 
ResNet-18 0.001 + +

ResNet-50 0.0001 + + +

DenseNet-169 0.000001 +

WideResNet-50 0.000001      
DenseNet-121+ 0.001 +

Appendix B 

Here, we present the confusion matrices of multiclass classifiers trained on COVID-19 CT & Radiograph Image Data Stock. 
In Fig. 6 the Results of multiclass classifiers trained on CT data is shown. A careful analysis shows that these models struggle to separate between 
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healthy and COVID-19-positive cases – most of the COVID-19-positive samples are well classified but when mistakes occur they are more likely to be 
categorised as healthy samples than fungal pneumonia samples. At the same time, healthy chest samples are more often classified as COVID-19- 
positive instances than as members of their own class.

Fig. 6. Confusion matrices of multiclass models on CT data. True labels are in rows, predicted labels in columns.  

In Fig. 7 the Results of multiclass classifiers trained on radiograph data is shown. In this case, the COVID-19-positive samples are always correctly 
classified and hardly any samples of bacterial pneumonia or healthy chest are categorised as COVID-19-positive samples. The class which is most 
commonly confused with COVID-19 is viral pneumonia but the number of samples misclassified as COVID-19 never exceeds 10% of samples in this 
class. Viral and bacterial pneumonia classes are not well separated with bacterial pneumonia cases categorised as viral pneumonia more often than the 
other way around. 
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Fig. 7. Confusion matrices of multiclass models on Radiograph data. True labels are in rows, predicted labels in columns.  

The performance metrics for these models are shown in Table 14. 
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