Skip to main content
. 2020 Oct 28;127:104092. doi: 10.1016/j.compbiomed.2020.104092

Table 15.

Results of models trained on COVID-CT and COVID-19 CT & Radiograph Image Data Stock on an additional test set.

Precision Recall F1 score Accuracy Binary AUC
COVID-CT
ResNet-18 0.88 0.05 0.10 0.28 0.52
ResNet-50 0.59 0.41 0.48 0.41 0.56
DenseNet-169 0.12 0.02 0.04 0.21 0.43
WideResNet-50 0.64 0.64 0.64 0.53 0.64
DenseNet-121+
0.24
0.10
0.14
0.19
0.38
COVID-19 CT & Radiograph Image Data Stock binary
ResNet-18 0.69 0.83 0.75 0.68 0.73
ResNet-50 0.66 0.61 0.63 0.57 0.65
DenseNet-169 0.62 0.75 0.68 0.64 0.64
WideResNet-50 0.60 0.79 0.69 0.63 0.63
DenseNet-121+
0.52
0.51
0.51
0.49
0.52
COVID-19 CT & Radiograph Image Data Stock multiclass
ResNet-18 0.84 0.72 0.78 0.57 0.79
ResNet-50 0.62 0.58 0.60 0.45 0.61
DenseNet-169 0.68 0.71 0.69 0.67 0.74
WideResNet-50 0.55 0.66 0.60 0.52 0.56
DenseNet-121+ 0.69 0.83 0.75 0.68 0.73