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Abstract

Objective: Increasing use of continuous glucose monitoring (CGM) data has created an array of glucose metrics
for glucose variability, temporal patterns, and times in ranges. However, a gold standard metric has not been
defined. We assess the performance of multiple glucose metrics to determine their ability to detect intra- and
interperson variability to determine a set of recommended metrics.
Methods: The Juvenile Diabetes Research Foundation data set, a randomized controlled study of CGM and self-
monitored blood glucose conducted in children and adults with type 1 diabetes (T1D), was used. To determine
the ability of the evaluated glycemic metrics to discriminate between different subjects and attenuate the effect
of within-subject variation, the discriminant ratio was calculated and compared for each metric. Then, the
findings were confirmed using data from two other recent randomized clinical trials.
Results: Mean absolute glucose (MAG) has the highest discriminant ratio value (2.98 [95% confidence interval
{CI} 1.64–3.67]). In addition, low blood glucose index and index of glycemic control performed well (1.93
[95% CI 1.15–3.44] and 1.92 [95% CI 1.27–2.93], respectively). For percentage times in glucose target ranges,
the optimal discriminator was percentage time in glucose target 70–180 mg/dL.
Conclusions: MAG is the optimal index to differentiate glucose variability in people with T1D, and may be a
complementary therapeutic monitoring tool in addition to glycated hemoglobin and a measure of hypoglycemia.
Percentage time in glucose target 70–180 mg/dL is the optimal percentage time in range to report.
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Introduction

Glucose variability describes within-day and
between-day fluctuations in glucose concentration. It is

elevated in people with type 1 diabetes (T1D) compared with
people with normal glucose tolerance.1 In vitro, animal, and
human studies support a potential role for both hypo- and
hyperglycemic excursions in promoting mitochondrial oxi-
dative stress, secondary endothelial damage, accelerated
atherosclerosis, impaired quality of life, and even mortali-
ty.2–5 Increased glycemic variability (GV) may be associated
with higher levels of markers of oxidative stress in type 2
diabetes6 and has been associated with increased mortality in
sepsis7 and critical illness.8 Increased GV has also been as-

sociated with a higher incidence of severe hypoglycemia in
people with T1D.1

Currently available continuous glucose monitoring (CGM)
devices provide glucose data every 5 min, and from these
data, multiple indices of GV and other metrics of quality of
glycemic control can be calculated. Commonly used GV
metrics are standard deviation (SD), coefficient of variation
(%CV), mean amplitude of glucose excursion (MAGE),
mean of daily differences (MODD), average daily risk range
(ADRR), glycemic variability percentage (GVP), mean ab-
solute glucose (MAG), and continuous overlapping net gly-
cemic action over an n-hour period (CONGAn). Quality of
glycemic indices are: glycemic risk assessment diabetes
equation (GRADE), index of glycemic control (IGC), high
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blood glucose index (HBGI), low blood glucose index
(LBGI), personal glycemic state (PGS), and percentage time
under, within and above specified glucose ranges.

Glycated hemoglobin (HbA1c) remains the reference mar-
ker for assessing glycemic control and predicting the risk of
development of long-term complications, but has limitations,
and targets may be individualized. To complement HbA1c,
and in some cases replace it, there is consensus that CGM data
should be considered to support glycemic management.9 In
particular, the use of LBGI and HBGI metrics for glycemic
control analysis along with different percentage times in range
metrics has been advocated. For assessment of GV, the %CV
has been proposed as the primary metric and SD as the sec-
ondary.9 However, the consensus assessed traditional gly-
cemic metrics only—MAGE, %CV, and SD—and a wider
range of metrics have been presented in the literature.

The advantages, limitations, and interrelationships among
the GV metrics have been described previously.10–14 How-
ever, a gold standard measurement has not been identified,
limiting efforts to demonstrate a relationship between vari-
ability and clinically relevant micro- and macrovascular di-
abetes complications, and leading to heterogeneous study
designs and outcomes.

Discriminant ratios assess the ability of a test to distinguish
individual variation within a population and have been used
previously to compare insulin sensitivity measures by calculat-
ing the ratio of the underlying between-subject standard devia-
tion (SDB) to the within-subject standard deviation (SDw).15,16

We have applied discriminant ratios to commonly used
measures of glucose variability and quality of glycemic
control to demonstrate which metric is the most effective at
distinguishing between-subject glucose variability differ-
ences in a large population with T1D using CGM data. We
have additionally evaluated the correlations between the
considered metrics to describe interrelationships and to
identify similar features within them.

Research Design and Methods

Data

Data from the Juvenile Diabetes Research Foundation
( JDRF) CGM study were used. The JDRF data set is freely
accessible and was obtained from the Jaeb Center for Health
Research.17 The study was a 26-week randomized parallel
group study evaluating the impact of CGM on glucose control
in children and adults with T1D. The rules to standardize the
analyzed data were 24 weeks of complete CGM data were
used for each participant and incomplete day recordings due
to sensor changes were allowed. Data were processed each
5 min and the lack of data in a period larger than 2 h was
considered as a gap.

Finally, to confirm the results obtained with the JDRF data
set, data from two more randomized clinical trials REPLACE-
BG (N = 119)18 and I HART CGM (N = 40)19 were used.

Assessed metrics

The GV measures that were evaluated are average absolute
rate of change (AARC),20 CONGA1,21 CV, GVP,22 J-index,23

lability index (LI),24 MAG,25 MAGE,26 MODD,27 ADRR,28

and SD.

Likewise, the assessed quality of glycemic control indices
are GRADE,29 %GRADEHypo,29 %GRADEHyper,

29 glucose
risk index (GRI),28 HBGI,28 LBGI,28 M-value,30 PGS,22

IGC,11 the percentage of time between several ranges (%T 50–
140, %T 70–180), the percentage of time <54 mg/dL (%T < 54)
and 70 mg/dL (%T < 70), and the percentage of time
>140 mg/dL (%T > 140) and 180 mg/dL (%T > 180). They
were classified as metrics for hypoglycemia (LBGI, %GRA-
DEHypo, %T < 54, %T < 70); metrics for overall glycemic
control (GRI, M-value, IGC, GRADE, PGS, %T 50–140, %T
70–180); and metrics for hyperglycemia (HBGI, %GRADE-

Hyper, %T > 140, %T > 180). All of these metrics are described
in Supplementary Table S1. It is important to note that the
M-value, PGS, and IGC were calculated using the default
values of their parameters, that is, M-value100, ICG1.

All metrics were calculated for each complete participant’s
data set considering temporal windows of 12 days, previously
described as the minimum duration of sensor data from which
GV can be consistently assessed.31

Discriminant ratio

The discriminant ratio was used to compare the different
metrics using the same glucose recordings to determine the
ability of each metric to discriminate between different
subjects (i.e., intersubject variability) and attenuate the effect
of within-subject variation. The discriminant ratio method-
ology was chosen for this study since it compares different
metrics measuring the same underlying physiological vari-
able, determining the ability of a test to discriminate between
subjects, and enabling comparison of discriminatory power
between tests.15,16 Importantly, the discriminant ratio is in-
dependent of the measurement error obtained within.

Discriminant ratios were calculated as the ratio of the
unbiased between-subject standard deviation (SDu) to SDw

according to the following equations32:

DR¼ SDu=SDw, (1)

SDu¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2

B� SD2
w=k)

q
, (2)

where SDB is the between-subject standard deviation of the
metric values and k is the number of replicate measurements
performed in each subject (i.e., the number of temporal
windows of 12 days considered). More details can be found in
Appendix A1.

In addition to the discriminant ratio comparisons across the
several glycemic metrics, the evaluation of the effect of the
number of considered temporal windows k on the discrimi-
nant ratio results was also carried out. All data processing and
calculations were done in Matlab 2017a.

Data analysis

Results were statistically evaluated with nonparametric
methods because of the non-normal distribution of data.
Kruskal–Wallis test and then a post hoc analysis corrected
by Bonferroni for multiple comparisons were carried out
to identify the differences between the discriminant ratios
of the evaluated metrics. To strengthen the findings, the
discriminant ratio results obtained with the JDRF data set
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were compared with the results obtained with the
REPLACE-BG/I HART CGM data set by means of the
Mann–Whitney U-test. A P-value of <0.05 was considered
to indicate statistical significance. Data analysis was per-
formed in SPSS.

To assess the effect of k value consideration, a statistical
comparison was carried out between the results obtained with
different number of windows (k = 3, 4, ., 24). The discrimi-
nant ratio was considered constant from the k value whose
results were statistically different from the immediately lower
k results and not significantly different from the results of the
subsequent higher k values. Correlation between metrics was
assessed by Spearman’s correlation coefficient due to the non-
normality of the data.

Results

In total, 179 participants were included in the main anal-
ysis (55.3% males; age: 24.12 – 14.60 years; HbA1c:
7.44% – 0.88%; T1D duration: 14.07 – 12.39 years).

Discriminant ratio values for each of the evaluated metrics
are given in Tables 1 and 2. For the evaluated GV metrics, the
MAG has the highest discriminant ratio value and is statisti-

cally significantly greater than the other metrics (P < 0.001)
except for the GVP (P = 0.430), indicating that both metrics
may be the most unbiased and most effective at distinguishing
between variability differences across individuals. However,
the LI and J-index also showed no significant differences from
GVP (P = 0.989 and P = 0.977, respectively).

In Figure 1, the mean of discriminant ratios versus the
number of considered windows is represented to assess the
effect of parameter k and the vulnerability of the metrics.
MAG converges faster to a stable value at k = 8 compared
with the slightly slower convergence of GVP at k = 9
(P < 0.001) and M-value100 and J-index at k = 13 (P = 0.012
and P = 0.019, respectively). That means that MAG is less
vulnerable to the effect of interday variability and is a better
discriminator.

These findings were supported by the second analysis
carried out with the REPLACE-BG and IHART CGM data.
In this analysis, 155 participants were included (52.20%
males; age 44.78 – 14.37 years; HbA1c 7.16% – 0.73%; T1D
duration 24.48 – 11.84 years). Figure 2 shows the discrimi-
nant ratio values obtained for both studied populations, and
numerical values are presented in Supplementary Table S2.
Results obtained for each metric are similar to those derived
with the JDRF data set. The discriminant ratio values are
slightly higher in the analysis carried out with REPLACE-
BG/IHART CGM population but these differences are not
statistically significant.

For glucose control indices, LBGI has the highest value for
discriminant ratio of the metrics for hypoglycemia. It is not
statistically different from %GRADEHypo (P = 0.477); how-
ever, considering k screening, a greater robustness of LBGI is
demonstrated as it is constant from k = 9.

In addition, percentage time <50 and 54 mg/dL showed
the highest discriminant ratio values of the metrics for
percentage time hypoglycemia assessment; however, the
values of both metrics were concentrated around similar
values describing a left skewed distribution. They are,
therefore, relatively less affected by variability and it may
not be appropriate to compare percentages of time to
%GRADEHypo and LBGI.

The discriminant ratio values for LBGI and %GRADEHypo

were not statistically different between the two analyzed
databases (P = 0.662 and P = 0.182 for LBGI and %GRA-
DEHypo, respectively).

Table 1. Discriminant Ratio of Glucose

Variability Metrics

Metrics DR

MAG 2.98 (1.64–3.67)
GVP 2.20 (1.39–3.01)
LI 2.11 (1.20–3.10)
AARC 1.95 (1.41–2.64)
J-index 1.85 (1.34–2.59)
ADRR 1.81 (1.40–2.28)
CONGA1 1.73 (1.37–2.18)
SD 1.62 (1.21–1.99)
MAGE 1.56 (1.22–1.93)
MODD 1.47 (1.11–1.98)
CV 1.33 (1.08–1.63)

AARC, average absolute rate of change; ADRR, average daily risk
range; CONGA1, continuous overlapping net glycemic action over an
1-hour period; CV, coefficient of variation; DR, discriminant ratio;
GVP, glycemic variability percentage; LI, lability index; MAG, mean
absolute glucose; MAGE, mean amplitude of glucose excursion;
MODD, mean of daily differences; SD, standard deviation.

Table 2. Discriminant Ratio of Glucose Control Quality Indices

Metrics for hypoglycemia Metrics for overall glycemic control Metrics for hyperglycemia

Metrics DR Metrics DR Metrics DR

%T < 50 mg/dL 2.33 (1.06–6.35) M-value 2.00 (1.30–2.94) HBGI 1.83 (1.34–2.72)
%T < 54 mg/dL 2.15 (1.08; 5.28) IGC 1.92 (1.27–2.93) %T > 180 mg/dL 1.59 (1.27–2.09)
LBGI 1.93 (1.15–3.44) GRI 1.87 (1.32–2.72) %T > 160 mg/dL 1.56 (1.32–1.97)
%GRADEhypo 1.79 (1.04–4.46) PGS 1.71 (1.44–2.02) %T > 140 mg/dL 1.54 (1.29–1.85)
%T < 70 mg/dL 1.51 (1.07–2.77) GRADE 1.67 (1.30–2.27) %GRADEhyper 1.50 (1.24–1.86)

%T 70–180 mg/dL 1.63 (1.31–2.02)
%T 70–160 mg/dL 1.63 (1.31–2.02)
%T 54–180 mg/dL 1.61 (1.32–2.09)
%T 70–140 mg/dL 1.58 (1.36–1.85)
%T 54–140 mg/dL 1.61 (1.32–2.09)

GRADE, glycemic risk assessment diabetes equation; GRI, glucose risk index; HBGI, high blood glucose index; IGC, index of glycemic
control; LBGI, low blood glucose index; PGS, personal glycemic state.
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FIG. 1. Discriminant ratio versus temporal length consideration (number of weeks) used to obtain the calculations. Only
the metrics that have the highest DR are represented. ADRR, average daily risk range; DR, discriminant ratio; GRI, glucose
risk index; GVP, glycemic variability percentage; HBGI, high blood glucose index; IGC, index of glycemic control; LBGI,
low blood glucose index; LI, lability index; MAG, mean absolute glucose.

FIG. 2. Median of discriminant ratio corresponding to the evaluated glucose variability metrics (top) and glucose control
indices (bottom). The glucose control indices are divided into metrics for hypoglycemia, metrics for overall glycemic
control, and metrics for hyperglycemia. AARC, average absolute rate of change; CONGA, continuous overlapping net
glycemic action; CV, coefficient of variation; GRADE, glycemic risk assessment diabetes equation; JDRF, Juvenile Dia-
betes Research Foundation; MAGE, mean amplitude of glucose excursion; MODD, mean of daily differences; PGS,
personal glycemic state; SD, standard deviation.
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M-value100 and IGC1 are the metrics for overall glycemic
control with the highest values of discriminant ratio. Both are
not significantly different from each other (P = 0.143).
However, IGC1 is constant from k = 8, whereas M-value100

was constant from k = 12. The discriminant ratio of GRI is not
statistically different from IGC1 (P = 0.709); however, GRI is
not stable at k = 13. Therefore, IGC1 may be preferable to
M-value100 and GRI as it requires less data to become stable.

Finally, HBGI is the metrics for hyperglycemia that shows
higher discriminant ratio values and is constant from k = 13.

Several percentage times in ranges indices were evalu-
ated separately. Based on these results, the optimal ones are the
commonly used percentage of time between 70 and 180 mg/dL
followed by the range defined by 70–160 mg/dL without a sta-
tistically significant difference between both ranges (P = 0.197).

The interrelationships between the metrics were assessed
and the values are given in Supplementary Table S3. For
different evaluated thresholds (th), the metrics that were
strongly correlated with percentage times in ranges, %T(<th),
and %T(>th) are summarized in Table 3.

Results showed a high correlation between the percentage
time in ranges and M-value100, J-index, GRI, GRADE, PGS,
and IGC1. Nevertheless, the relationship with IGC1 is weaker
with the narrowest range of time (i.e., %T 50–140 mg/dL).
The same phenomenon occurred with PGS, but less markedly
since it also depends on other parameters. Therefore, the
customization of range in both IGC1 and PGS (penalty
scores) is the determinant that defines the relative influence of
hypo- and hyperglycemia in the outcomes.

The Spearman coefficient (rs) is greater for the range
70–180 mg/dL and this reinforces its potential as the optimal
definition of time in range in line with the discriminant ratio
analysis.

For percentages time in hypoglycemia, LBGI and
%GRADEHypo were the glycemic control metrics with the
greatest hypoglycemia correlation.

For percentage times in hyperglycemia, J-index, HBGI,
and GRADE were the most highly correlated. A threshold of
180 mg/dL to define hyperglycemia presented the best coef-
ficients, again reinforcing this as the ideal threshold for hy-
perglycemia.

For variability metrics, MAG was correlated with LI
(rs = 0.87); CONGA with LI (rs = 0.89); and GPV with AARC
(rs = 0.9). MAGE, MODD, and ADRR were not correlated
with percentages time in ranges, suggesting that they are able
to describe glucose variability independently of the glucose
distribution.

Discussion

The results reported here describe the ability of different
GV metrics and glucose control quality indices to dis-
criminate between individuals. MAG, a GV metric that is
the measure of glucose rate of change over time, has the
highest discriminant ratio, whereas LBGI and IGC1 have
the higher discriminant ratio values for measures of glucose
control quality. These results differ from a previous study33

where it was suggested that MAG may not be an ideal
reference for assessment of GV based on the correlation
between MAG and other GV metrics as MAGE, SD, in-
terquartile range, and CONGA. However, that study did not
differentiate between variability metrics and quality of
control indicators and compared MAG (a variability met-
ric) with control quality indicators. That work also con-
cluded that MAG represents a valid GV metric if closely
spaced sensor glucose measurements (i.e., CGM) are used.
This is supported by the results of an analysis of the nor-
mative values for MAG derived from CGM data in subjects
without diabetes.34

LBGI has been supported by an analysis of glucose vari-
ability metrics in children using principal components anal-
ysis,35 despite the underestimation of the low-risk range of
LBGI seen when CGM measurements are used.36 This un-
derestimate of hypoglycemia risk with CGM, compared with
blood glucose, could be due to fewer values in the range, the
sampling differences, the plasma–interstitium glucose
transport, or the intrinsic characteristics and artifacts of CGM
technology.

For percentage time in glucose target range, the range of
70–180 mg/dL is the most effective at discriminating be-
tween individuals. To specifically assess percentage time in
hypoglycemia, the International Hypoglycemia Study
Group-defined threshold of 54 mg/dL37 appears to discrimi-
nate effectively when percentage time below threshold is
assessed. These results strengthen support for the standardi-
zation of the times in ranges metrics as 70–180, <54, and
>180 mg/dL.

In the intercorrelation analysis, although percentage of
time in ranges has the theoretical limitation that it assigns the
same penalty score to all glucose values, calculations sug-
gested that simple indices such as times in ranges may be as

Table 3. Spearman’s Correlation Coefficient

for Metrics Correlated with Times in Ranges,

Percentage of Times in Hypoglycemia (BG < th),

and Percentage of Times in Hyperglycemia (BG > th)

% time in ranges

(54–140) (54–180) (70–140) (70–180)

M-value -0.63 -0.83 -0.70 -0.88
J-index -0.85 -0.92 -0.84 -0.87
HBGI -0.87 -0.95 -0.86 -0.90
GRI -0.77 -0.93 -0.82 -0.95
GRADE -0.93 -0.95 -0.93 -0.91
IGC -0.47 -0.68 -0.59 -0.79
PGS -0.72 -0.87 -0.80 -0.92
%GRADEeu 0.55 0.70 0.59 0.73

% time below ranges

<50 <54 <70

LBGI 0.77 0.82 0.96
%GRADEhypo 0.73 0.76 0.74

% time above ranges

>140 >160 >180

J-index 0.84 0.90 0.94
HBGI 0.87 0.93 0.97
GRI 0.70 0.80 0.86
GRADE 0.89 0.93 0.93
PGS 0.64 0.74 0.79
%GRADEhyper 0.59 0.61 0.60
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informative as the ‘‘risk index’’ criteria, as previously pro-
posed.38 However, the percentage times in ranges showed
higher vulnerability to intra- and interpatient variability than
the risk indices with lower values of discriminant ratio.

This study suggests that the best metrics—based on the
discriminant ratio values—should be considered depending
on researchers’ hypotheses (GV or glycemic control quality),
rather than a blanket approach to assess all available metrics.

The limitations of this study include the exclusion of
glycemic profiles that include episodes of severe hypogly-
cemia. This may result in a bias in the analysis of the per-
centage of time <50 and 54 mg/dL due to relatively fewer
samples in these ranges. An analysis with data from studies
that include people with even higher risk of hypoglycemia
could reinforce the results of both these metrics, but the
sensitivity analysis includes participants in the I HART CGM
study that recruited people with impaired awareness of hy-
poglycemia or a recent history of severe hypoglycemia.

Another limitation would be the reproducibility of results
using other distinct data sets. Although we tried to ensure that
the considered data set represents a wide group of people with
T1D, the discriminant ratio results may be different if other
studies including diverse participants were considered.

Different approaches to determine a gold standard for
measuring GV have been explored.39 A classifier system
based on different machine learning algorithms trained with
physician expertise, which rates GV on a scale of low, bor-
derline, high, or extremely high, has been proposed. This
system gives an overall idea of the glucose management,
including only the MAGE and SD as variability metrics along
with other typical metrics of temporal signal processing.
Others have assessed the predictive value of glucose vari-
ability metrics in predicting hypoglycemia, and concluded
that, of the variability metrics, only CV correlated with hy-
poglycemia, and that LBGI had the strongest relationship
with exposure to hypoglycemia.40 Future study may include
expanding similar approaches with all available metrics (and
considering MAG, IGC1, and LBGI, which have higher dis-
criminant ratio values), and glucose outcomes.

Conclusion

The increasing use of CGM enables calculation of glu-
cose metrics such as mean glucose, glucose management
index, and percentage time in range. These are accessible
and easily understood but may not be sensitive to variability
in glucose; therefore, considering other nonconventional
metrics, which have been evaluated in this study, may draw
a better picture of the management of the disease. There is
potential benefit from standardizing metrics to assess vari-
ability, widening the range of applicability of the available
metrics, and to measure the impact of an intervention, es-
pecially in clinical research.

We propose that MAG, as the most discriminant metric, is
used as the glucose variability metric for people with T1D.
MAG may be used alongside HbA1c and a measure of hy-
poglycemia to assess the impact of any intervention on gly-
cemic control. The optimal metric for time in hypoglycemia is
time spent <54 mg/dL, in line with the International hy-
poglycemia study group recommendation, and the most robust
metric for measuring percentage time in glucose target range
is 70–180 mg/dL, in line with the consensus statement.41
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Appendix A1

Glucose temporal signal is divided into k windows or
replicas in each subject; the variability metrics are calculated
for each window in each patient. Then the following matrices
are defined for each of the evaluated glycemic variability
metrics and glucose control quality indices:

X¼

x11 . . . x1k

..

. . .
. ..

.

xn1 . . . xnk

2
664

3
775, (3)

Xmean¼ +k

j¼ 1

x1j

k
+k

j¼ 1

x2j

k
. . . +k

j¼ 1

xnj

k

h i
, (4)

where X 2 Rn x k, being the i-th row the i-th subject, and the
j-th column the j-th window. X is the metrics considered and
Xmean is the mean of the metric obtained for each subject
considering all windows.

Particularly, from mentioned matrices, the within-subject
standard deviation (SDw) and between-subject standard de-
viation (SDB) are calculated for each metrics as follows:

SDwi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+k

j¼ 1

xij� xmeani

� �2

k

s
, (5)

SDB¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+n

i¼ 1

xmean � xmeani

� �2

n

vuut
, (6)

where xmean is the mean of xmeani
.

Therefore, Equations (1) and (2) are rewritten as follows:

DRi¼ SDui
=SDwi

, (7)

SDui
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2

B�SD2
wi
=k)

q
: (8)

The absolute value of discriminant ratio is the median of
discriminant ratios across the subjects for each metrics.
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