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Abstract

Anxiety leads to a global decline in quality of life and increase in social burden. However, treatments are limited, because the
molecular mechanisms underlying complex emotional disorders are poorly understood. We explored the anxiolytic effects of 8-
O-acetyl shanzhiside methylester (§8-OaS), an active component in Lamiophlomis rotata (L. rotata; Benth.) or Kudo, a traditional
herb that has been shown to be effective in the clinical treatment of chronic pain syndromes in China. Two mouse anxiety models
were used: forced swimming stress (FSS)—induced anxiety and complete Freund’s adjuvant (CFA)-induced chronic inflamma-
tory pain. All animal behaviors were analyzed on the elevated plus maze and in the open-field test. 8-OaS significantly amelio-
rated anxiety-like behaviors in both anxiety models and inhibited the translation enhancement of GluN2A, GluN2B, and PSD95.
Moreover, a reduction in GABA receptors disrupted the excitatory/inhibitory (E/I) balance in the basolateral amygdala (BLA),
indicated by increased excitatory and decreased inhibitory presynaptic release. 8-OaS also blocked microglia activation and
reduced the phosphorylation of p38, c-Jun N-terminal kinase (JNK), NF-kB p65, and tumor necrosis factor alpha (TNF-«) in the
BLA of anxiety mice. 8-OaS exhibits obvious anxiolytic effects by regulating the excitatory/inhibitory (E/I) synaptic transmis-
sion and attenuating inflammatory responses in the BLA.
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Anxiety disorder is highly common worldwide, with an esti-
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affects people’s life and work (Wu et al. 2008). Anxiety disor-
der is a chronic and functional disability with high psycholog-
ical pressure, characterized by overwhelming stress, attention
difficulties, and physiological symptoms such as muscle ten-
sion and insomnia (Beery and Kaufer 2015; Du et al. 2019).
Antidepressants and benzodiazepines are clinically useful for
the treatment of anxiety, but can lead to considerable side ef-
fects such as liability of physical dependence, addiction, ex-
cessive sedation, and abuse (Locke et al. 2015). Better anxio-
lytic drugs with fewer side effects are therefore needed.

In clinical experiments, acute stress, chronic inflammation,
and pain cause anxiety behaviors. Stress is an established and
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pivotal precipitating factor for several neuropsychiatric diseases,
especially for anxiety and mood disorders (Thakare et al. 2017).
Animal studies have shown that stress can induce various alter-
ations of neurotransmission systems, and hyperexcitation can
promote anxiety-like behavior in the basolateral amygdala
(BLA), because of enhanced excitatory glutamate or reduced
inhibitory GABA transmission (Liu et al. 2012; Stanika et al.
2009). The imbalance between excitation and inhibition in neural
circuits is therefore highly relevant to the occurrence and devel-
opment of anxiety. Additionally, neuroimaging studies show that
an increase in inflammation is associated with enhanced threat-
and anxiety-related brain circuitry, particularly activation of the
amygdala (Tasan et al. 2010). Moreover, animal studies have
demonstrated an increase in anxiety-like behaviors during exper-
imentally induced systemic inflammatory responses (Gallagher
etal. 2019). Regulating the excitatory and inhibitory transmission
balance as well as inflammation may thus be an effective method
for treating anxiety disorders.

Lamiophlomis rotata (L. rotata) Kudo (“Duyiwei” in
Chinese) is a Chinese folk medicinal plant from Xi-zang
(Tibet), which is traditionally used to relieve pain, detumescence,
and hemostasis; reinforce marrow; and promote blood circulation
to remove blood stasis (Jiang et al. 2010; Yi et al. 1997). The
active ingredients of L. rotata are iridoid glycosides, mainly
shanzhiside methylester (SM) and 8-O-acetyl-SM (8-OaS) (La
et al. 2015; Shang et al. 2011). Emerging studies suggest that 8-
OaS has neuroprotective effects on hypoxia and glucose defi-
ciency by suppressing inflammatory and apoptosis-related cas-
cade reactions (Jiang et al. 2010; Jiang et al. 2011). In addition,
the main mechanism of 8-OaS analgesia is the regulation of
nociceptive information transmission (related to the deactivation
of the NMDAR/PKC and NO/cGMP/PKG pathways) and spinal
neuroinflammatory responses (decrease in TNF-oc and IL-1 3,
increase in IL-10 production) (Zheng et al. 2011). 8-OaS inhibits
the production of TNF-« and other pro-inflammatory cytokines
and reduces the phosphorylation of P38 MAPK and NF-«kB in
neuropathic pain models (Fan et al. 2016; Ji et al. 2014; Xu et al.
2006; Zhu et al. 2014). These effects of 8-OasS are correlated with
the inhibition of the inflammatory response. However, its anxio-
lytic effects in a model of acute stress and inflammation as well
as the involved mechanisms remain unclear.

This study thus aimed to investigate the roles and mecha-
nism of 8-OaS in the modulation of anxiety-like behaviors, in
two animal models of anxiety, an acute forced swimming
stress (FSS) model and a chronic CFA-induced inflammatory
pain model.

We found that 8-OaS exerted anxiolytic-like effects in the
open-field test (OFT) and the elevated plus maze (EPM) anx-
iety tests in both models. The correlative proteins involved in
the balance between excitation and inhibition, including
GIluN2A, GluN2B, PSD95, and subunits of GABAA recep-
tors (GABAAx2 and GABAAY2 in FSS-induced mice, and
inflammatory signaling proteins including phospho-JNK,
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phospho-P38, IL-6, TNF-«, and NF-kB p65) were sequential-
ly examined following 8-OaS administration in CFA-injected
mice. Our results clarify the role of 8-OaS in stress- and CFA-
induced mood disorders and suggest 8-OaS as a potential
therapeutic target for the treatment of clinical anxiety.

Materials and Methods
Animals

Six- and 8-week-old C57BL/6 male mice were provided by
the Laboratory Animal Center of Fourth Military Medical
University (FMMU). The animals were housed in a colony
room at 24+2 °C and 50-60% humidity and under a 12-h
light/dark cycle (light on at 7:00 AM) with food and water
available ad libitum. All behavioral tests were conducted dur-
ing the light period. Mice were adapted to the laboratory con-
ditions for at least 1 week before testing. All procedures were
approved by the FMMU Animal Care Committee.

Chronic Inflammatory Pain Model (Model 1)

As in a previous study (Wang et al. 2015), the left hind paw
plantar of test mice was injected with CFA (10 ul, 50% in
saline) to induce persistent inflammatory pain. The same vol-
ume of 0.9% saline was injected into the left hind paw plantar
of control mice.

Forced Swimming Test (Model 2)

The forced swimming test was conducted in an open cylindri-
cal container (diameter 10 cm, height 25 cm) filled with water
at 23-25 °C for 15 min. Mice were placed in separate con-
tainers and forced to swim without their tails touching the
bottom. The animals were forced to swim for 15 min a day
for 2 consecutive days. At the end of each session, the mice
were taken out of the water and dried immediately.

Experimental Design and Drug Treatment

8-0aS (purity >98%) was purchased from Shanghai Pure
One Biotechnology (Shanghai, China), dissolved in 0.9%
saline containing 10% dimethylsulfoxide (DMSO), and ad-
ministered intraperitoneally (i.p.) at different doses (0.02,
0.2, 2 mg/kg) after the CFA insult. The 8-OaS doses used
here were based on earlier research (Zhang et al. 2018).
Mice in the control group were treated with saline for
2 weeks (from day 1 to day 14). Mice in the chronic in-
flammatory pain model groups (n = 6 per group) were con-
tinuously injected with 8-OaS or saline for 2 weeks (from
day 1 to day 14), and all behavior tests were conducted on
day 15 after CFA injection. In the acute stress model
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groups, mice were continuously injected with 8-OaS or
saline for 3 days (from day 1 to day 3), and behavior tests
were conducted on day 4. After the behavior tests, all an-
imals were sacrificed, and the BLA was collected to detect
the molecular mechanism underlying the effects of §-OaS
administration during phases of anxiety.

Open-field Test

The open-field test (OFT) was performed as depicted previ-
ously (Yang et al. 2016). An individual animal was placed in
the center area of the box for 15 min. Exploratory behaviors
were recorded using a camera fixed above the floor and ana-
lyzed with a video-tracking system. The OFT test was per-
formed before the EPM test but on the same day.

Elevated Plus Maze Test

To assess anxiety-like behaviors, EPM tests were also per-
formed as detailed in a previous report (Sun et al. 2016).
The apparatus contained two opposing open arms (25 x 8 x
0.5 cm?) and two closed arms (25 x 8 x 12 cm?) extending
from a common central zone (8 x 8 cm?). The EPM was lo-
cated 50 cm above the floor. For each test, an individual ani-
mal was initially placed in the central area facing an open arm
and allowed to move freely for 5 min while being recorded
with a camera fixed above the maze.

Immunohistochemistry Staining

After the behavior tests, the brain slices for immunohisto-
chemistry staining were prepared from the intracardially per-
fused brains, and staining procedures were used as described
previously (Sun et al. 2018). All frozen brain sections were
washed with 0.3% Triton X-100 PBS and then blocked (10%
goat serum, 0.1% Triton X-100 in PBS) for 2 h at 4 °C. Slices
were incubated with mouse goat anti-Iba-1 (1:1000) in
blocking solution for 24 h at 4 °C. Next, the sections were
rinsed with PBS and incubated with donkey anti-goat IgG
Alexa Fluor 594 (1:200) in PBS for 1 h at room temperature.
All antibodies were diluted in PBS with 0.1% Triton X-100
and 2% bovine serum albumin. Nuclei were counter-stained
with Hoechst33258 (1:100). The brain slices were then moved
to slides, coverslipped with 50% glycerin, and photographed
with a FluoView FV100 microscope (Olympus).

Enzyme-Linked Immunosorbent Assay

After the behavior tests, the BLA tissue samples were re-
moved from the brains of the dissected mice. According to
the manufacturer’s instructions (R&D Systems, Minneapolis,
MN), levels of the inflammatory cytokines interleukin 13 (IL-

1$3), interleukin 6 (IL-6), and TNF-x were detected in the
BLA using a double-antibody sandwich method.

Determination of GABA and Glutamate

After treatment with 8-OaS for 3 days, GABA and glutamate
were detected using high-performance liquid chromatography
(HPLC; Agilent Technologies 1260 Infinity, Agilent
Technologies, Wilmington, DE), according to previously de-
scribed methods (Wang et al. 2017). Before derivatization, the
samples were dissolved with boracic acid buffer (pH 9.0) and
centrifuged for 15 min at 3000 r/min at 4 °C. Samples were
mixed with 2,4-dinitrofluorobenzene (DNFB) and 0.5 mol/L
NaHPO; buffer for 1 h at 60 °C; then, a phosphate buffer
solution (pH 7) was added to stop the reaction. Samples were
analyzed using a UV detector (360 nm, Agilent Technologies
1260 Infinity). The mobile phase was KH,PO, buffer
(pH 6.0), acetonitrile, and ddH,O (84:8:8, v/v/v) at a flow rate
of 1.0 mL/min. A Themo TC-C18 column (250 x 4.6 mmz;
particle size 5 mm) was used. The concentrations were obtain-
ed using the LC solution software (Shimadzu) based on stan-
dard substances.

Western Blot Analysis

Samples from BLA tissues were harvested after various
treatments according to our previously reported method
(Yang et al. 2016). The western blot analysis determined
the expression levels of GluAl (1:1000; Abcam,
ab31232), phosphorylated forms of GluAl including
phospho-GluA1-831 (1:1000; Abcam, ab5847) and
phospho-GluA1-845 (1:1000; Abcam, ab5849), GIuN2A
(1:1000; Abcam, ab133265), GluN2B (1:1000; Millipore,
Billerica, MA; MAB5780), PSD95 (1:1000; Abcam;
ab2723), phosphorylated forms of JNK (1:1000; Cell
Signaling Technology; Danvers, MA) and P38 (1:1000;
Cell Signaling Technology), TNF-« (1:1000; Cell
Signaling Technology), and p65 (1:1000; Cell Signaling
Technology); (-actin (1:10,000; Sigma, St. Louis, MO)
served as a loading control. The target protein signal
was detected and digitized using ECL solution and
ImageJ software (NIH, Bethesda, MD).

Statistical Analysis

Data were analyzed with SPSS 19.0 and expressed as
means £ SEM. Comparisons between the two groups
were conducted using independent sample ¢ tests.
Results of multiple groups were analyzed using one-
way ANOVA followed by least significant difference
(LSD) tests. In all cases, statistical significance was ac-
cepted at p<0.05.
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Results

8-0aS Relieves Anxiety-Like Behaviors Induced
by Forced Swimming Stress

The FSS model was used to investigate the importance
of 8-OaS in acute stress—induced anxiety-like behaviors.
Anxiety-like behaviors were assessed with the EPM and
OFT, which are widely used for this purpose in rodents.
In the OFT, compared with the control group, the stress
group displayed an obvious decrease in the time spent in
the central area, while the total distance traveled showed
no change (Fig. la, b). In the EPM test, the stressed
group showed a remarkable decrease in the number of
entries and the time spent in the open arms (Fig. 1a, b),
although the total distance traveled showed no significant

Fig. 1 8-OaS relieved anxiety- Open-field test

like behaviors in FSS-induced
Control

change compared with the vehicle group (Fig. lc).
Administration of 8-OaS for 3 days remarkably improved
anxiety-like behaviors in these stressed mice, as our re-
sults show that the number of entries into and the time
spent in the open arms in the EPM test increased (Fig.
1d, e) and that the mice spent more time in the central
square in the OFT (Fig. 1b). These results suggest that 8-
OaS is involved in anxiolytic responses that reverse
anxiety-like behaviors after acute stress.

8-0aS Attenuates CFA-Induced Anxiety-Like
Behaviors in the BLA

CFA was injected to induce chronic inflammation—

mediated anxiety in mice. Different behaviors were
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Fig. 2 8-OaS attenuated anxiety- Open-field test
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in the central zone was reduced in CFA-injected mice
compared with that in the vehicle group (Fig. 2a, b).
However, there were no obvious changes in the total dis-
tance traveled (Fig. 2c). In the EPM, our data shows that
CFA induced anxiety-like behaviors and that mice made
less entries into the open arms (Fig. 2d) and spent less
time in the open arms (Fig. 2e) at 14 days after CFA
injection, compared with the control group. Treatment
with 8-OaS for 2 weeks significantly ameliorated the
CFA-induced anxiety-like behaviors in mice and in-
creased the number of entries and the time spent in the
open arms in the EPM test (Fig. 2d, e) as well as the time
spent in the central square in the OFT (Fig. 2b). These
observations further confirm that 8-OaS treatment leads to
anxiolytic effects on CFA-induced inflammatory pain.

CFA injection

8-0aS Maintains GABAergic and Glutamatergic
Transmission Balance

The excitatory/inhibitory (E/I) balance of neural activities is
necessary for all central physiological functions. An imbalance
in E/ signaling leads to seizures, schizophrenia, autism, and
anxiety (Lucchetti et al. 2013). To investigate the levels of
neurotransmitters in the BLA, we specifically checked gluta-
mate and GABA concentrations using HPLC. Chromatograms
of glutamate and GABA yielded peaks at 11.28 min and
22.27 min, respectively (Fig. 3a). The FSS group showed
higher glutamate (8.21 £0.60 nmol/mg) and lower GABA
(1.31+0.08 nmol/mg) content in the BLA than in the vehicle
group (glutamate 5.91 £0.52 nmol/mg; GABA 1.75=+
0.09 nmol/mg) (Fig. 3b, ¢). Glutamate levels were lower after
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<« Fig. 3 Effects of 8-OaS on the excitatory/inhibitory (E/I) balance after
forced swimming stress (FSS). a HPLC chromatograms of glutamate and
GABA. The peaks for glutamate and GABA respectively appeared at
11.28 min and 22.2 min. b Bar graph of glutamate content in the BLA.
¢ Bar graph of GABA content in the BLA. d Administration of 8-OaS
reversed acute stress—induced expression of GluAl, GluN2A, and
PSD95. e 8-OaS treatment enhanced GABAAx2 and GABAAY2 expres-
sion. Each value represents the mean + SEM of three independent exper-
iments (n=6, *p <0.05, **p <0.01 versus the control group; *p <0.03,
#1 <0.01 versus the CFA-injected group)

8-0aS treatment (Fig. 3b). In contrast, GABA levels were en-
hanced after 8-OaS administration compared with those seen in
control group mice (Fig. 3¢). These data indicate that treatment
with 8-OaS reversed the abnormal release of neurotransmitters
in the BLA that had been induced by acute stress.

Postsynaptic receptors also play a vital role in the
excitation/inhibition of signal transduction between neurons.
Excitatory postsynaptic receptors include NMDA and AMPA
receptors. Excitatory postsynaptic receptors are mainly
GABA,4 receptors. Thus, we determined the expression
changes in receptor subunits in the BLA after acute stress.
The levels of GluN2A, GIuN2B, and PSD95 (Fig. 3d) were
remarkably increased in the BLA. Administration of §8-OaS
for 3 days obviously decreased the elevation of GIluN2A,
GIluN2B, and PSD95 (Fig. 3d) in the BLA of acutely stressed
mice. Next, two lowly expressed subunits of GABAA
receptors—GABAA«2 and GABAAy2—were examined in
the FSS group, compared with that in the vehicle group (Fig.
3e), and were found to be enhanced after 8-OaS administra-
tion for 3 days (Fig. 3e). These results suggest that 8-OaS
treatment ameliorated the imbalance between GABAergic
and glutamatergic transmission in the BLA of FSS mice.

Anti-inflammatory Effects of 8-0a$ in the Mouse BLA

Microglia are responsible for immune responses upon inflam-
matory stimulation via the production of cytokines and
chemokines. The chronic inflammation caused by CFA injec-
tion can activate the microglia in the BLA area. The morpho-
logical features of the activated microglia are enlargement and
roundness, and the expression ratio of the specific marker Iba-
1 increases (Fig. 4a, b), which can then drive the secretion of
cytokines that mediate inflammatory responses in the brain.
The fluorescence intensity of Iba-1 was markedly decreased
after treatment with 8-OaS for 14 days. This finding suggests
that 8-OaS reduced the activation of immune cells in the brain
after CFA challenge.

To further identify the roles of 8-OaS on inflammation, the
concentrations of inflammatory cytokines in the BLA were ana-
lyzed by an enzyme-linked immunosorbent assay.
Concentrations of pro-inflammatory cytokines, such as IL-1f3
(6.065+0.353 pg/mL), IL-6 (11.55+0.504 pg/mL), and
TNF-« (59.722 +£2.945 pg/mL), were upregulated after CFA

injection. However, 8-OaS treatment reversed these results, as
our data for IL-13 (4.826+0.121, 3.820+£0.203, 3.101 +
0.214 pg/mL), IL-6 (9.573+0.221, 7.516 +0.279, 7.426 +
0.223 pg/mL), and TNF-a (30.833 +1.734, 16.611 +1.732,
15.278 +1.904 pg/mL) show (Fig. 4c, d). These data suggest that
8-0aS plays an effective role in anti-inflammation, which may be
one of the ways in which it reduces chronic inflammatory pain.

Effect of 8-0aS on Inflammation Signaling Pathways
in Different Anxiety Models

The inflammation signaling pathway was activated upon CFA
stimulation and acute stress, and we further studied which
cytokines were responsible for this process. Western blotting
was used to determine the expression levels of p-JNK, p-P38,
p65, and TNF-cc in the BLA. In the FSS model, the expression
levels of p-JINK, p-P38 (Fig. 5a), p65, and TNF-« (Fig. 5b)
were significantly enhanced in the BLA of mice after acute
stress, compared with those in the control group. 8-OasS treat-
ment resulted in the upregulation of p-JNK, p-P38 (Fig. 5a),
p65, and TNF-o (Fig. 5b) expression.

In the CFA model, compared with the control group, hind
paw CFA injection resulted in the significant induction of p-
INK, p-P38 (Fig. 5¢), p65, and TNF-« (Fig. 5d) proteins in
the BLA, while 8-OaS administration for 2 weeks reduced the
levels of p-JINK, p-P38 (Fig. 5¢), p65, and TNF-« (Fig. 5d)
relative to the control group. This suggests that 8-OaS is ef-
fective against inflammation, which here resulted in the alle-
viation of different anxiety models, including a CFA-induced
chronic inflammatory pain model and an FSS-induced acute
pain model.

Discussion

In this study, we show that 8-OaS exhibits anxiolytic effects
by using acute stress—induced and chronic inflammatory
pain—induced models. Glutamatergic/GABAergic synaptic
dysfunction caused by forced swimming was eliminated by
8-0aS. In addition, pro-inflammatory cytokine release and
microglia activation were significantly attenuated by 8-OaS
administration after CFA injection. Finally, p-JNK and p-
P38 were involved in both the acute stress—induced and the
chronic inflammatory pain—induced model. This suggests that
the anxiolytic effect of 8-OaS was likely mediated by
inhibiting the INK/P38 MAPK pathway.

The L. rotata aqueous extract for oral administration was
approved by the Food and Drug Administration of China
(Beijing) in 1989 for pain therapy, and 8-OaS was considered
to be the main effective ingredient, partially blocking
formalin-induced tonic hyperalgesia as well as peripheral
nerve injury—induced and bone cancer—induced mechanical
allodynia (Zhu et al. 2014). Recently, it has been further
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<« Fig. 4 The effects of 8-OaS on inflammation in the mouse BLA during
CFA-induced chronic inflammatory pain. a After 14 days, the brain slices
containing BLA were immunostained with microglial marker Iba-1 anti-
body (red), and nuclei were stained with Hoechst33258 (blue). Scale
bar=20 um. b 8-OaS inhibited the activation of microglia in the BLA
of CFA-injected mice and had a dose-dependent effect. 8-OaS decreased
the elevated levels of ¢ IL-1[3, d IL-6, and e TNF-a in the BLA on day 14
after CFA injection. Each value represents the mean + SEM of three
independent experiments (n =6, *p <0.05, **p <0.01 versus the control
group; #p <0.05, #p <0.01 versus the CFA-injected group)

demonstrated that 8-OaS alleviates neuropathic pain by
inhibiting inflammatory responses in the spinal dorsal horn
(Zhang et al. 2018). Numerous studies have provided evi-
dence that the impact of a variety of inflammatory stimuli is
related to mood and anxiety-related disorders. Clinical re-
search also revealed that biomarkers of inflammation, such
as inflammatory cytokines and acute-phase proteins, are reli-
ably increased in a proportion of patients with major depres-
sive disorder (MDD), bipolar disorder, anxiety disorders, and
posttraumatic stress disorder (PTSD) (Felger 2018). Similar to
that in analgesic experiments, we found that 8-OaS alleviated
CFA-induced chronic inflammatory pain accompanying
anxiety-like behaviors in mice. The activation of glial cells
leads to the occurrence of neuroinflammation, which is mainly
due to the early activation of microglia and the long-term
activation of astrocytes. In addition, microglial injury may
lead to depression, and drugs that inhibit microglial activation,
such as minocycline and tumor necrosis factor alpha (TNF-c)
inhibitors, are also considered effective antidepressants
(Miller and Raison 2015; Yirmiya et al. 2015). In addition,
microglia release and respond to several cytokines, including
IL-1, IL-6, TNF-a, and IFN-c, which contribute to the main-
tenance of persistent pain states in autoimmune inflammation
of the nervous system (Lee 2020; Santos et al. 2019). In this
study, we observed that the upregulation of Iba-1 expression
and the release of pro-inflammatory cytokines (IL-1[3, IL-6,
and TNF-x) in the BLA after CFA injection were decreased
by 8-OaS, suggesting that the anxiolytic actions of 8-OaS are
linked to the inactivation of microglia.

Anxiety is a general neurobehavioral correlate of various
stressors, and both acute and chronic stress exposure could
precipitate anxiety disorders (Chrousos 2009). In our study,
forced swimming was used as acute stress to induce anxiety-
like behaviors, which were reflected in behavioral changes in
the OFT and EPM. Such stress responses can influence the
immune system via microglial elimination/repopulation (Ray
et al. 2017). Additionally, complex neurotransmitter networks
provide a possible link between anxiogenesis and
immunomodulation during stress. Our group previously dem-
onstrated that glutamatergic and GABAergic systems were
disrupted in a stress-induced model (Tian et al. 2013), where
we used HPLC to examine glutamate and GABA concentra-
tions and found increased glutamate and decreased GABA

content in the BLA of FSS-treated mice, which was however
reversed by 2 mg/kg 8-OaS. The excitatory and inhibitory
(E/T) transmission balance is crucial for normal functioning
of the brain, and enhanced excitatory or reduced inhibitory
transmission can result in hyperexcitation and promote
anxiety-like behaviors (Wu et al. 2008). It has also been re-
ported that tonic GABAergic reduction is induced by social
isolation stress (Matsumoto et al. 2007; Tian et al. 2013).
Additionally, NMDA receptors, which are critical excitatory
postsynaptic receptors, consist of three subunits: GIuN1,
GluN2, and GluN3 (Chen et al. 2019; Jeyifous et al. 2016).
GluN2A and GIuN2B are the most common NMDAR sub-
types and play a significant role in the mammalian CNS,
showing enhanced activity attributable to neurotransmitter hy-
perexcitability, a condition that is related to increased anxiety
(Prager et al. 2014). PSD95 is a postsynaptic anchor protein
that binds to NMDA and AMPA receptors (Jeyifous et al.
2016). Among the three subtypes of GABA receptors
(GABA,, GABAg, and GABA( subtypes), GABA 5 recep-
tors are typical ligand-gated ion channels that play the most
important role in GABAergic inhibitory function, whereas
subunits of GABA, receptors—GABA,«x2 and
GABA py2—mediate anxiety in the BLA (Jeyifous et al.
2016; Mohler 2012). Consistent with these earlier findings,
we found that the levels of the crucial postsynaptic proteins
GIuN2A, GIuN2B, and PSD95 were enhanced, whereas the
expression of GABA-a2 and GABAA-Y2 receptors de-
creased in the BLA of mice with stress-induced anxiety.
Furthermore, the increase in these receptors was reversed in
the BLA of stressed animals after administration of 2 mg/kg 8-
OaS. After FSS exposure, both neurotransmitters and postsyn-
aptic receptors showed changes in excitation/inhibition signal-
ing. This shows that, under acute stress, 8-OaS can improve
anxiety-like behaviors by modifying the excitation/inhibition
balance between neuronal signals.

TNF-o is a proinflammatory cytokine and a well-
characterized indicator of neuroimmune inflammation. Besides,
TNF-« regulates the trafficking of the AMPA receptor
(AMPAR) on the synapse, by driving the rapid exocytosis on
hippocampal pyramidal cells (Beattie et al. 2002; Ogoshi et al.
2005) and the endocytosis on the GABAergic MSNs of the
striatum (Lewitus et al. 2014). Subsequent work has revealed
that TNF-o can drive the simultaneous endocytosis of GABA-
A receptors (GABARS), leading to a substantial shift in the
excitation-to-inhibition (E/I) balance (Stellwagen et al. 2005).
In our two anxiety models, TNF-o expression in the BLA was
increased in both the forced swimming and the CFA injection
condition. This suggests that there is a similar anxiety mechanism
underlying the imbalance between neuroinflammation and syn-
aptic transmission (Renna et al. 2018; ML et al. 2016; Ren and
Dubner 2008; Kim et al. 2019; Zheng et al. 2011). Other studies
have reported that L. rotata can promote microglia to secrete [3-
endorphin, with p38 MAPK signaling as a key linkage (Fan et al.
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«Fig. 5 Effects of 8-OaS on the related protein expression levels of sig-
naling pathway molecules involved in inflammation responses.
Representative results of the western blot analysis showing the expression
levels of a p-P38 and p-JNK and b p65 and TNF-« in the forced swim-
ming test. ¢, d Expression levels of the same proteins on day 14 after the
hind paw CFA injection, with 3-actin serving as a loading control. Each
value represents the mean + SEM of three independent experiments (n =
6, **p < 0.01 versus the control group; p < 0.01 versus the CFA-injected
group)

2016; Zhu et al. 2014). Here, we also found that the phosphory-
lation levels of p38 and JNK, part of the mitogen-activated pro-
tein kinase (MAPK) family, were markedly enhanced after
chronic inflammation pain or acute stress. Fittingly, 8-OaS
inhibited this signaling pathway in both anxiety models, resulting
in the decreased expression of NF-kB p65 and TNF-«.
Therefore, 8-OaS exhibited anxiolytic effects by inhibiting the
JNK/P38 MAPK pathway, reducing the inflammatory response
mediated by microglia activation, and altering synaptic function
due to changes in neurotransmitter levels. However, the relation-
ship between these processes is not clear, and further study is
needed for clarification.

In conclusion, our findings demonstrate that 8-OaS allevi-
ates anxiety-like behaviors in animal models of acute and
chronic anxiety by regulating MAPK signaling pathways in-
volved in anti-inflammatory activities and restoring the E/I
balance. This study describes a new pharmacological effect
of 8-OaS, thereby providing a theoretical basis for further
clinical research on anxiolytic. However, other pathways
may be involved in the anxiolytic activities of 8-OaS, and
further experiments are needed to verify and expand the cur-
rent findings.
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