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Coordination of the unfolded protein response during hepatic
steatosis identifies CHOP as a specific regulator of hepatocyte
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Abstract
The unfolded protein response (UPR) is an adaptive response that is implicated in multiple metabolic pathologies, including
hepatic steatosis. In the present study, we analyzed publicly available RNAseq data to explore how the execution of the UPR is
orchestrated in specimens that exhibit hepatocyte ballooning, a landmark feature of steatosis. By focusing on a panel of well-
established UPR genes, we assessed how the UPR is coordinated with the whole transcriptome in specimens with or without
hepatocyte ballooning. Our analyses showed that neither average levels nor correlation in expression between major UPR genes
such as HSPA5 (BiP/GRP78), HSP90b1 (GRP94), or DDIT3 (CHOP) is altered in different groups. However, a panel of
transcripts depending on the stringency of the analysis ranged from 16 to 372 lost its coordination with HSPA5, the major
UPR chaperone, when hepatocyte ballooning occurred. In 13 genes, the majority of which is associatedwithmetabolic processes,
and the coordination with the HSPA5 was reversed from positive to negative in livers with ballooning hepatocytes. In order to
examine if during ballooning, UPR genes abolish established and acquire novel functionalities, we performed gene ontology
analyses. These studies showed that among the various UPR genes interrogated, only DDIT3 was not associated with conven-
tional functions linked to endoplasmic reticulum stress during ballooning, while HSPA90b1 exhibited the highest function
retention between the specimens with or without ballooning. Our results challenge conventional notions on the impact of specific
genes in disease and suggest that besides abundance, the mode of coordination of UPR may be more important for disease
development.
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Introduction

During an individual’s lifetime and in response to certain en-
vironmental and other challenges, the cells continuously adapt

their transcriptional program in order to attain homeostasis,
adequate physiological performance, and normal function
(van Dam et al. 2018). In disease, homeostasis is abolished,
and this is associated with organ dysfunction and ultimately
with the onset of pathology. A classic example of a pathology
linked to loss of homeostasis is hepatic steatosis or fatty liver
disease. Hepatic steatosis refers to the accumulation of lipids
in the liver, typically exceeding 5% of liver weight or when
5% of hepatocytes contain lipid vacuoles without this being
associated with excess alcohol intake, viral infection, or drug
treatments (Nassir et al. 2015); can be the result of excessive
lipid uptake from the liver, enhanced lipogenesis, or reduced
clearance; and affects about 33% of adult population in the
USA (Mehta et al. 2008).

Hepatic steatosis can progress to nonalcoholic
steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular
carcinoma. Ballooning degeneration of hepatocytes represents
a landmark for the transition of steatosis to NASH and
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describes a special form of hepatocyte degeneration at which
the cells exhibit characteristic swelling and enlargement
(Caldwell et al. 2010; Lackner et al. 2008).

A major adaptive signaling pathway that is responsible for
tissue homeostasis is the unfolded protein response (UPR) that
follows stress of endoplasmic reticulum (ER) (Frakes and
Dillin 2017). At conditions of excessive accumulation of
misfolded and unfolded proteins, the UPR is initiated to re-
solve ER stress by triggering a precisely orchestrated response
involving overexpression of chaperones inhibition of protein
translation and eradication of severely misfolded proteins
(Frakes and Dillin 2017; Zhu and Lee 2015). This response
is guided by the activation of 3 intracellular receptors, IRE1,
ATF6, and PERK, each of which defines the 3 major UPR
branches that are associated by unique and redundant cellular
activities (Frakes and Dillin 2017).

UPR is involved in the onset of various pathologies such as
cancer, diabetes, and neurodegeneration (Back and Kaufman
2012; Hetz and Saxena 2017; Cheretis et al. 2006; Hetz et al.
2013). Several lines of evidence also indicate that deregulation
of the UPR is implicated in the development of hepatic
steatosis (Han and Kaufman 2016; Song and Malhi 2019).
In the majority of the studies, the phenotype of animals sub-
jected to genetic ablation of UPR targets was investigated and
was consistent with the protective role of various UPR-
associated genes against the development of fatty liver disease
(Yamamoto et al. 2010; Ji et al. 2011; Chen et al. 2014a; Chen
et al. 2014b; Kammoun et al. 2009; Rutkowski et al. 2008).
These studies offer valuable mechanistic insights on how spe-
cific UPR genes are associated with the disease. However,
how the UPR is collectively regulated beyond the loss of
function of predetermined gene targets, in hepatic steatosis,
is poorly understood. Furthermore, which UPR branch or spe-
cific UPR-associated gene is primarily involved in hepatic
steatosis remains unclear.

The fact that the UPR involves the concomitant activation
of specific signaling branches that regulate overlapping yet
distinct cellular functions and biochemical cascades provides
a unique model system to explore how transcriptional
reprogramming operates during disease pathogenesis
(Gardner et al. 2013). By using outbred deer mice as a model,
we recently showed that the UPR is highly variable among
individuals and this variability is associated with the onset of
hepatic steatosis (Havighorst et al. 2019). Noteworthy, despite
this variability, a high degree of coordination is maintained in
the expression of different chaperones in different individuals
(Havighorst et al. 2019). This coordination in gene expression
was retained beyond specific chaperones, to the whole tran-
scriptome, in a manner that specific functions of the UPR
attributed to particular UPR branches could be predicted
(Zhang et al. 2019). These notions led us to hypothesize that
analysis of the profile of coordination of gene expression, as
opposed to the levels of expression, between the UPR and the

whole transcriptome could unveil important clues regarding
the pathogenesis of hepatic steatosis. To that end, we analyzed
a previously published comprehensive RNAseq data set of
human liver specimens that had been characterized for a set
of features associated with fatty liver disease (Hoang et al.
2019). We focused particularly on the comparison between
the specimens that developed hepatocyte ballooning as op-
posed to those that did not and explored the coordination in
the expression of a roster or eight UPR genes that have been
recognized as UPR targets. Those genes can be used to mon-
itor the profile of the UPR and included HSPA5 (BiP/GRP78)
(Ji et al. 2011; Chen et al. 2014a; Luo et al. 2006), HSP90B1
(GRP94) (Chen et al. 2014b), DDIT3 (CHOP) (Fornace et al.
1989), ATF4 (Fusakio et al. 2016), calnexin (CANX) (Guérin
et al. 2008), EDEM2 (Mast et al. 2005), DNAJB9 (Lee et al.
2003), and PDIA4 (Joshi-Tope et al. n.d.). Our results suggest
that while expression of these UPR markers remained unal-
tered between groups, the transcriptome correlated with them
was distinct. Furthermore, our analyses unveiled a roster of
transcripts for which the mode of coordination showed unique
profiles in the hepatocytes exhibiting ballooning degeneration
and identified DDIT3 as the major regulator of this process.

Methods

Data retrieval and classification

RNAseq data were downloaded from GSE130970 (Hoang
et al. 2019). Transcripts per million (TPM) data were used
for the analyses. Specimens were divided into two groups
according to the original authors’ (Hoang et al. 2019) classi-
fication, those exhibiting hepatocyte ballooning (grade 1 and
2) and those that did not (grade 0).

Analyses

Average values were analyzed and graphed by using the Prism
8 software (GraphPad, San Diego, CA). Association analyses
were performed by using the Pearson’s test for the criteria
described.

Results

UPR expression levels

Seventy-eight specimens were included in this analysis that
had been characterized before in terms of hepatocyte balloon-
ing (Hoang et al. 2019). Among them, 30 were characterized
as ballooning grade 0 and 48 specimens as ballooning grade 1
or 2 (Hoang et al. 2019). Following normalization with
GAPDH levels, the expression of each of HSPA5,
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HSP90B1, DDIT3, ATF4, CANX, EDEM2, DNAJB9, and
PDIA4 was evaluated and compared in the groups exhibiting
ballooning degeneration and those that did not. As shown in
Fig. 1, no significant difference between the groups for any of
the genes tested was revealed. A trend for lower expression in
EDEM2 and PDIA4 in the specimens exhibiting ballooning
degeneration was observed but remained insignificant (P =
0.06 and P = 0.07, respectively, unpaired t test).

Coordination between HSPA5 and different UPR
targets is maintained during ballooning degeneration

HSPA5 encodes for the chaperone BiP/GRP78 that is the
master regulator of the response to ER stress since its dissoci-
ation from PERK, IRE1, and ATF6 triggers the execution of
the UPR (Frakes and Dillin 2017; Gardner et al. 2013). Our
earlier studies showed that HSPA5 expression is highly coor-
dinated with the expression of different UPR-associated genes
in fibroblasts from genetically diverse deer mice,
irrespectively of the induction of the UPR (Havighorst et al.
2019). Furthermore, this coordination transcends individual
genes and applies to the whole transcriptome (Zhang et al.

2019). In order to explore if this coordination is maintained
in livers and whether it is preserved in samples that exhibit
hepatocyte ballooning, we developed pairwise scatterplots
depicting the correlation between HSPA5 and each of
ATF4, DNAJB9, and HSP90b1 and the whole transcriptome.
As shown in Fig. 2, in all pairwise comparisons, the correla-
tion was maintained indicating appropriate execution of the
UPR irrespectively of the ballooning degeneration. Similar
trends were revealed with all UPR targets analyzed (data not
shown) as well as between pairwise comparisons not involv-
ing HSPA5, such as between ATF4 and HSP90B1 (Fig. 2).
Thus, we conclude that the development of ballooning does
not compromise, at the transcriptome level, the overall coor-
dination of the UPR.

Some genes abolish coordination with HSPA5 during
ballooning degeneration

Despite the retention of the coordination between the UPR
and the transcriptome, it is conceivable that the UPR-
associated genes that are implicated in ballooning will exhibit
positive correlation in the absence of ballooning but as soon as

Fig. 1 Hepatic expression of various UPR genes in human liver
specimens exhibiting hepatocyte ballooning grade 0 or grades 1 and 2.
Levels indicate arbitrary units normalized to GAPDH expression.
Average expression for each group is indicated. For all genes, no

difference between the groups was observed except for EDEM2 and
PDIA4 at which moderately lower expression in specimens with
ballooning degeneration was observed but remained insignificant (P =
0.06 and P = 0.07, respectively, unpaired t test)
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this pathology emerges, correlation will be abolished. To iden-
tify such genes, we calculated the correlation between HSPA5
and the transcriptome in the different groups and identified
those that lost their coordination with HSPA5 in the balloon-
ing group. Depending on the stringency of the filtering criteria
applied, we identified a set of genes that ranged from 16 to 372
and for which correlation in expression with HSPA5 was pos-
itive in the samples without ballooning but was abolished
during hepatocyte ballooning (Supplementary Table 1). This
loss of correlation with HSPA5 and the corresponding genes
extended to the whole transcriptome as depicted in Fig. 3, in
the pairwise scatterplots at which the linear correlations in
specimens without ballooning, were transformed to cyclical
diagrams, typical when no association exists. Thus, for a sub-
set of genes, the transcriptome associated with them is not
associated with the UPR anymore when ballooning emerges.

Genes for which coordination with HSPA5 exhibits
opposite profiles during ballooning degeneration

Although for most of the genes that did not retain the positive
coordination recorded in the non-ballooning group, coordina-
tion was abolished in the specimens with ballooning degener-
ation; in 13 genes, the profile of coordination was reversed:
These genes exhibited positive correlation with HSPA5 in the
non-ballooning group but negative with the group having bal-
looning degeneration (Supplementary Table 2, Fig. 4). No
genes exhibited the opposite trend, being negative in the bal-
looning and positive in the non-ballooning group.
Interestingly, most of the genes for which correlation with
HSPA5 reversed from positive to negative were associated
with the regulation of metabolic processes according to
REACTOME database (Joshi-Tope et al. n.d.).

The functions of DDIT3-associated transcriptome shift
to regulation of cell cycle phase transition in bal-
looning hepatocytes

We have recently showed that by analyzing the transcriptome
correlated with specific UPR genes using a gene ontology
platform such as GOrilla (Eden et al. 2009; Eden et al.
2007), we can unveil functions that for a given context are
specifically associated with these genes, such as endoplasmic
reticulum-associated degradation or apoptosis (Zhang et al.
2019). Based on this notion, we explored if and at which
extent the UPR genes selected for analysis in this study

retained their functionality as UPR-associated genes in the
specimens without and the specimens with ballooning degen-
eration. To that end, we calculated the function retention index
(FRI) and the function acquisition index (FAI). FRI reflects
the ratio of the different functions in the non-ballooning group
that were retained in the ballooning group. FAI reflects the
ratio of the novel functions in the ballooning group that were
absent from the non-ballooning group. We postulated that as
pathology emerges, only the genes that are mechanistically
linked to this pathology will exhibit plasticity in their tran-
scriptional program, will abolish physiological functions,
and will acquire novel functions. As expected, for all genes
tested in the group without ballooning degeneration, the pre-
dicted functions frequently involved those linked to some as-
pects of the UPR. Many of these were retained in the balloon-
ing group (expressed by FRI), while novel functions were also
occasionally acquired (expressed by FAI). For most of the
genes tested, the functions that characterized the associated
transcriptome during conditions without ballooning were
retained during ballooning degeneration, implying that their
functionality remained intact and associated with their opera-
tion as UPR regulators (Fig. 5). For DDIT3 though, while its
associated transcriptome predicted protein localization and
transport in the specimens without ballooning, in the speci-
mens with ballooning degeneration, this was abolished, and
novel functions were introduced that in their majority were
associated with cell cycle phase transition (Supplementary
Tables 3 and 4). Since, for the genes tested including DDIT3
(CHOP), no considerable differences in expression levels
were identified between groups, we hypothesize that differ-
ences in transcriptome represent truly transcriptional
reprogramming. To that end, at different conditions, the same
transcription factor, namely, DDIT3, is correlated with tran-
scripts exhibiting distinct activities and functionality, despite
overall expression levels are retained.

Discussion

The UPR constitutes a highly versatile adaptive response that
attains tissue homeostasis when unfolded and misfolded pro-
teins accumulate. Deregulation of the UPR is involved in mul-
tiple pathologies including metabolic disease, cancer, aging,
and neurodegeneration. Experimental evidence obtained by
laboratory animals that had been subjected to loss of expres-
sion in specific genes has provided insights regarding how the
particular targets are linked to specific phenotypes and meta-
bolic pathologies. Yet, despite their power in addressing
mechanistic aspects of disease pathogenesis, the relative con-
tribution of various UPR-related transcripts in metabolic dis-
ease remains elusive. To address this, we have analyzed pub-
licly available RNA sequencing data from human liver sam-
ples in terms of UPR coordination, at the whole transcriptome

�Fig. 2 Pairwise scatter plots indicating the P value (Pearson’s) in
expression levels between each of HSPA5, ATF4, HSP90B1, and
DNAJB9 and whole transcriptome at various combinations. A positive
correlation was retained in both the groups without or with ballooning
degeneration of hepatocytes
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level. The phenotype we focused on was the ballooning de-
generation of hepatocytes, a landmark for the transition of
steatosis to NASH. For our analyses, we considered not the
relative levels of expression of specific genes in different
groups but rather the mode of coordination of the whole tran-
scriptomewith respect to different UPR-associated transcripts.
The premise of this approach was that the potential implica-
tion of specific genes in disease would be reflected on how
tightly the transcriptome associated with these genes would
maintain its coordination in different experimental groups.
Such approach not only would reflect the robustness of UPR
coordination but will also unveil genes that deviate and pre-
sumably are causatively linked to the phenotype of interest.

While conventional analyses failed to reveal major differ-
ences in UPR genes between the specimens that exhibited and
those that did not, ballooning degeneration, several trends
were revealed when coordination was evaluated. First, we
noted that coordination of major UPR targets such as
HSPA5, HSP90B1, and ATF4 is maintained in the different
groups which in turn implies that UPR is responsive and func-
tional in hepatocyte ballooning and, therefore, as such cannot
constitute a therapeutic target.

By focusing on the transcriptome that abolishes its coordi-
nation with HSPA5/BiP/GRP78, the master regulator of the
UPR, we were able to identify genes that were associated with
BiP/GRP78 only in the specimens without ballooning but not
in those exhibiting the ballooning degeneration. Depending
on how stringent the criteria for establishing abolishment of
coordination were, these genes ranged from 9 to 216. When
highest stringency conditions were used, these genes included
PPP5C, CEP83, ZNF714, ENOX2, SMTN, TUBB3,
AKAP13, KIAA0754, and CRCT1 which behave as UPR
targets (positive correlation with HSPA5) in the absence of
ballooning but abolish this responsiveness when ballooning
develops. In addition to those, we have identified a set of 17
genes that behaved as UPR targets in both specimens without
and those exhibiting ballooning degeneration; however, this
association was positive in the former and negative in the
latter. These genes according to REACTOME (Joshi-Tope
et al. n.d.) included 5 with yet undefined function and 6,
namely, OPLAH, ADPRM, MIGA2, ZNF181, C1GALT1,
and GOLIM4, that were associated with metabolic pro-
cesses. The fact that for these genes the positive regula-
tion becomes negative implies that they are activated by
UPR under physiological conditions but inhibited by UPR
when ballooning occurs.

Probably, the most intriguing finding of the present analy-
sis is related to the assessment of specific UPR-associated
transcriptomes for function. In most of the cases, the
transcriptomes associated with the UPR genes assessed pre-
dicted specific functions relevant to protein processing and
were retained during ballooning degeneration. Thus, even
when the context changes, these genes continued operating
as components of the ER stress response. For DDIT3, how-
ever, while functions related to protein localization and trans-
port were predicted in the absence of ballooning degeneration,
none of these were retained in ballooning hepatocytes and
novel functions were acquired. These functions were now
associated with the regulation of cell cycle phase transition.
DDIT3 (DNA damage induced transcript 3), also known as
GADD153 (growth arrest and DNA damage 153) or CHOP
(C/EBP homologous protein), encodes a transcription factor
belonging to the CCAAT/enhancer binding protein (C/EBP)
family (Ramji and Foka 2002). It is activated by cellular stress
conditions and induces cell cycle arrest and apoptosis (Barone
et al. 1994; Han et al. 2013). CHOP regulates the cell cycle
regulator p21/waf1 during ER stress facilitating the commit-
ment of cells into a proapoptotic program (Mihailidou et al.
2010; Tang et al. 2019). CHOP deletion in pancreatic β cells
of mouse diabetes models protected from apoptosis and im-
proved β cell survival (Oyadomari et al. 2002; Song et al.
2008). Also, hepatocyte cell lines deficient in CHOP expres-
sion were protected from palmitate-induced apoptosis
(Cazanave et al. 2010; Pfaffenbach et al. 2010).
Interestingly, the loss of CHOP inmice led to the development
of significant steatohepatitis and decreased macrophage apo-
ptosis under conditions of FFA-induced ER stress (Malhi et al.
2013).

How relevant to human disease is complete ablation of
CHOP expression is debatable considering that in human
specimens, CHOP expression remains unaltered (Fig. 1).
Notwithstanding this notion, according to the results of the
present analysis, CHOP activity appears to be highly relevant,
considering that the functions of CHOP-associated tran-
scriptome totally shift in specimens with different ballooning
status (Supplementary Tables 3 and 4) despite the similar
levels of DDIT3 expression (Fig. 1). Several questions are
generated from these observations. Does the shift of the func-
tions of DDIT3-associated transcriptome occur before the on-
set of hepatocellular ballooning, and in fact, is hepatocellular
ballooning a consequence of this shift? Is CHOP a protective
or destructive factor against the development of hepatocellular
ballooning in human? What factors cause the functional shift
of DDIT3-associated transcriptome? In view of the fact that
CHOP is a transcription factor, it is plausible that the shift of
CHOP-associated transcriptome during ballooning degenera-
tion is not a direct consequence of differential CHOP expres-
sion but rather of its engagement in transcription complexes
with different co-factors that alter CHOP’s specificity. The

�Fig. 3 Pairwise scatter plots depicting the P value (Pearson’s) in
expression levels between HSPA5 and each of ING3, PARG,
YTHDC2, and PPP5C. In these genes, the expression profile with
HSPA5 showed positive correlation in the specimens without
ballooning but no correlation in specimens with ballooning
degeneration of hepatocytes
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Fig. 4 Pairwise scatter plots depicting the P value (Pearson’s) in
expression levels between HSPA5 and each of XAB2, SPINK5,
F2RL2, and ZSCAN21. In these genes, correlation with the HSPA5-

associated transcriptome was positive in the specimens without balloon-
ing but reversed to negative in the specimens exhibiting ballooning de-
generation of hepatocytes

976 Y. Zhang et al.



fact that its adaptive UPR-related activity is substituted by its
cell cycle regulatory activity appears highly relevant in the
context of degeneration.

Collectively, the present study identifies UPR as a major
regulator of hepatic steatosis, not in terms of abundance of
specific transcripts but rather with regard to alterations of the
UPR-associated transcriptome during disease development.
Furthermore, our strategy provides an example of how analy-
sis of coordination in gene expression may illuminate unfore-
seen aspects of disease pathogenesis.
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