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With the development of computer technology, many machine learning algorithms have been applied to the field of biology,
forming the discipline of bioinformatics. Protein function prediction is a classic research topic in this subject area. Though
many scholars have made achievements in identifying protein by different algorithms, they often extract a large number of
feature types and use very complex classification methods to obtain little improvement in the classification effect, and this
process is very time-consuming. In this research, we attempt to utilize as few features as possible to classify vesicular
transportation proteins and to simultaneously obtain a comparative satisfactory classification result. We adopt CTDC which is a
submethod of the method of composition, transition, and distribution (CTD) to extract only 39 features from each sequence,
and LibSVM is used as the classification method. We use the SMOTE method to deal with the problem of dataset imbalance.
There are 11619 protein sequences in our dataset. We selected 4428 sequences to train our classification model and selected
other 1832 sequences from our dataset to test the classification effect and finally achieved an accuracy of 71.77%. After
dimension reduction by MRMD, the accuracy is 72.16%.

1. Introduction

Protein, regarded as the material basis of life and the care-
taker of life activities [1], participates in all the functions of
maintaining individual survival, including catalyzing specific
biochemical reactions and participating in immune response.
The protein diversity is increased by alternative splicing and
posttranslation modifications [2, 3]. Hence, the topic of pro-
tein function prediction came into being around the time of
the birth of bioinformatics [4–11]. In view of the different
functions of protein, there are various kinds to be classified
[12–17]. Many scholars are devoted to the classification of
different functions of an enzyme [18–23], and some apply
themselves to the recognition of whether a protein sequence
is an effecter protein. In this thesis, we attempt to determine
if a protein is a vesicular transport protein.

Substances with small molecular weight, such as water or
ions, will directly pass through the cell membrane by free dif-
fusion or through the ion channels embedded in the cell

membrane. However, macromolecular materials like pro-
teins cannot directly pass through the cell membrane. In
the process of transportation in and out of the cell, they are
first surrounded by a layer of membrane generated by cell-
forming vesicles and then through the fusion or rupture of
vesicles with the cell membrane or various organelle mem-
branes to complete material transportation. This process is
called vesicular transport. The key role to facilitate this pro-
cess is vesicular transporter, which is a kind of ubiquitous
protein in the cell membrane and organelle membrane.
When macromolecular materials are to be transported across
the membrane, a specific vesicle transport will concentrate
them or supervise the specific organelles to produce different
vesicle structures to carry or to wrap the materials to be
transmitted. Vesicle transport activity occurs widely between
cells or within cells, such as the transmission of neurotrans-
mitters between nerve cells and the operation of the immune
system, which is essential for maintaining life. In the field of
biology, there have been many advanced studies on cell
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vesicle transport, and the research areas are also diverse. For
example, Rothman et al. [24] studied the problem about the
transport of proteins in Golgi matrix, the composition, and
structure of Golgi-coated vesicles. Liu et al. [25] concentrated
on research about the effect vesicular transporter that plays in
synaptic transmission and neurodegeneration. Similarly,
many human diseases are also related to the abnormal action
of vesicular transport in cells. Brain dopamine-serotonin
vesicular transport disease, which can cause movement dis-
order in infancy, is closely related to vascular monoamine
transporter 2 (VMAT2) [26]. In addition, many similar
examples are constantly discovered. Increasingly, more dis-
eases are associated with gene mutations, which are responsi-
ble for the vesicular transport function.

With the development of this field, an increasing number
of vesicular transport proteins and other proteins have been
found. There is growing desire for rapid identification of
vesicular transporters, which is difficult to meet with biolog-
ical technology. This type of research requires bioinformatics
scholars to use machine learning and other computational
methods to process and to analyze massive protein
sequences. Thus far, the research on using computational
methods to identify vesicle transporters is scant. In 2019, Le
et al. [27] used PSSM matrix to store sequence features and
convolutional neural network (CNN) to determine whether
the sequence is a SNARE protein, which is a kind of vesicular
transporter. In the same year, these authors used a classifier
called GRU based on CNN to identify vesicular transporters.
However, for the identification of protein, DNA and RNA,
the process to deal with these problems is similar. In recent
years, the two steps of the process, feature extraction and
classification, have become increasingly complex, and this is
also true in the field of identifying vesicular transporters.

Meanwhile, we try as much as possible to use a simpler way
of feature extraction and classification, to ensure a better clas-
sification effect. Finally, we use the composition descriptor in
the composition, transition, and distribution (CTDC) and
LibSVM as the methods of feature extraction and classifica-
tion, which are widely used by many scholars. It is a novel
idea about our research that the feature dimension of our
final prediction process is reduced to 29. Our flowchart is
shown in Figure 1.

2. Materials and Methods

2.1. Dataset. Our data come from the previous research of Le
et al. These data have been processed by BLAST to ensure
that the similarity between any two sequences is less than
30%. In addition, we use random undersampling in order
to balance the number of positive and negative samples in
the training set. Finally, there are 4428 sequences in the final
training set and 1832 sequences in the test set. Table 1 details
the composition of the dataset.

2.2. Method to Feature Extraction. Feature extraction is very
important for constructing a predictor [28–37]. We use the
CTDC method in iLearn toolkit to extract features of protein
sequences. Developed from iFeatures, iLearn is a comprehen-
sive toolkit based on Python, which was designed by Chen
et al. that can be downloaded at http://ilearn.erc.monash
.edu. As a powerful platform, it not only integrates a series
of feature extraction and analysis methods but provides
many machine learning algorithms for classification. CTDC
is the first part of the CTD feature method in iLearn based
on the first of three descriptors.

Dataset

Prediction model building process

Dimension reduction

MRMD

Feature extraction

CTDC Final prediction model

LibSVM

Classification Method

Original dataset

2533vesicle transporters

9086 non vesicle transporters

Original train set

2214vesicle transporters

7573 non vesicle transporters

Undersampling for original train set

Train set (under sampling)

2214vesicle transporters

2214 non vesicle transporters

Test set

319 vesicle transporters

1513 non vesicle transporters

Figure 1: Flowchart of identifying vesicular transporters.
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CTD is a classic sequence feature extraction method that
was first proposed by Dubchak et al. [38] in 1995. It consists
of three descriptors: composition (C), transition (T), and dis-
tribution (D). Composition refers to the ratio of the number
of single amino acids with specific properties (or several
small amino acid sequence fragments with certain physical
and chemical properties) in the whole sequence [39].
Composition can be expressed with the following formula:

Composition =
nx
N

x = a, b, c⋯ð Þ, ð1Þ

where x represents amino acids with specific groups or
sequence fragments with special physical and chemical prop-
erties, and a, b, and c represent different kinds of groups. N
represents the total length of the sequence. The second
descriptor represents the ratio of two closely adjacent groups
to the total sequence calculated as

transition =
yx + xy
N − 1

x = a, b, c⋯ y = a, b, c⋯ð Þ: ð2Þ

In Eq. (2), xy and yx denote two closely adjacent groups.
The third descriptor, distribution, represents the general
spreading state of special groups in the whole sequence. From
the first amino acid of the sequence, calculate the proportion
of an amino acid carrying a specific group in five subchains
for all the amino acids in a sequence. These five chains con-
tain the first, 25%, 50%, 75%, and 100% special amino acid
from the first amino acid of the sequence.

After our experiment, the features extracted from transi-
tion and distribution contributed little to the classification
effect, so we only select the features extracted from composi-
tion. In iLearn, there are 13 kinds of physicochemical proper-
ties adopted, and each physicochemical property has three
kinds of amino acid combination patterns. The concrete
meaning of these properties comes from the research results
of Tomii and Kanehisa [40] in 1996.

2.3. Method for Classification.We use LibSVMmethod based
on Weka. LibSVM is a library about the support vector
machine (SVM) developed by Professor Lin et al. in 2001.
It has been widely used in bioinformatics [41–54]. It has
the advantages of being a small program that is flexible, with
less inputting parameters, is open source to expand easily,
and thus has become the most widely used SVM Library in
China. This library tool can be accessed at https://www.csie
.ntu.edu.tw/~cjlin/. Weka is a free and noncommercial min-
ing platform, which has a series of functional modules that
basically meet various needs in data analysis, such as a variety
of different classification and regression algorithms and per-

forming cross validation during classification, automatically.
LibSVM classification has been supported since Weka
version 3.5.

SVM is a kind of generalized linear classifier that relies on
supervised learning [55–60]. The key to classification is to
form a hyperplane in multidimensional feature space
through algorithm calculation, which can approximate sepa-
rate positive and negative samples; it can be expressed math-
ematically as

ωTXi + b = 0, ð3Þ

In (3), X is a vector composed of coordinate values of any
point on the hyperplane in each dimension and ω is a vector
that we need to calculate. In addition, in order to make the
sum of the distance between the positive and negative sample
set and the hyperplane reach the farthest, we need to con-
struct two planes parallel to the hyperplane as the interval
boundary to distinguish the sample classification. However,
in most cases, positive and negative samples cannot be
completely divided on both sides of a plane, so generally we
will allow some samples to be divided incorrectly, which we
called soft interval. Finally, the problem is simplified to for-
mula (4).

min
ω,b,ξ

1
2

ωk k2 + C〠
m

i=1
ξis:t:yi ω

Txi + b
� �

≥ 1 − ξi, i = 1, 2,⋯,m, ξi ≥ 0,

ð4Þ

where ξi represents a relaxation variable for each sample
point, and C is the penalty parameter that needs to be set
manually according to the actual situation. The Lagrange
function corresponding to formula (5) can be shown as

L ω, b, ξ, α, βð Þ = 1
2

ωk k2 + C〠
m

i=1
ξi + 〠

m

i=1
αi 1 − ξi − yi ω

Txi + b
� �� �

+ 〠
m

i=1
βi −ξið Þ,

ð5Þ

where parameters αi and βi are Lagrange multipliers. At the
same time, to solve the problem conveniently, we need to
use the technique about Lagrangian duality and set the kernel
function. The dual problem to Lagrange function is repre-
sented as

max
α,β

min
ω,b,ξ

L ω, b, ξ, α, βð Þ s:t:αi ≥ 0, βi ≥ 0 i = 1, 2,⋯,m: ð6Þ

In this experiment, the radial basis function (RBF) is
adopted as the kernel function, which is also the default set-
ting in LibSVM. Two parameters, the cost (c) and gamma
(g), need to be determined before building the classification
model by using Weka. The parameter c is called the penalty
coefficient. The higher the value of c is, the easier it is to over
fit. And g is a parameter of RBF function after it is selected as
kernel which affects the speed of process of training and

Table 1: The dataset used in this study.

Original
Original
train set

Train set Test set

Vesicular transport 2533 2214 2214 319

Nonvesicular
transport

9086 7573 2214 1513
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prediction. There is no universally recognized best method
for parameter selection, and the common method is to let c
and g take values within a certain range, and then set differ-
ent c and g in the process of training set data classification.
Finally, use cross validation to get the classification accuracy
verified by the training set in this groups c and g, and select
the group with the best classification result by comparison
[61]. It is a complicated process, but in LibSVM toolkit, the
parameter optimization is automated, and it no longer needs
to be manually adjusted. We use the program, grid.py in the
LibSVM tool folder to get the optimal parameters.

2.4. MRMD for Dimensionality Reduction. The max-rele-
vance-max-distance (MRMD) is a dimensionality reduction
algorithm, which was developed by Zou et al. [62, 63] in
2015 that can be downloaded at https://github.com/
heshida01/mrmd/tree/master/mrmdjar. It is based on a
series of distance functions to judge the feature indepen-
dence. The process of dimensionality reduction consists of
three steps. First, the contribution of each feature to classifi-
cation is evaluated and then the contribution is quantified.
Second, sort the features according to their contribution to
the classification. Third, select different numbers of features
in order to classify and then record the results. For example,
select the first feature the first time, select the first two fea-
tures the second time, etc., until the number of selected fea-
tures reaches the maximum; that is, all features are selected,
and the classification test stops. By comparing the results of
these classification tests, the best group is selected, and the
features selected in this group are retained and regarded as
the result of dimension reduction.

MRMD algorithm analyzes the contribution of each fea-
ture to the prediction process mainly through two aspects,
max relevance and max distance. Max relevance (MR) is used
to calculate the Pearson correlation coefficient between fea-
tures and samples to quantify the correlation between fea-
tures and case classes. As shown in Formula (7), Pearson
correlation coefficient is equal to the covariance divided by
the product of their respective standard deviations.

ρX,Y =
cov X, Yð Þ

σXσY
: ð7Þ

The vectors X and Y are composed of the ith feature from
the sequence and the class label to which these sequences
belong. Max distance (MD) is used to analyze the redun-
dancy between features. Specifically, we calculate the three
indexes between features:

ED X, Yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N

k=1
xk − ykð Þ2

vuut ,

COS X, Yð Þ = X ⋅ Y
Xk k ⋅ Yk k ,

TC X, Yð Þ = X ⋅ Y
Xk k2 + Yk k2 − X ⋅ Y

:

ð8Þ

In (8), these indexes are called Euclidean distance, Cosine
similarity, and Tanimoto coefficient. The value of MD is
obtained by comprehensive consideration of these three
indexes.

Finally, the value of the contribution of the classification
of each feature is obtained by adding the values of MR and
MD in a certain proportion.

2.5. Evaluation of Classification Results. We adopt cross vali-
dation (CV) to evaluate the experimental results objectively.
It is a classic, analytical method for judging the performance
of a prediction model [64–78]. The core idea is to take out
most of the samples in a given dataset to build a classification
model, to leave a small part of the samples, to use the newly
established model for prediction, and to calculate the forecast
errors of these small samples and to record their sum of
squares. This process continues until all samples are pre-
dicted once and only once. There are three common CV
methods: hold-out method, K-fold cross validation (K-CV),
and leave-one-out cross validation (LOO-CV). We take the
second approach, K-CV.

In K-fold cross validation, the initial data are divided into
k groups of subdatasets. A group of independent subdatasets
are retained as the validation model data, and other k-1 sub-
datasets are used for training. In this way, we can get k
models and take each prediction result of the classifier into
account. In general, the operation is to take the average value
of each index of every classification time from k models. The
value of K can be set according to the actual situation, and
here we set its value to 5. After 5-fold cross validation set in
Weka, in order to evaluate the results of classification, some
indexes are often used [79–85]. The metrics we use are recall,
precision, MCC, and accuracy, and their corresponding for-
mulas are as follows:

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

Accuracy =
TP + TN

TP + FN + FP + FN
,

MCC =
1 − FN/TP + FNð Þ + FP/TN + FPð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + FP − FN/TP + FNð Þð Þ 1 + FN − FP/TN + FPð Þð Þp :

ð9Þ

For the convenience of description, we use “positive” to
represent vesicular transporters and “negative” to represent
nonvesicular transporters. In (7), the letter T means true
(correct). The letter N means false (incorrect). P is the posi-
tive sample, andN represents the negative sample. For exam-
ple, TP means that the positive samples are correctly
identified.

3. Results and Discussion

After optimizing the parameters of the dataset having the
whole 39 dimensional features extracted by CTDC, we first
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implement classification without dimension reduction oper-
ation. By using the parameter optimization function in
LibSVM, we can automatically find the most suitable c and
g; finally, the value of c is 2048 and g is 0.5. The classification
accuracy of train set is 66.84% by Weka. For a total of 4428
samples, 653 positive samples and 815 negative samples are
misclassified. For test set, the accuracy reaches 71.77%. For
1832 samples, there are 94 positive samples and 416 negative
samples that are misclassified.

Simultaneously, we also test the datasets, which are proc-
essed by dimension reduction to judge the effect of MRMD
method dimension reduction on classification results. First,
we use MRMD for training set. After dimension reduction,
the sample space dimension is reduced from 39 to 21. Sec-
ond, we leave the feature of the test set selected by MRMD
in training set and delete the others. Then, we do the same
operation for the reduced dimension dataset. The optimal
parameters c and g are 128 and 2, respectively. The classified
accuracy of training set is 66.96% and test set is 72.16%. In
train set, 656 positive samples and 807 negative samples are
misclassified. In test set, 94 positive samples and 416 negative
samples are misclassified.

To show more vividly the number of samples that
have not been dimensionally reduced and have been cor-
rectly predicted, we have drawn Figure 2. TP represents
the vesicle transporters predicted correctly, and TN is
regarded as the nonvesicular transporters predicted incor-
rectly. From Figure 2, we can clearly see that the number
of correctly predicted samples after dimensionality reduc-
tion is basically the same as that without dimensionality
reduction. However, from another point of view, although
this technique cannot classify more samples, correctly, it
eliminates some features that do not contribute much to
the classification and reduces the complexity of the classi-
fication process.

Of course, if it is unreasonable and incomplete to judge
the prediction effect only by the accuracy rate, we need to
know other indicators about the classification results to eval-
uate the result more objectively. For this reason, we list the
four indexes, recall, precision, accuracy, and MCC, in the

performance of classification of reduced dimension and not
reduced dimension and create Table 2 to represent it.

In Table 2, it is obvious that the prediction results using
the 21 features after dimensionality reduction have not
decreased. This proves that MRMD has no negative effect
on the prediction. In addition, because MRMD calculates
the contribution of each feature to classification and sorts
them in the process of dimensionality reduction, we can
understand which features have great differences between
vesicular transporters and nonvesicular transporters. For
example, according to the calculation of MRMD, the 32nd
feature, called charge. G2, is ranked first after dimensionality
reduction, which indicates that this feature has the greatest
difference between positive and negative samples. The 13th
feature, the hydrophobicity_CASG920101.G1, is in second
place, which means that the degree of difference between
two categories is second only to the 32nd feature and so on.
The specific meaning of these characteristics can be found
in chapter 2.2 of Tomii et al.: they represent different states
of physical and chemical properties, such as hydrophobicity,
normalized van der Waals volume, polarization, and polariz-
ability. This partly explains whether a protein becomes a ves-
icle transporter because some amino acid combinations in
their sequences appear physical and possess chemical prop-
erties that other proteins do not. Certainly, these are not
the only factors that determine protein function.

4. Conclusion

At present, in protein classification, scholars often extract a
large number of features or the classification methods used
are very complex. In our research, we used CTDC feature
extraction combined with MRMD feature screening and
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Figure 2: Number of samples correctly predicted.

Table 2: Comparison of classification results.

Recall Precision Accuracy MCC

39 characteristics 0.718 68.65% 71.77% 0.327

21 characteristics 0.722 70.53% 72.16% 0.342
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dimensionality reduction. It is worth mentioning that the
MRMD adopted to reduce the dimension, which not only
reduces the number of features used in classification, but also
has no negative interference to the prediction effect. Finally,
we used only 21 features to complete the prediction of vesicle
transporters and achieved a satisfactory result. The accuracy
of our prediction method is 66% for training set by 5-fold
cross validation and 72% for test set after dimension reduc-
tion. Compared with the widely used convolution neural net-
work (CNN) or deep neural network (DNN), although it will
obtain higher accuracy, there are also problems of over fitting
and poor interpretability of classification process. The opera-
tion process of these methods cannot be explained, and each
parameter in the classifier is adjusted by negative feedback
according to the actual and theoretical results. The prediction
process relies on the mutual accumulation of input and out-
put of a series of individual neurons. It is difficult to say
whether the result is related to the specific amino acid
arrangement or some specific groups. However, for these
classical characteristics, the sequence feature often means
that there are some rules in the arrangement of amino acids
in the sequence. It may be helpful for scholars to judge
whether an unknown protein is a vesicular transporter.
Through our study, the difference degree of each feature
between positive and negative samples differs according to
the calculation of MRMD. The features, like charge. G2 and
hydrophobicity_Casg920101.G1, ranked first and second,
respectively, and indicate that these physicochemical proper-
ties play a key role in the recognition of vesicle transporters.
Moreover, the best classification results can be obtained by
selecting the first 21 features, which also indicates that the
content of amino acid combinations of the remaining 18 fea-
tures represented between vesicular transporter and nonvesi-
cular transporter is not significantly different. The difference
in the content of these groups with specific physicochemical
properties also helps to explain why proteins exhibit specific
functions.
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