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In view of the problems of lagging and poor predictability for ship assembly and welding quality control, the digital twin technology
is applied to realize the quality prediction and control of ship group product. Based on the analysis of internal and external quality
factors, a digital twin-based quality prediction and control process was proposed. Furthermore, the digital twin model of quality
prediction and control was established, including physical assembly and welding entity, virtual assembly and welding model, the
quality prediction and control system, and twin data. Next, the real-time data collection based on the Internet of Things and the
twin data organization based on XML were used to create a virtual-real mapping mechanism. Then, the machine learning
technology is applied to predict the process quality of ship group products. Finally, a small group is taken as an example to
verify the proposed method. The results show that the established prediction model can accurately evaluate the welding angular
deformation of group products and also provide a new idea for the quality control of shipbuilding.

1. Introduction

The current ship production basically adopts the block con-
struction mode, and the block is composed of a large number
of typical products (including a large group, middle group,
small group, t-type component, and chip component). These
group products are the main object of current ship automa-
tion and intelligent construction. Due to the large quantity,
large batch, and short construction cycle, the construction
quality and efficiency are particularly important to improve
the overall ship construction capacity. In the process of
assembly and welding, a large number of quality data and
process data will be generated, which is the key to evaluate
the quality and can provide process decision-making support
for subsequent quality prediction. Therefore, it is of great sig-
nificance to realize the quality prediction and control of
welding process by collecting and analyzing the data related
to the welding process, so as to improve the quality and effi-
ciency of ship product construction.

The prediction and control improve product quality and
reduce production cost, which is an indispensable link to
realize digital, automatic, and intelligent production. Many

scholars have conducted extensive research on welding qual-
ity prediction and control. Öberg and Sikström used arc volt-
age measurement, CMOS vision, and infrared camera to
online monitor the quality characteristics of weld penetration
and evaluated the industrial applicability and applicability of
the framework [1]. Zhang et al. developed a servo welding
experimental system, which can extract the electrode inden-
tation from the servo encoder to reflect the change of welding
quality. This online detection method can accurately judge
whether the weld meets the requirements of tensile shear
strength [2]. Shi et al. made NiTi coating on stainless steel
by TIG surfacing process to improve cavitation erosion resis-
tance [3]. Yang et al. established a new welding inspection
system based on 3D reconstruction technology. The support
vector machine is used to evaluate the welding quality. The
experimental results show that the system can complete the
welding quality detection quickly and efficiently [4]. Huang
and Kovacevic have developed a laser-based nondestructive
vision system. By processing the image obtained by the visual
sensor, the geometric characteristics of the weld can be
obtained. The position and size of welding defects can be
accurately identified according to the three-dimensional
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contour of weld, so as to realize the nondestructive testing of
weld quality [5]. Gu et al. proposed an automatic tracking
system for multipass welding of an arc welding robot. The
system can accurately track the cap passes, filling passes,
and the root pass [6]. Wang et al. proposed a new welding
quality inspection framework, which can classify and evalu-
ate welding quality and achieved good welding monitoring
performance [7]. According to the literature analysis,
online data monitoring and nondestructive quality assess-
ment after welding are the main methods of quality con-
trol, which fail to effectively use the real-time data of the
production process. The real-time and predictive quality
control is poor, and it is difficult to meet the requirements
of process online decision-making and future intelligent
manufacturing development.

Digital twin technology was proposed byMichael Grieves
in 2003 [8]. The current research and applications are mainly
focused on product design, product quality analysis, and life
prediction in the fields of aerospace and automobile
manufacturing. As an emerging technology oriented to intel-
ligent manufacturing, it has attracted wide attention. In 2011,
NASN established the virtual twin of the space vehicle to pre-
dict the life of the physical vehicle [9]. Subsequently, NASA
summarized previous studies on digital twins and proposed
a technical route of “modeling-simulation-information tech-
nology processing,” which further increased the feasibility of
digital twin technology [10]. Cai et al. created a “digital twin”
virtual machine tool for physical manufacturing based on
sensor data integration and information fusion technology
[11]. Söderberg et al. proposed the concept of digital twins
for real-time geometric guarantees and the process of how
to move from mass production of personalized production
[12]. Bilberg and Malik proposed a human-robot assembly
system based on digital twin, which was used for industrial
applications of variant assembly system to ensure the flexibil-
ity and automation of assembly [13]. Roy et al. and Lu et al.
summarized the development achievements of digital twin-
ning and pointed out the problems faced by the research of
digital twinning of intelligent manufacturing [14, 15]. Park
et al. and Leng et al. apply the digital twin technology to the
personalized production to increase the flexibility of the
manufacturing system [16, 17]. In China, there are more
and more researches on digital twin. Fei et al. proposed the
concept of digital twin shop-floor, discussed the basic theory
and key technology of realizing information physical fusion
of digital twin workshop, and then proposed the concept of
five-dimension digital twin, which provided a reference for
enterprises to practice digital twin [18–21]. Zhuang et al. fur-
ther elaborated the connotation of digital twins, established
the architecture of digital twins, and proposed the devel-
opment direction of digital twins of products [22]. Qi
et al. proposed the digital twin service for intelligent
manufacturing and further elaborated the integration pro-
cess of manufacturing service and digital twin [23]. Xie
et al. proposed a virtual monitoring method for hydraulic
supports based on digital twins, which simulates the
behaviors of the actual hydraulic supports in the whole life
cycle to achieve the synchronization of virtual and actual
movements [24]. In the field of manufacturing, GE, Sie-

mens, PTC, Dassault, and DNV GL use digital twin tech-
nology to meet their respective enterprise needs [25–29].
Through the above analysis, it can be seen that the digital
twin technology makes full use of physical models, sensor
update, and historical data and integrates multidisciplinary
and multiphysical quantities, multiscale, and multiprob-
ability. It can complete the interactive mapping of virtual
and physical space, which is an effective means to achieve
decision-making and quality control.

In recent years, the research team has deeply studied the
dynamic evaluation method and process quality prediction
technology of complex product processing technology based
on digital twin [30–32], which has improved the timeliness
and effectiveness of machining technology evaluation and
quality prediction. On the basis of preliminary research, a
quality prediction and control method for assembling and
welding of group products based on digital twin is proposed.
Firstly, a digital twinning model of welding quality prediction
and control including physical assembly and welding entity,
virtual assembly and welding model, welding quality predic-
tion and control system, and twinning data was established.
Then, by means of real-time data collection based on the
Internet of Things, twin data organization based on XML,
and process quality prediction based on machine learning,
the quality control of assembly and welding process of ship
group products are realized. Lastly, a small group product
of ship is taken as objects for verification.

2. The Quality Factors of Assembly and
Welding for Ship Group Products

The assembly and welding process of ship group products
mainly include four steps: marking, spot welding, welding,
and quality inspection. Hull welding involves physics, chem-
istry, metal material science, and welding metallurgy. The
main defects of the ship welding quality include bulk defects
(porosity, slag inclusion, etc.), surface defects (bite edge,
welding tumor, welding pit, etc.), and linear defects (incom-
plete penetration, incomplete fusion, etc.), as shown in
Figure 1. The traditional welding process generally carries
on quality inspection after welding, which is easy to produce
welding defects and affects the welding quality and produc-
tion efficiency. Hull assembly is the prior process of welding
process. High-precision assembly quality can improve weld-
ing quality and reduce welding time. Deformation and
dimensional deviation are the main quality problems. As
the assembly and welding hours account for more than
40% of the total working hours of ship construction, effective
control plays a decisive role in improving the quality and effi-
ciency of ship construction.

Although the surface defects can be identified by manual
inspection or camera, the defects inside the weld are not easy
to identify. With the development of microtechnology, the
nondestructive measurement of internal defects of weld can
be achieved by using a scanning electron microscope and
perspective electron microscope [33, 34]. The scanning elec-
tron micrograph of main internal defects is shown in Figure 2
[35]. Nondestructive testing (NDT) is the inspection on
whether the weld quality meets the specified requirements
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without damaging the performance and integrity of the
inspected weld, mainly methods including radiography,
ultrasonic testing, eddy current, thermography, and liquid
penetrant [36, 37]. NDT can provide rapid and economical
methods for evaluating weld quality and has been widely
used in various welding tests.

In the analysis of the assembly and welding process, the
quality problems mainly are shown in Table 1. Among them,
the welding factors include welding voltage, welding current,
wire feeding speed, welding speed, bevel angle, weld not
cleaned, welding material, and base metal thickness; the
assembly factors include assembly sequence, margin, posi-
tioning, compensation, and spot welding parameters. There-
fore, in order to effectively predict and control the process, it
is necessary to complete the corresponding process decision
through the process parameters and process data collection,
data analysis, fusion, and quality prediction model.

3. Technical Process of Quality Prediction
and Control

The traditional ship assembly and welding process quality
control is used to compare the quality inspection results with
the process requirements after welding to realize the product
quality evaluation. In case of quality problems such as defor-
mation, stress concentration and crack, postdeformation cor-

rection, and destress treatment shall be carried out. If cracks
or other quality problems occur, the rejection rate will be
increased and even the whole batch of products will be
scrapped. Due to being time-consuming, high scrap rate, easy
rework, low efficiency, high cost, and poor quality control,
this method has been unable to meet the current require-
ments of the digital and intelligent construction of ship prod-
ucts. Therefore, this paper puts forward the quality
prediction and control process of assembling and welding
of ship group products based on the digital twin technology.

As shown in Figure 3. Firstly, a virtual welding model
corresponding to the physical assembly and welding entity
is established to realize the high-fidelity mapping between
the virtual model and the physical entity. Secondly, the qual-
ity data collection is realized by the sensors and data collec-
tion system arranged by physical entity. By combining the
real-time process data, process design data, and process sim-
ulation data, the twin data of welding process were con-
structed, which realized the virtual model to simulate the
welding process of physical entity simultaneously. Then,
combined with historical data and real-time data, online pre-
diction of process quality is realized by big data analysis.
Auto regression model, support vector machine, artificial
neural network, correlation vector machine, random forest,
etc. are commonly used in big data analysis. In case of any
abnormality, the correction machining parameters shall be

Porosity Slag inclusion

(a)

Edge bite Welding tumor Welding pit

(b)

Incomplete penetration Incomplete fusion

(c)

Figure 1: Defects of ship surface welding quality: (a) bulk defects; (b) surface defects; (c) linear defects.

Wormhole Lack of penetration Kissing bonds Hooking bonds Cracks

Figure 2: Scanning electron micrograph of internal welding defects.
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Table 1: The quality defects of ship group products.

Type of defect
Quality

characteristic
Qualitative factors

Assembly defects
Deformation (1) Positioning method; (2) assembly sequence; (3) welding parameters

Size deviation (1) Assembly margin; (2) assembly compensation amount; (3) positioning method

Surface welding
defects

Porosity (1) Welding current; (2) welding speed; (3) welding voltage; (4) the groove is not clean

Slag inclusion (1) Slag not cleaned; (2) groove form; (3) welding current; (4) welding speed

Incomplete
penetration

(1) Welding current

Incomplete fusion
(1) Groove type; (2) assembly clearance; (3) wire feeding speed; (4) welding current; (5)

electrode diameter

Bite edge (1) Welding current

Welding tumor (1) Welding voltage; (2) welding current; (3) wire feeding speed; (4) welding speed

Welding pit (1) Welding speed; (2) welding current; (3) welding voltage

Internal welding
defects

Wormhole

(1) Welding speed; (2) welding current; (3) welding voltage; (4) welding material; (5) base
metal thickness

Lack of penetration

Kissing bonds

Hooking bonds

Cracks

Process design

Real-time process
monitoring

Quality prediction

Meet the
requirements?

End?

Product

Model updating Data mapping

Process
requirements

Y

N

Y
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The virtual assembly and welding model

The physical assembly and welding entity

Twin data

Feedback Data mapping

Equipment
information

Workpiece
information

Process
design data

Real-time
process

data

Data analysis

Simulation
analysis

Processing performed

Process
information

Quality
information

Quality analysis

Process
parameters/route

optimization

Processing performed

Mapping
mechanism

Figure 3: Quality prediction and control process of assembly and welding of ship group products based on digital twin.
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timely carried out and fed back to the physical entity. Thus,
the quality prediction and control of welding of ship group
products are realized.

4. Establishment of Digital Twinning Model for
Product Quality Prediction and Control

In order to meet the synchronous evolution of the virtual
model and the physical perception data, a digital twin-
based quality prediction and control model was constructed

(as shown in Figure 4). Physical entity (PE), virtual model
(VM), and quality prediction and control system (QS) are
closely linked by digital twin data (DD). In the quality predic-
tion and control system, the quality data in the physical entity
can be collected in real time and stored as twin data; in the
virtual model, the twin quality data stored in the quality pre-
diction and control system can be analyzed and predicted,
and the prediction results will be fed back to the physical
entity for quality monitoring. The interaction and integration
of the physical world and the information world of assembly
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Figure 4: Digital twin model for prediction and control of mounting and welding quality of ship group products.
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and welding are realized. Define the quality of prediction and
control model of ship group products based on digital twin:

WDT = PE ∪VM ∪DD ∪QS, ð1Þ

where PE refers to the physical assembly and welding entity,
VM represents the virtual assembly and welding model, DD
stands for the digital twin data, and QS is the quality predic-
tion and control system.

PE is the set of all entities involved in the process. It is
responsible for the execution of production activities. It also
has the function of real-time collection and fusion of multi-
source heterogeneous data and makes dynamic responses
according to process requirements, data monitoring, and
process quality prediction results. The unified description
of physical assembly and welding entity is as follows:

PE = pers, proequis, dcequis, workps, envi, prods½ �: ð2Þ

pers is the processing personnel, proequis is the process-
ing equipment, dcequis is the data acquisition equipment,
workps is the welding object, envi is the processing environ-
ment, and prods is the product.

VM is a high-fidelity model corresponding to the physi-
cal entity, which can reflect the real-time state of the welding
site and reproduce the physical assembly and welding entity.

VM is mainly responsible for the simulation, prediction,
evaluation, and optimization of the production process. The
unified description of the virtual assembly and welding
model is as follows:

VM= Mpers, Mequis, Mworkps, Menvi, Mprods, Mpro½ �:
ð3Þ

Mpers is the personnel twin model, Mequis is the equip-
ment twin model, Mworkps is the welding object model,
Menvi is the environment twin model,Mprods is the product
model, and Mpro is the process twin model.

Digital twin data (DD) consists of real-time data and his-
tory data. The real-time data is the data generated in the cur-
rent welding process, and the historical data is the previous
relevant welding data. Twin data is the core of digital twin
model, which provides data support for welding quality pre-
diction and control. The twin data are uniformly described as

DD = cds, hds½ �,
cds = wpds ⊕ epids,

hds = simds ⊕ prods ⊕molds ⊕ quads:

ð4Þ

cds is real-time data, including weldment data (wpds)
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Figure 5: Real-time data acquisition of assembly and welding process.
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and equipment data (epids); hds is history data, including the
simulation data (simds), process data (prods), models data
(molds), and quality data (quads).

QS is responsible for the monitoring and quality manage-
ment and is the brain of the twin model. Firstly, the model of
welding process is established to realize the synchronous

<Equipment_id>equip-num</Equipment_id>
<Equipment><Static_information>

<Type>welding robot</Type>
<Capacity>degree of freedom,maximum speed, etc </

</Static_information></Equipment>
<Work-piece><Static_information>

<Work-piece_id>num</Work-piece_id>
<Size>500⁎300⁎5</Size>
<Attribute>material,hardness,etc</Attribute>

</Static_information></Work-piece>

Data management of welding process based on XML

Data integration
OPC-UA server

Service support

Real–time perception data of welding workshop

Weldment MonitoringEquipment
Static data Dynamic data

State

Security management

Static data

</dynamic_information></Equipment>

<Equipment><dynamic_information>
<status>start/ending/fail</status>
<process_number_id>5</process_number_id>
<process_plan>single side welding</process_plan>
<Parameter>voltage,current,speed,angle,etc</

<Work-piece><dynamic_information>
<status>distortion,temperature,etc</status>

</dynamic_information></Work-piece>
Dynamic data

Capacity>

Parameter>

Weldment M i iEquipment State

Figure 6: Data management and storage.
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Figure 7: Prediction of assembly and welding quality based on machine learning.
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evolution of virtual and real workshops. Secondly, intelligent
sensing devices and systems are used to monitor the real-
time state of welding manipulator, welding objects, opera-
tors, and environment. Finally, based on twin data, historical
data, and machine learning algorithm to predict assembling
and welding quality, the optimization scheme of parameters
is provided to realize the prediction of loading and welding
quality and dynamic adjustment of the process.

5. Real-Time Data Collection and Storage

A large amount of quality data will be generated in the pro-
cess of assembly and welding, which will serve as an impor-
tant basis for evaluating the quality of assembling and
welding. Therefore, the collection and storage of data are very
necessary.

5.1. Real-Time Data Collection. As shown in Figure 5, the
real-time data collection process is established. The physical
sensor network and intelligent sensing equipment (system)
to collect the assembly and welding equipment, welding
parts, process, and quality information, such as a RFID
device, is used to read the unique identification code of the
welding parts and obtain the basic information of the welding
parts, including the size, number, and process information of
the welding parts. Hall sensor is used to detect welding cur-
rent, welding voltage, and other data. Welding speed and
wire feeding speed are detected by photoelectric code disk
and speed sensor. An accelerometer and a gyroscope are used
to detect the welding gun angle. The visual sensor is used to
extract the information of the molten pool in the welding
process, and the image processing technology is used to iden-
tify the features. On this basis, data transmission is carried
out through a wireless network, 5G, Bluetooth, ZigBee, and
industrial Internet, as well as data conversion, grouping,
analysis, calculation, and fusion, and finally, valuable infor-
mation oriented to process decision-making and quality pre-
diction is formed.

5.2. Real-Time Data Storage.As shown in Figure 6, firstly, the
real-time data of physical welding process is comprehen-
sively analyzed, which is divided into dynamic data and static

data. Static data refers to the information that will not change
with the evolution of weldment in the process of weldment
processing, such as equipment basic data and weldment basic
data. The basic data of weldment includes weldment name,
type, material, and process name; basic data of equipment
includes equipment name, equipment model, and equipment
processing capacity. Dynamic data refers to the information
that will change accordingly as the processing state changes
during the processing of weldment, such as the current pro-
cess, start/completion information, and welding processing
parameters of the product. The dynamic data directly reflects
the real-time status and quality of the weldment and the
operation status of the equipment. Secondly, according to
the interface protocol between equipment/system and het-
erogeneous equipment of different manufacturers/models,
the OPC-UA communication framework is used to realize
the transmission of multisource heterogeneous data and uses
XML text to manage and store real-time data.

6. Machine Learning-Based Ship Group Product
Assembly and Welding Quality Prediction

With the rise of artificial intelligence, machine learning has
developed rapidly. Machine learning is the use of algorithms
to analyze data and learn from it and then make predictions
and decisions on events. The machine learning algorithm is
used to predict the assembly and welding quality online,
which realizes the transformation from passive prevention
to active prediction and control.

As shown in Figure 7, real-time data (including dynamic
data and static data) and historical data (process design data
and simulation data) of the welding process are dynamically
acquired by sensors and intelligent sensing devices to build
quality twin data. The machine learning prediction model
is trained by using the historical big data generated in the
welding process. A large number of data are optimized
interactively in the training process and packaged into corre-
sponding prediction models. Through the real-time monitor-
ing of digital twin and sensor data in the machining process,
the condition monitoring and quality prediction of weldment
can be realized. In the process of prediction, the real-time

Table 2: Chemical composition and mechanical properties of the material.

C(%) Mn(%) Si(%) S(%) Yield strength (MPa) Tensile strength (MPa) Elongation (%)

≤0.18 0.70~1.60 0.10~0.50 ≤0.04 315 440~590 22

(a) (b)

Figure 8: Welding process model: (a) product entity of the group; (b) simulation model of the production line.
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monitoring data can be tested and corrected according to the
historical accumulated data. On the other hand, the historical
data can be updated and expanded according to the real-time
monitoring data. The welding model in the physical layer
dynamically tracks and reflects the latest state of the weldment
through its digital twin and optimizes the welding process
through simulation, including assembly sequence optimiza-
tion, welding path optimization, and welding parameter opti-
mization. In this way, we can grasp the trend of quality change
in advance, actively prevent quality problems, and achieve
dynamic quality assurance. Finally, the fusion and intellectual-
ization of physical information and virtual information in the
welding process are realized.

7. Case Analysis

Taking the assembly and welding line of a shipyard as an
example, it describes the realization process of the quality
prediction and control method of assembly and welding
based on digital twin. The production line consists of two

assembly robots, two welding robots, and sensor systems
(Hall sensor, optical code plate sensor, acceleration sensor,
etc.). The weldment is composed of one panel and two webs,
and the material is AH32. The panel size is 500mm ∗ 400
mm ∗ 12mm, and the web size is 400mm ∗ 100mm ∗ 10
mm. The chemical composition and mechanical properties
are shown in Table 2.

The technological process includes the following: the
assembly platform determines the assembly position through
visual scanning; the assembly manipulator makes the floor
plate and panel become positioned vertically; the welding
manipulator realizes assembly positioning through spot
welding; scanning is done again to determine the position
and length of the welding seam, and then installation and
welding are performed according to the welding process
parameters and process flow imported by the system. During
the welding process, the welding processing parameters
(welding current, welding voltage, welding speed, etc.) are
monitored, and the welding quality is predicted by artificial
neural network.

<Equipment><Static_information>
<Equipment_id>equip-num</Equipment_id>
<Type>wldingrobot</Type>

<Capacity>degree of freedom,maximum speed, etc </Capacity>
</Static_information></Equipment>
<Work-piece><Static_information>

<Work-piece_id>num</Work-piece_id>
<Size>500⁎300⁎5</Size>
<Attribute>material,hardness,etc</Attribute>

</Static_information></Work-piece>

<Equipment><dynamic_information>
<status>start/ending/fail</status>
<process_number_id>5</process_number_id>
<process_plan>singlesidewelding</process_plan>
<Parameter>voltage,current,speed,angle,ect</Parameter>

</dynamic_information></Equipment>
<Work-piece><dynamic_information>

<status>distortion,temperature,etc</status>
</dynamic_information></Work-piece>

Static data Dynamic data

Figure 9: Data acquisition and monitoring of small group products.
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7.1. Establishment of a Welding Process Model. The virtual
model composed of welding parts and mechanical arm is
established. Figure 8(a) shows the product entity of the
group, which is composed of a floor plate and two floor plates
to complete the welding of the floor plate; Figure 8(b) shows
the simulation model of the group production line.

7.2. Real-Time Data Collection and Storage. According to the
design requirements, real-time data of the assembly and
welding process were collected to dynamically monitor the
assembly and welding status of the products. As shown in
Figure 9, specific implementation methods include (1) using
RFID tags and bar codes to generate static information, such
as the size of the welding parts, welding materials, process
number, and equipment processing parameters; (2) obtain
dynamic information based on multiple intelligent sensors
(such as current sensor, speed sensor, temperature sensor,
acceleration sensor, and industrial camera), such as equip-
ment parameters, welding deformation, temperature field
change, and process execution data; (3) establish data trans-
mission network based on industrial Ethernet to ensure effi-
cient data transmission and data collection; and (4) data
storage and management and data related to manufacturing
resource status/welding part status are stored in the database
in XML format.

7.3. Quality Prediction of Welding Process Based on Artificial
Neural Network. A BP neural network is a kind of back prop-
agation neural network. It has strong nonlinear mapping
ability, self-learning ability, and self-adaptive ability and has
been widely used in nonlinear problems in material engineer-

ing [38–40]. Deformation is one of the main typical problems
in welding. Welding deformation has a great impact on the
installation accuracy of the structure, and excessive deforma-
tion will significantly reduce the bearing capacity of the struc-
ture. In this paper, the welding deformation of small group
products is predicted by the BP neural network. Since the
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Figure 10: Weld angular distortion.
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Inputs
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Figure 11: BP neural network prediction model.

Table 3: Historical data of welding deformation.

Experiment number U (V) I (A) S (mm/s) D (mm)

1 265 30 4 0.445

2 265 30 6 0.313

3 265 30 8 0.194

4 265 33 4 0.652

5 265 33 6 0.372

6 265 33 8 0.372

7 265 36 4 0.812

8 265 36 6 0.664

9 265 36 8 0.531

10 275 30 4 0.867

11 275 30 6 0.690

12 275 30 8 0.510

13 275 33 4 1.149

14 275 33 6 0.963

15 275 33 8 0.767

16 275 36 4 1.349

17 275 36 6 1.206

18 275 36 8 0.977

19 285 30 4 1.383

20 285 30 6 1.184

21 285 30 8 0.996

22 285 33 4 1.703

23 285 33 6 1.533

24 285 33 8 1.313

25 285 36 4 1.956

26 285 36 6 1.753

27 285 36 8 1.535

28 285 34 7 1.477

29 280 32 5 1.149

30 275 32 5 1.087

31 270 34 7 0.624

32 265 32 5 0.462
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group product is a symmetrical structure, only the upward
deformation of one side of the bottom plate is considered,
as shown in Figure 10.

7.3.1. BP Neural Network Model. Through the aforemen-
tioned analysis of welding deformation, three quality data
of welding voltage (U), welding current (I), and welding
speed (S) were selected as the input of the neural network,
and the output was the deformation value (D). The learn-
ing rate was set at 0.1, the training target was set at 0.01,
and the maximum training times was 100, to establish the
welding deformation prediction model of the BP neural
network. The network topology is “3-10-1,” as shown in
Figure 11.

7.3.2. Result Analysis. As shown in Tables 3, 32 sets of data
are selected as the basis for analysis. Twenty-seven data were
used for training the network, and the remaining 5 data were
used for testing the network. The result shows that the pre-
dicted value of the artificial neural network is consistent with
the actual measured value, as shown in Figure 12. Comparing
the predicted value with the actual value, it can be seen that
the relative error is small, as shown in Table 4. Therefore,
the established prediction model can predict the change
trend of welding deformation according to the welding qual-
ity parameters and realize the active adjustment of the weld-
ing process.

8. Conclusions

The shipping industry is an important strategic industry
related to national defense security and national economic
development. With the continuous development of industrial
Internet, big data, cloud computing, and other information
technologies, ship building toward the direction of intelli-
gence and automation has been accelerated. In this paper,
digital twin technology is used to solve the problem of assem-
bly and welding quality prediction and control of ship group
products. First of all, real-time data acquisition and storage of
assembly and welding process are used. Then, the welding
quality prediction process based on machine learning is
established. Finally, the BP neural network is used to estab-
lish the deformation prediction model of group products.
The validity and accuracy of the model are verified by com-
paring the actual value with the predicted value. It can
timely grasp the change trend of product processing quality
and realize the active control of assembly and welding pro-
cess quality.

Since welding quality is affected by many factors, it
involves multiple data acquisition and fusion andmultiobjec-
tive quality control, which will be the future research work.
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Figure 12: Experimental and ANN output: (a) data of deformation; (b) error.

Table 4: Comparison of the predicted value and the actual value of
welding deformation.

Experiment
number

Actual value
(mm)

Predicted value
(mm)

Error
(mm)

1 1.477 1.480 -0.003

2 1.149 1.191 -0.042

3 1.087 1.010 0.077

4 0.624 0.642 -0.018

5 0.462 0.468 -0.006
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