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Enhancers are noncoding fragments in DNA sequences, which play an important role in gene transcription and translation.
However, due to their high free scattering and positional variability, the identification and classification of enhancers have a
higher level of complexity than those of coding genes. In order to solve this problem, many computer studies have been carried
out in this field, but there are still some deficiencies in these prediction models. In this paper, we use various feature extraction
strategies, dimension reduction technology, and a comprehensive application of machine model and recurrent neural network
model to achieve an accurate prediction of enhancer identification and classification with the accuracy of was 76.7% and 84.9%,
respectively. The model proposed in this paper is superior to the previous methods in performance index or feature dimension,
which provides inspiration for the prediction of enhancers by computer technology in the future.

1. Introduction

Enhancers are a small area of DNA that can link with protein,
located upstream or downstream of the gene, and gene tran-
scription will be enhanced after they bind with protein [1].
Because of the winding structure of chromatin, enhancers
being far apart in the sequence still have the opportunity to
contact each other. Therefore, they are not necessarily close
to the gene to be affected, or even located on the same chro-
mosome as the gene. Studies have shown that enhancer
mutations may lead to a variety of diseases.

Owing to the significance of enhancers, the identification
and classification of enhancers have always been the focus of
computational biologists and experimental biologists [2, 3].
The fact is that to identify enhancers by biochemical experi-
ments is expensive and time-consuming.

In the past few years, some bioinformatics methods have
been developed to predict enhancers [4]. Liu et al. [5]
proposed iEnhancer-2L, which extracts features by pseudo

k-tuple nucleotide composition and achieves the enhancer
identification and classification with the accuracy of 73%
and 60.5%, respectively. Jia and He [6] suggested Enhan-
cerPred, which extracts features by biprofile Bayes and
pseudo k-tuple nucleotide composition to support the vector
machine and achieves the accuracy of 75% and 55% for the
prediction of enhancer identification and classification,
respectively, Liu et al. [7] proposed iEnhancer-EL, which
applies K-mer, pseudo k-tuple nucleotide composition and
subsequence profile feature extraction methods and uses
the ensemble classifier based on support vector machine to
achieve the accuracy of 74.8% for enhancer identification
and 61% for enhancer classification [8]. Nguyen et al. [9] pro-
posed iEnhancer-ECNN, which uses a convolutional neural
network to achieve the accuracy of 76.9% for enhancer iden-
tification and 67.8% for enhancer classification prediction
[10]. All of the above methods emphasize the better predic-
tion results but fail to mention the dimensional advantages
of the model [11, 12]. Due to the fact that high-dimensional
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features may lead to an over-fitting and high-dimension
disaster or an increase of redundant information, the
machine learning model trained by this initial high-
dimension feature is often found to be underperforming in
practice [13–17].

In this paper, a low dimensional feature model is
obtained by using a variety of feature extraction strategies
and dimension reduction technology [18–23]. The identifica-
tion and classification of enhancers have been achieved via
the combination of machine learning models and artificial
neural network with the accuracy rate of 76.7% and 84.9%,
respectively. It also should be noted that the dimension of
the feature model used to identify enhancers is only 37, which
is much lower than the past methods. And this paper also got
an 18-dimension feature model for enhancer identification,
and its accuracy reached 76.5% after testing.

2. Materials and Methods

In this paper, the identification and classification of
enhancers are described by Figures 1 and 2, respectively.

2.1. Benchmark Dataset. This paper used a dataset proposed
by Liu et al., which was also used in the development of
iEnhizer-2L, EnhancerPred, iEnhancer-EL, and iEnhancer-
ECNN. In this dataset, enhancer information was collected
from 9 different cell lines, and DNA sequences of 200 bp in
length were extracted. In order to avoid the deviation of the
classifier, enhancers with the similarity of over 90% were
deleted from the dataset through CD-HIT [24, 25]. The data-
set contains 1484 enhancers and 1484 nonenhancers. Among
them, 1484 enhancers include 742 strong enhancers and 742
weak enhancers.

2.2. Feature Extraction. Machine learning algorithms cannot
directly perform annotations on continuous nucleotide
sequences, so it is necessary to convert nucleotide sequences
represented by strings into feature vectors represented by
numbers [26–28]. This paper implemented feature extraction
through iLearn [29].

2.2.1. K-mer. The K-mer feature extraction strategy refers to
calculating the frequency of the unit in the entire sequence
with k adjacent nucleotides as a unit [30, 31]. This paper uses
1-mer, 2-mer, 3-mer, and 4-mer feature extraction methods,
which are stated by the following formulas:

1 −mer : f að Þ = Na

Nt
, a ∈ A, T, C, Gð Þ,

2 −mer : f a, bð Þ = Na

Nt − 1ð Þ , a, b ∈ A, T, C, Gð Þ,

3 −mer : f a, b, cð Þ = Nabc

Nt − 2ð Þ , a, b, c ∈ A, T, C, Gð Þ,

4 −mer : f a, b, c, dð Þ = Nabcd

Nt − 3ð Þ , a, b, c, d ∈ A, T, C, Gð Þ:

ð1Þ

Nt is the length of a DNA sequence and Na,Nab,Nabc,
Nabcd are the units composed of adjacent K nucleotides.

2.2.2. Reverse Compliment K-mer (RCK-mer). Reverse
Compliment K-mer is a variant of K-mer, which ignores
the complementary sequences of adjacent nucleotide
sequences. For example, there are 16 types of 2-mer: “AA,”
“AC,” “AG,” “AT,” “CA,” “CC,” “CG,” “CT,” “GA,” “GC,”
“GG,” “GT,” “TA,” “TC,” “TG,” and “TT.” Because ‘TT’ is
the reverse completion K-mer of “AA,” it can be left out.
Therefore, there are only 10 kinds of 2-mer in this method:
“AA,” “AC,” “AG,” “AT,” “CA,” “CC,” “CG,” “GA,” “GC,”
and “TA.” The frequency of each K-mer was calculated in
turn.

2.2.3. Enhanced Nucleic Acid Composition (ENAC).
Enhanced nucleic acid composition is the frequency of each
nucleotide occurring within a fixed sequence window length,
which slides continuously from the 5′ end to the 3′ end of
each nucleotide sequence and usually used to encode nucleo-
tide sequences of the same length.
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Figure 1: Research process of enhancer identification.
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2.2.4. Composition of K-Spaced Nucleic Acid Pairs (CKSNAP).
This method calculated the frequency of pairs of nucleotides
separated by K nucleotides in the whole sequence. When
k = 0, it is consistent with the features represented by 2-
mer. It should be noted that the frequency of nucleotide pairs
is calculated though, when k = 0, 1, 2, 3, 4, and 5, the length of
sequences should be L-1, L-2, L-3, L-4, L-5, and L-6.

2.2.5. Nucleotide Chemical Property (NCP). The method took
into account different chemical structures and chemical
properties of four nucleotides [32, 33]. “A” is presented as
(1, 1, 1), “C” as (0, 1, 0), “G” as (1, 0, 0), and “T” as (0, 0, 1).

2.2.6. Accumulated Nucleotide Frequency (ANF). This
method combined the approach of nucleotide chemical
properties and considers the chemical properties, the
location, and the frequency of each nucleotide. For example,
for a sequence “TCGTTCATGG,” “T” appears in bits 1, 4, 5,
and 8, with frequencies corresponding to 1 (1/1), 0.5 (2/4),
0.6 (3/5), and 0.5 (4/8), respectively; “C” appears in bits 2
and 6, with frequencies corresponding to 0.5 (1/2) and 0.33
(2/6), respectively; “G” appears in bits 3, 9, and 10, with fre-
quencies corresponding to 0.33 (1/3), 0.22 (2/9), and 0.3
(3/10), respectively; “A” appears in the 7th position, so its
frequency was 0.14 (1/7). Therefore, the sequence can be
expressed as {(0, 0, 1, 1), (0, 1, 0, 0.5), (1, 0, 0, 0.33), (0, 0, 1,
0.5), (0, 0, 1, 0.6), (0, 1, 0, 0.33), (1, 1, 1, 0.14), (0, 0, 1, 0.5),
(1, 0, 0, 0.22), (1, 0, 0, 0.3)} [34, 35].

2.2.7. Electron-Ion Interaction Pseudopotentials of Trinucleotide
(EIIP).Nair and Pillai [36] proposed the Electron-Ion Inter-
action Pseudopotentials of Trinucleotide (EIIP) of nucleo-
tides A, G, C, and T. The EIIP of the four nucleotides is A:
0.1260, C: 0.1340, G: 0.0806, and T: 0.1335. This method
directly used the EIIP to represent the nucleotides in the
DNA sequence. Therefore, the dimension of EIIP is the
length of the DNA sequence.

2.2.8. Electron-Ion Interaction Pseudopotentials of Trinucleotide
(PseEIIP). In these codes, EIIPA, EIIPT, EIIPG, and EIIPC were
used to represent the EIIP of nucleotides A, T, G, and C, respec-
tively. Then, the average value of EIIP of the three nucleotides in
each sample was used to construct the feature vector, which can
be expressed as follows:

V = EIIPAAA × f AAA, EIIPAAC × f AAC, EIIPAAG½
× f AAG,⋯, EIIPTTG × f TTG, EIIPTTT × f TTT�64:

ð2Þ

f abc, a, b, c ∈ ðA, T, C, GÞ is the normalized frequency of a
trinucleotide, and EIIPabc, a, b, c ∈ ðA, T, C, GÞ is the sum of
EIIP values of three nucleotides.

2.2.9. One-Hot. Each enhancer in the dataset is a 200 bp
nucleotide sequence, which consists of four nucleotides,
namely, adenine (A), guanine (G), cytosine (C) and thymine
(T). Each nucleotide is represented by a set of vectors
(Table 1) [37, 38].

2.3. Feature Selection. Feature selection is the method of
selecting a subset of related features used in model construc-
tion [39, 40]. Because the dimension of features will be
reduced after selection, this process is called dimension
reduction.

2.3.1. MRMD2.0. This paper used MRMD2.0 [41] to achieve
dimension reduction. Firstly, MRMD2.0 uses seven main
feature ranking methods (ANOVA, MRMD, MIC, Lasso,
mRMR, chi-square test, and RFE) to calculate the feature
sets, respectively, and then uses the idea of the PageRank
algorithm to comprehensively process the results of the seven
feature ranking algorithms and get the final feature ranking,
Then, using the positive addition strategy, the features
arranged in descending order are added to the feature subset
for verification, and the best feature subset is finally obtained.
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Figure 2: Research process of enhancer classification.
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2.3.2. Evolutionary Search. Evolutionary Search uses evolu-
tionary algorithms for feature selection. An evolutionary
algorithm is not a specific algorithm; it includes a variety of
algorithms (genetic algorithm, memetic algorithm, and mul-
tiobjective evolutionary algorithm). The inspiration of the
evolutionary algorithm draws on the evolutionary operations
of living things in nature. Compared with traditional optimi-
zation algorithms such as calculus-based methods and
exhaustive methods, it is a mature global with high robust-
ness and wide applicability. The optimization method has
the characteristics of self-organization, self-adaptation, and
self-learning. It is not limited by the nature of the problem
and can effectively handle complex problems that are difficult
to solve by traditional optimization algorithms.

2.4. Classifier

2.4.1. Recurrent Neural Network. This paper also used recur-
rent neural networks to make predictions on the basis of the
memory model. It is expected that the network can remem-
ber the previous features and infer the subsequent results
according to the features; hence, the overall network struc-
ture continues in the cycle. The biggest problem with mem-
ory is that it has forgetfulness. We can always remember
the recent events more clearly and forget the events that hap-
pened long ago. Recurrent neural networks also have this
problem. In order to solve this problem, two variants of the
network structure have emerged: one is called LSTM, and
the other is called GRU. Both of these variants can well solve
the problem of long-term dependence.

2.4.2. Random Forest. In this study, a random forest was
applied to play a role as a classifier for prediction. Random
forest is widely employed in the bioinformatics research
[42–52]. This classifier concludes multiple decision trees
while the output category is arranged by the mode of the cat-
egory output by trees individually. This paper implemented a
random forest classifier through the weka platform.

2.4.3. Support Vector Machine. As a very powerful machine
learning method widely used in biological sequence predic-
tion [53–71], the support vector machine was used for pre-
diction in this research. It is a class of generalized linear
classifiers that classify data binary in a supervised learning
method, and its decision boundary is the maximum margin
hyperplane that is solved for the learning sample. This paper
used libSVM to implement support vector machine and
adjust parameters c and g using grid to optimize the predic-
tion results.

2.4.4. libD3C. This paper also applied the libD3C classifier
[72] to test the performance of models. The classifier adopts
a selective ensemble strategy, based on the hybrid ensemble
pruning model combining k-means clustering and function
selection cycle framework and sequential search, by training
multiple candidate classifiers and then selecting a set of accu-
rate and different classifiers to settle the problem.

2.5. Evaluation of Prediction. This paper used sensitivity (Sn),
specificity (Sp), total accuracy (Acc), and Mathew (Mcc)
correlation coefficients to evaluate the performance of the
model [73–83].

Sn =
TP

TP + FNð Þ ,

Sp =
TN

TN + FPð Þ ,

Acc =
TP + TNð Þ

TP + TN + FP + FNð Þ ,

Mcc =
TP × TN − FP × FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ × TP + FNð Þ × TN + FPð Þ × TN + FNð Þp
:

ð3Þ

TP is true positive; FN is false negative; FP is false posi-
tive; TN is true negative.

3. Results and Discussion

3.1. Identification of Enhancers. Feature vectors of enhancers
and nonenhancers were obtained by K-mer, RCK-mer,
ENAC, CKSNAP, NCP, ANF, EIIP, PseEIIP, and One-Hot
feature extraction methods. In order to determine which fea-
ture extraction methods were suitable for the identification of
enhancers, the random forest was adopted through ten-fold
cross-validation for each method. After testing (Figure 3),
this paper believed that 2-mer, 3-mer, 4-mer, CKSNAP,
ENAC, PseEIIP, and RCK-mer, the seven feature extraction
methods, were more effective. Since the dimension of the fea-
ture model obtained through the seven extraction methods
was rather high, which could cause the classifier overfitting
the training set and lead to a less effective performance in
practical applications. This paper expected to get a low-
dimension and excellent performance feature model; hence,
the seven feature models were merged after individual
dimension reduction through MRMD2.0; then, we found
that the dimension was 1049, which was still relatively high.
Therefore, the merged model went through 5 consecutive
dimension reductions by MRMD2.0, and a 37-dimension
feature model was achieved eventually. At this time, the
dimension can no longer be reduced further (Figure 4). Using
the random forest classifier, the 37-dimension feature model
was tested through ten-fold cross-validation (Table 2), and
the accuracy reached 76.7%; the running time of the method
is 2.14 seconds.

At the same time, this paper used Evolutionary Search to
reduce the dimension of the merged 1049-dimensional

Table 1: One-Hot encoding.

Nucleotides Code

A [1,0,0,0]

T [0,0,0,1]

C [0,1,0,0]

G [0,0,1,0]
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model to compare the differences between different dimen-
sion reduction tools. After 8-dimension reductions, an 18-
dimension model was obtained in this paper, and the
accuracy rate reached 76.5% after 10-fold cross-validation.
Although this feature model is inferior to the model obtained
by MRMD2.0 in performance, it has obvious advantages in
dimension. The 18-dimensional feature model may imply
that it is an important marker for distinguishing enhancers.
These 18-dimension features come from 4-mer, 2-mer,
CKSNAP, RCK-mer, and PseEIIP, respectively, indicating that
specific dinucleotides, trinucleotides, and their electronic-ion

interactions play an important role in enhancer sequences.
By using two tools, we can find that Evolutionary Search has
an advantage in dimension after dimension reduction, and
MRMD2.0 has more advantages in terms of performance
parameters after dimension reduction.

In order to further determine the stability of the feature
model, this paper used support vector machine and libD3C
to test the 37-dimension model at the same time (Table 2).
Through the support vector machine combined with the grid
search method (c 8192.0, g 0.001953125), the accuracy
reached 76.5%. Using the libD3C classifier, the accuracy
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reached 75.5%. The prediction accuracy of the three classi-
fiers for the feature model all exceeded 75%, indicating a very
stable feature model. Meanwhile, in addition to the excellent
performance of the feature model examined in this paper, it
also has a very low dimension compared with a previous
work (Table 2), which can effectively avoid dimensional
disasters.

3.2. Classification of Enhancers. For the feature extraction of
strong enhancers and weak enhancers, the same methods as
enhancer identification were adopted, and then, the random
forest was used through ten-fold cross-validation to examine
the performance. After testing, this paper believed that also
2-mer, 3-mer, 4-mer, CKSNAP, ENAC, PseEIIP, and RCK-
mer, the seven feature extraction methods, perform slightly
better than other methods, but were not satisfactory. There-
fore, this paper attempted to improve accuracy through
dimension reduction techniques. After reducing the dimen-
sions of the seven feature models that performed slightly
better, they were merged to continue the dimension reduc-
tion. After four dimension reductions, an 82-dimension
feature model was obtained. At this time, it was impossible
to continue the further dimension reduction. The 82-
dimension model was cross-validated with a random forest
classifier, and the accuracy of 62.3% was still not ideal.

Next, this paper used the voting mechanism to output the
prediction results of the 82 feature model of the three classi-
fiers libSVM, random forest, and libD3C and retained the
prediction results with the highest confidence based on the
given confidence of each classifier result. After statistics, the
final accuracy was 63.1%, the result was still not ideal.

As the recurrent neural network has contributed a lot in
the fields of sequence problems and natural language pro-
cessing with a limited capacity of memory, the variant of
recurrent neural network—Long Short-Term Memory—was
applied in this research to predict biological sequences. This
paper used the 3-mer method to segment the sequence and
then trained the word embedding through word to vector.
Next, this study used the LSTMmodel based on the attention
mechanism to predict the word segmentation file. When the
model was a two-layer neuron, hidden_dim was 100, the
learning rate was 0.005, and the adam optimizer was used;
the accuracy of ten-fold cross-validation reached 84.9%.
After comparison (Table 3), this paper has achieved ideal
results in the classification of enhancers.

4. Conclusions

In this paper, a 37-dimension feature model for identify-
ing enhancers was obtained through multiple dimension

Table 3: The comparison between this paper and the previous work
on enhancer classification.

Acc SN SP MCC

iEnhancer-2L 0.605 0.470 0.740 0.218

EnhancerPred 0.550 0.45 0.65 0.102

iEnhancer-EL 0.61 0.540 0.68 0.222

iEnhancer-ECNN 0.678 0.791 0.564 0.368

Our method 0.849 0.858 0.84 0.699

Table 2: The comparison between this paper and the previous work
on enhancer identification.

Acc AUC SN SP MCC Dimension

iEnhancer-2L 0.730 0.806 0.710 0.750 0.460

EnhancerPred 0.740 0.801 0.735 0.745 0.480

iEnhancer-EL 0.748 0.817 0.710 0.785 0.496

iEnhancer-ECNN 0.769 0.832 0.785 0.752 0.537 2400

Our method 0.767 0.837 0.733 0.801 0.535 37

1200 1049
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844 76.35%
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Figure 4: The relationship between accuracy change and dimension change. According to trends, this paper believed that dimension and
accuracy are negatively correlated. Using MRMD2.0, when the dimension was 37, the accuracy reached 76.68%, and the dimension
reduction continued; the accuracy cannot be improved.
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reductions. After testing, the performance of the model was
sound and stable. At the same time, this paper has achieved
ideal results in the classification of enhancers through 3-
mer methods, word to vector techniques, and RNN models.
It is expected that the method proposed in this paper can
provide a certain reference for the future research on
enhancers in the academic world.
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