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Arabidopsis plants in their natural environment are susceptible to infection by oomycete pathogens, in particular to downy 
mildew and white rust diseases. These naturally occurring infectious agents have imposed evolutionary pressures on Ara-
bidopsis populations and are therefore highly relevant for the study of host-pathogen co-evolution. In addition, the study of 
oomycete diseases, including infections caused by several Phytophthora species, has led to many scientific discoveries on 
Arabidopsis immunity and disease. Herein, we describe the major oomycete species used for experiments on Arabidopsis, 
and how these pathosystems have been used to provide significant insights into mechanistic and evolutionary aspects of 
plant-oomycete interactions. We also highlight understudied aspects of plant-oomycete interactions, as well as translational 
approaches, that can be productively addressed using the reference pathosystems described in this article.

INTRODUCTION TO OOMYCETES

Oomycetes are filamentous microorganisms that belong to the 
Stramenopile kingdom (Dick, 2001). Oomycetes are related to 
diatoms and brown algae and are proposed to have evolved from 
a photosynthetic ancestor (Tyler, 2006). Although oomycetes are 
known as “water molds”, many oomycete species are terrestri-
al and are pathogenic on animals and plants (Jiang and Tyler, 
2012). Several oomycete species are among the most notorious 
plant pathogens and are known for their huge impact on agricul-
ture and natural ecosystems (Kamoun et al., 2015). The potato 
late blight pathogen Phytophthora infestans, for instance, is the 
causal agent of the Irish potato famine, and P. ramorum is known 
for its devastation of oak trees and other plant species in natural 
ecosystems (Kamoun et al., 2015). 

The phylogenetic relations of different genera of oomycete 
phytopathogens are shown in Figure 1. In the genus Phytoph-
thora (Greek for plant destroyer) more than 100 species have 
been described that are grouped in 10 clades based on molecular 
and phenotypic data (Kroon et al., 2012). These pathogens infect 
a large range of plants on which they have a hemi-biotrophic life 
style. Initially the infection is biotrophic, during which the host is 
kept alive and pathogen and plant live in an intimate association. 
However, at a given colonization level these pathogens switch to 
a necrotrophic life style that includes the massive production of 
hydrolytic enzymes and toxins that kill host cells, leading to the 
typical blight and rot symptoms. In contrast, the downy mildew 
species have an obligate biotrophic lifestyle and cannot grow in 

the absence of a living host. These pathogens have often special-
ized on a single host plant species. More than 700 downy mildew 
species are known of which the phylogenetic relationships are 
still mostly unclear (Thines and Choi, 2016). The relatively close 
evolutionary relationship between downy mildews and Phytoph-
thora species is reflected in them being present in a single order; 
the Peronosporales.

Two other orders of plant pathogenic oomycetes are outside 
of the Peronosporales; the Pythiales and Albuginales. Within the 
Pythiales the genus Pythium contains more than 100 species, 
most of which inhabit soils or aquatic environments. Pythium spe-
cies are best known for causing damping-off of seedlings, for ex-
ample caused by the necrotrophic P. ultimum, while many other 
Pythium species are considered opportunistic plant pathogens 
(Lévesque et al., 2010). Albuginales comprise an early diverged 
lineage of oomycetes that are obligate biotrophs, and contain 
plant pathogenic Albugo species causing white blister rust, like 
white rust of Arabidopsis caused by A. laibachii (Thines et al., 
2009; Kemen et al., 2011). 

OOMYCETES USED IN ARABIDOPSIS RESEARCH 

In this section, we summarize experimental attributes of the 
oomycete species that are utilized for research involving Arabi-
dopsis. We take a comparative approach that emphasizes simi-
larities and differences in the life cycles and infection strategies of 
each species, along with their relative advantages and challeng-
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es as experimental systems. Figure 2 illustrates the life cycles of 
three species that encompass the diversity of oomycete infection 
strategies, and Table 1 summarizes key attributes of several long-
used oomycete pathogens of Arabidopsis, along with others that 
have been adopted more recently.

Naturally occurring oomycete pathogens of Arabidopsis

In nature, Arabidopsis thaliana is commonly infected by two oomy-
cete pathogen groups; the downy mildew pathogen Hyaloperonos-
pora arabidopsidis (referred to as Hpa hereafter) and two species 
of the white rust pathogen Albugo (A. laibachii and A. candida). 
These naturally occurring pathogens have imposed evolutionary 
pressures on Arabidopsis populations that resulted in a high level 
of intraspecific variation in resistance (Holub and Beynon, 1996). 
Many of the underlying resistance genes have been cloned and 
their downstream signaling pathways have been characterized. 
Recently, several other eukaryotic microbes have been described 
as endophytes of Arabidopsis, including representatives of the 
oomycete genus Pythium (Durán et al., 2018; Sapp et al., 2018). 

Thus, it is likely that some oomycetes have a close interaction with 
their Arabidopsis host, but do not cause disease.

Hyaloperonospora arabidopsidis

This species was the first eukaryotic pathogen of Arabidopsis to 
be documented (Koch and Slusarenko, 1990). It was initially de-
scribed as Peronospora parasitica (Koch and Slusarenko, 1990), 
and was later re-named as Hyaloperonospora parasitica (Con-
stantinescu and Fatehi, 2002) and currently Hyaloperonospora 
arabidopsidis (Voglmayr et al., 2004; Goker et al., 2009). This 
species is a frequently occurring pathogen in natural Arabidopsis 
populations (Holub and Beynon, 1996; Holub, 2008). Moreover, 
the interactions are typified by abundant genetic polymorphism 
in the host and the pathogen (Holub et al., 1994b). For these 
reasons, Hpa was adopted as a reference pathogen during the 
early days of developing Arabidopsis as a system for molecular 
plant-microbe interactions (Dangl et al., 1992; Crute et al., 1994). 
These pioneering efforts substantially broadened the impact of 
Arabidopsis as a model system and are described in detail in sev-
eral review articles (Holub and Beynon, 1996; Slusarenko and 
Schlaich, 2003; Coates and Beynon, 2010; McDowell, 2014).

Figure 1. Evolutionary position of oomycetes used in Arabidopsis research.

(A) Phylogeny of oomycetes relative to the major kingdoms of life.
(B) Phylogeny of oomycetes used in Arabidopsis research and their relation to other Stramenopiles. Every species used for Arabidopsis research resides 
within the Peronosporaleans, within the orders Phytiales (e.g., P. ultimum), Albuginales (e.g., A. laibacii), or  Peronosporales ( Phytophthora spp. and H. 
arabidopsidis).
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Figure 2. Life cycles of representative species.

(A) Hyaloperonospora arabidopsidis. (B) Albugo candida and A. laibachii. (C) Phytophthora brassicae, P. capsici and P. parasitica.

Table 1. Attributes of oomycetes used for Arabidopsis research. 

Genus and Species Natural Host Lifestyle Host Organ(s) Culturable
In vitro?

Transform-
able?

Cross-
able?

Genome 
status1,2

Hyaloperonospora arabidopsidis Arabidopsis thaliana Obligate biotroph Leaves No No Yes 1, 2

Albugo candida Crucifers Obligate biotroph Leaves No No Yes 1, 2

Albugo laibachii Arabidopsis thaliana Obligate biotroph Leaves No No Yes 1, 2

Phytophthora brassicae Brassicaceae Hemi-biotroph Leaves and roots Yes Yes Yes

Phytophthora infestans Potato, tomato Hemi-biotroph Leaves and roots Yes Yes Yes 1, 2

Phytophthora parasitica Broad range Hemi-biotroph Leaves and roots Yes Yes Yes 1

Phytophthora capsici Broad range Hemi-biotroph Leaves and roots Yes Yes Yes 1

Pythium ultimum Broad range Necrotroph Roots Yes Yes Yes 1, 2

1,2Assembly can be accessed at 1eumicrobedb.org or 2fungidb.org

Hpa causes downy mildew disease of Arabidopsis (Koch and 
Slusarenko, 1990). The disease name comes from the downy ap-
pearance of leaves that are covered in sporangiophores (spore-
producing structures, Fig. 2A) (Clark and Spencer-Phillips, 2000). 
Although Hpa does not cause disease on any crop, the closely 
related species H. parasitica is a serious problem in cabbage and 

other brassica crops. More distantly related downy mildew species 
cause important diseases on crops that include grapes, cucurbits, 
lettuce, spinach, sunflower, and basil (Clark and Spencer-Phillips, 
2000). Like other phytopathogenic oomycetes, downy mildew 
species can quickly overcome host resistance genes and develop 
resistance to chemical control agents (Lucas et al., 1995). It has 
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been estimated that over 25% of the five billion dollar global fungi-
cide market is spent to control downy mildew diseases (mostly on 
grape downy mildew) (Gisi, 2002). Thus, Hpa is a reference spe-
cies for a group of pathogens with significant economic impact.

Like other downy mildew species, Hpa is primarily a foliar 
pathogen. The asexual (epidemic) phase of the life cycle begins 
when asexual spores are dispersed by wind or rain to a host plant 
organ. The spore germinates on the plant surface and produces 
an infection hypha that typically penetrates the anticlinal wall be-
tween epidermal cells (Fig. 2A) (Mims et al., 2004; Soylu et al., 
2004). Soon afterwards, the primary hypha establishes lobed feed-
ing structures, called haustoria, that invaginate host cells, most 
commonly in the mesophyll but also in epidermal cells (Mims et 
al., 2004; Soylu et al., 2004). Haustoria are of particular interest 
because they are thought to play a major role in extraction of nu-
trients from host cells, and in the secretion and translocation of 
effector proteins into host cells (Spencer-Phillips, 1997; Szabo and 
Bushnell, 2001; Wang et al., 2017). These aspects of the infection 
cycle are discussed in greater detail below. Filamentous hyphae 
grow in the intercellular spaces and branch frequently, forming my-
celia that can occupy much of the area within a leaf in only a few 
days (Soylu and Soylu, 2003). The asexual cycle culminates when 
hyphae emerge from stomata and differentiate into asexual fruiting 
bodies, called sporangiophores, on which high numbers of sporan-
giospores are produced that each typically contain a high number 
of nuclei (~40/spore) (Koch and Slusarenko, 1990). Hpa can also 
produce sexual spores, called oospores, when hyphae differenti-
ate into gametogenic antheridia and oogonia. Following meiosis 
gametes will fuse in the oogonium that will then develop into an oo-
spore that contains a single nucleus (Koch and Slusarenko, 1990). 
Oospores are formed within the plant tissue, are durable and can 
persist in the soil after the host plant dies and decays. Infection 
cycles can then be initiated by germinating oospores through infec-
tion of an adjacent host plant root, e.g. in the next growing season 
when the roots of germinated Arabidopsis seeds come into contact 
with the soil-borne oospores (Holub and Beynon, 1996). 

A major aspect of Hpa biology is its strict dependence on a host 
plant for growth, also known as obligate biotrophy (O’Connell and 
Panstruga, 2006; McDowell, 2011). Hpa cannot be cultured on 
synthetic media and appears capable of extracting nutrients only 
from viable host cells (Lucas et al., 1995). In addition, the host 
range of Hpa appears to be confined to Arabidopsis. Hpa isolates 
from Arabidopsis cannot infect related brassica species, and vice 
versa (Parker et al., 1996). However, some isolates taken from 
crop brassica species can infect Arabidopsis lines containing mu-
tations that compromise immune responses, indicating that host 
immunity is an important determinant restricting downy mildew 
host range (Parker et al., 1996).

Hpa has several advantages and limitations for laboratory ex-
periments (McDowell, 2011). The greatest limitation of this patho-
gen is its obligate lifestyle: Hpa cannot be propagated apart from 
the host, which impairs genetic transformation of the pathogen. 
However, it is relatively straightforward to achieve robust colo-
nization of Arabidopsis by Hpa under laboratory conditions. Key 
environmental parameters include cool temperatures (~16o C), 
low light intensity, and high relative humidity (McDowell et al., 
2011). Long-term storage of sporangia and oospores at -80 o C is 
straightforward and reliable (McDowell et al., 2011). Hpa is homo-
thallic and can self-fertilize, but genetic crosses between isolates 

can be made, albeit laboriously (Gunn et al., 2002). Genetic map-
ping populations have been generated in successful support of 
map-based cloning efforts to identify Hpa avirulence genes, en-
coding host-recognized effectors (Rehmany et al., 2003; Bailey et 
al., 2011; Woods-Tor et al., 2018). These and other aspects of lab 
experiments with Hpa are discussed in detail below and elsewhere 
(Coates and Beynon, 2010; McDowell, 2011). 

A significant advantage of Hpa is that it is a bona fide patho-
gen of Arabidopsis in the natural world, and has been co-evolving 
with its host (Holub, 2001). The polymorphisms that have evolved 
in the host and pathogen were used to molecularly clone Ara-
bidopsis disease resistance genes (“R genes”) and the corre-
sponding effector/avirulence genes from the pathogen (Table 2). 
Recent studies have demonstrated additional natural variation in 
effector gene repertoires in Hpa, and in the responses of different 
Arabidopsis accessions to Hpa effectors, suggesting functional 
variability in the Arabidopsis proteins that are targeted by Hpa 
effectors (Fabro et al., 2011; Asai et al., 2014). Thus, natural ge-
netic variation in the Arabidopsis/Hpa interaction can be further 
exploited for mechanistic insight into plant-oomycete interaction 
and co-evolution. Furthermore, because of the experimental ad-
vantages of Arabidopsis, Hpa is also one of the best reference 
organisms for investigating obligate biotrophy (McDowell, 2011). 
A final advantage of Hpa is the availability of a reference genome 
sequence (Baxter et al., 2010). 

Albugo candida and Albugo laibachii

White blister pathogens belonging to the genus Albugo are natu-
rally occurring, obligate biotrophic pathogens of Arabidopsis, and 
their attributes will be summarized in comparison with Hpa. Like 
Hpa, Albugo is commonly found on Arabidopsis in the wild, and 
their interactions display natural variability, including gene-for-
gene interactions (Holub et al., 1994a; Holub and Beynon, 1996; 
Borhan et al., 2001; Holub, 2008). In addition, Albugo species 
cause important crop diseases on cultivated Brassica species 
(Saharan et al., 2014). 

Despite the superficial similarities between Hpa and Albugo 
species, several interesting differences are apparent: First, the in-
fection cycle of Albugo is very different, as illustrated in Fig. 2. For 
example, Albugo species produce motile zoospores that deploy 
germ tubes to enter through the stomata (Soylu et al., 2003). The 
hallmark of the disease cycle is blisters that are caused by rup-
ture of the plant epidermis to facilitate dissemination of asexual 
spores (Saharan et al., 2014). 

Molecular phylogenies clearly illustrate that the Albugo and 
downy mildew lineages are distinct (Fig. 1) (Thines, 2014; As-
cunce et al., 2017). Thus, Albugo and Hpa lineages have inde-
pendently evolved to an obligate lifestyle and to compatibility with 
Arabidopsis (Kemen and Jones, 2012). Interestingly, A. laibachii 
and A. candida display different host ranges: the former, like 
Hpa, is restricted to A. thaliana, while host range of A. candida 
encompasses 63 genera and 241 species within the Brassica-
ceae (Thines et al., 2009). Thus, these two species provide an 
opportunity for comparative studies to understand the factors that 
control host range (McMullan et al., 2015; Jouet et al., 2018). 
As with Hpa, intraspecific variation for resistance/susceptibil-
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 Table 2. Features of cloned Arabidopsis resistance genes encoding NLRs mediating detection of the oomycetes Hpa (RPP) and Albugo (RAC, WRR).

Gene Accession Col-0 gene/allele Remark Reference Recognizing References

RPP1-WsA Ws At3g44480* (rpp1) Original RPP1 locus Botella et al., 1998 unknown

RPP1-WsB Ws At3g44480* (rpp1) Previous RPP10 locus Botella et al., 1998 ATR1 alleles Rehmany et al., 2005

RPP1-WsC Ws At3g44480* (rpp1) Previous RPP14 locus Botella et al., 1998 unknown

RPP1-NdA Nd At3g44480* (rpp1) Similar but different specificity 
as RPP-WsB Botella et al., 1998 ATR1 alleles Rehmany et al., 2005

RPP1-EstA Est At3g44480* (rpp1) Similar but different specificity 
as RPP-WsB Goritschnig et al., 2016 WY motif 2 of 

ATR1 alleles
Goritschnig et al., 
2016

RPP1-ZdrA Zdr At3g44480* (rpp1) Similar but different specificity 
as RPP-WsB Goritschnig et al., 2016 WY motif 2 of 

ATR1 alleles
Goritschnig et al., 
2016

RPP2A Col-0 At4g19500 Requires RPP2B Sinapidou et al., 2004 unknown

RPP2B Col-0 At4g19510 Requires RPP2A Sinapidou et al., 2002 unknown

RPP4 Col-0 At4g16860 Van der Biezen et al., 
2004 ATR4 Asai et al., 2018

RPP5 Ler At4g16950, paralog 
of RPP4 Parker et al., 1997 ATR5 Bailey et al., 2011

RPP7 Col-0 At1g58602 Eulgem et al., 2007 unknown

RPP8-Ler Ler At5g43470 (rpp8) Alleles confer virus resistance McDowell et al., 1998 ATR8#, not 
cloned Gunn et al. 2002

RPP13-Nd Nd At3g46530 Highly polymorphic in 
A. thaliana (Rose et al., 2004)

Bittner-Eddy & Beynon, 
2001 ATR13 Allen et al., 2004

RPP39 Wei-0 At1g61180 & 
At1g61190

CC-NB-LRR protein signaling 
through NDR1 Goritschnig et al., 2012 ATR39 Goritschnig et al., 

2012

RAC1 Ksk-1 At1g31540 Resistance to Albugo laibachii 
Nc14 Borhan et al., 2004 unknown

WRR4 Col-0 At1g56510 Confers resistance to multiple 
A. candida races Borhan et al., 2008 unknown

WRR4B Ws-2 At1g56540 Resistance to A. candida 
isolate Ac2V Cevik et al., 2019 unknown

WRR8 Sf-2 At5g46270 Resistance to A. candida 
isolate Ac2V Cevik et al., 2019 unknown

WRR9 Hi-0 At1g63750 Resistance to A. candida 
isolate Ac2V Cevik et al., 2019 unknown

WRR12 Ler At1g17600 Resistance to A. candida 
race AcBoT Borhan et al., 2008 unknown

* RPP1 orthologs or family members in Col-0 are: At3g44000, At3g44480, At3g44630, and At3g44670
# identified as a segregating locus in Hpa crosses

ity to Albugo is prevalent in Arabidopsis and has been used to 
clone several Arabidopsis genes for resistance to Albugo (Table 
2). Perhaps most interestingly, Albugo species display a remark-
able capacity to suppress defense in Arabidopsis (Cooper et al., 
2008). Co-infection with Albugo can render Arabidopsis suscepti-
ble to otherwise incompatible pathogens, including the late blight 
pathogen Phytophthora infestans (Belhaj et al., 2017; Prince et 
al., 2017). The molecular mechanisms by which Albugo strongly 
suppresses plant immunity are beginning to be revealed (Prince 
et al., 2017). Further studies are expected to reveal Albugo effec-

tors and their plant targets that are likely to be key components of 
the plant immune system (Kemen et al., 2011; Links et al., 2011). 
Albugo-Arabidopsis systems are also being developed to better 
understand how Albugo influences plant interactions with other 
microbes (Ruhe et al., 2016; Jouet et al., 2018), as well as the im-
portant phenomenon of non-host resistance (Cevik et al., 2019).

The experimental advantages and limitations of the Albugo 
species are similar to Hpa. Like Hpa, Albugo species cannot be 
cultured apart from their hosts but they are relatively straightfor-
ward to propagate on susceptible host genotypes (Crute et al., 
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1993). Long-term storage is possible and genetic crosses between 
isolates can be performed (Adhikari et al., 2003). Importantly, draft 
genome sequences are available from two different strains of A. 
laibachii and one of A. candida (Kemen et al., 2011; Links et al., 
2011). As with Hpa, the genome data is having a major impact on 
research with this organism (Kemen and Jones, 2012).

Laboratory pathosystems

Diseases of Arabidopsis caused by other oomycetes, for instance 
by Phytophthora or Pythium species, have not been observed un-
der natural conditions, but have been achieved under laboratory 
conditions. Complete infection cycles have been obtained on Ara-
bidopsis using the Phytophthora species P. brassicae (Roetschi 
et al., 2001), P. parasitica (Attard et al., 2010; Wang et al., 2011), 
P. capsici (Wang et al., 2013a), P. palmivora (Daniel and Guest, 
2006), and P. cinnamomi (Robinson and Cahill, 2003). Strik-
ingly, different immune signaling pathways seem to be involved 
in resistance responses to each of these Phytophthora species 
(Wang et al., 2013). Within Arabidopsis, different accessions 
show a range of infection phenotypes, from clearly compatible 
(resulting in disease) to fully incompatible (resistant). Other Phy-
tophthora species tested, e.g., P. infestans (Huitema et al., 2003) 
and P. sojae (Takemoto et al., 2003), are not able to establish a 
successful infection on Arabidopsis but are effectively stopped by 
the plant, likely by early perception by the host immune system. 
These laboratory pathosystems provide valuable complements to 
the pathosystems based on Hpa and Albugo and are described in 
the following sections.

Phytophthora species

P. brassicae (formerly P. porri) is the first representative of the 
Phytophthora genus to be used in Arabidopsis research (Roets-
chi et al., 2001). This species parasitizes brassica species close-
ly related to Arabidopsis. Given the close relationship between 
these hosts and Arabidopsis, it is not surprising that P. brassicae 
can grow on Arabidopsis. The initial stages of the asexual infec-
tion cycle are similar to those of Hpa: spores attach to the or-
gan surface with appressoria and penetrate by growing between 
epidermal cells (Figure 2C). Hyphae ramify through intercellular 
spaces and project haustoria into plant cells. After approximately 
3 dpi, a necrotrophic program commences in which the pathogen 
destroys host tissue. This hemi-biotrophic infection strategy is a 
major difference from obligate biotrophs like Hpa and Albugo spe-
cies, which cannot thrive on dead plant tissue. 

P. brassicae was one of the first Phytophthora species used to 
test immune responses of various Arabidopsis ecotypes and mu-
tants (Mauch et al., 2008). Arabidopsis researchers have subse-
quently made use of “non-adapted” oomycete pathogens; that is, 
species that are incapable of causing disease on wild-type Arabi-
dopsis even under the most permissive conditions. The most pro-
ductive insights from this approach have involved the infamous 
species Phytophthora infestans, which causes late blight disease 
of potato and tomato and is responsible for the famine in Ireland 
in the 19th century (Fry, 2008). Despite its destructive effects on 

potato and tomato, P. infestans is stopped quickly in Arabidopsis 
by multiple, genetically redundant layers of resistance, including 
so-called “penetration resistance” (Stein et al., 2006). Thus, this 
pathogen has been used as a probe to dissect the cytological 
responses and genetic basis of this resistance (see below). 

Two recently developed Phytophthora pathosystems are 
based on P. capsici and P. parasitica. Both of these species 
exhibit broad host ranges. P. capsici is destructive on cucurbit, 
legumes, and solanaceous crops (Kamoun et al., 2015; Barch-
enger et al., 2018). P. parasitica (also called P. nicotianae) causes 
a variety of diseases on field crops, fruit trees, and ornamental 
plants (Meng et al., 2014; Kamoun et al., 2015; Meng et al., 2015; 
Panabieres et al., 2016). Testing of Arabidopsis accessions with 
different strains of both species revealed natural genetic variation 
for resistance/susceptibility (Attard et al., 2010; Wang et al., 2011; 
Wang et al., 2013). P. capsici and P. parasitica can complete their 
life cycles on leaves or roots of susceptible Arabidopsis acces-
sions. Systems for infection through Arabidopsis roots have been 
developed and provide a complement to foliar pathogens like Hpa 
or Albugo (Attard et al., 2010; Wang et al., 2011; Wang et al., 
2013; Hou and Ma, 2017). Both species employ a hemi-biotrophic 
life cycle that is depicted in the root in Figure 2C.

Although only recently developed, these Phytophthora patho-
systems hold considerable potential to provide complementary 
insights to pathosystems based on Hpa or Albugo species. Most 
importantly, the experimental tools on the pathogen side are rela-
tively advanced. Both species are easy to culture and relatively 
straightforward to transform, enabling reverse genetics on the 
pathogen (Le Berre et al., 2008; Wang et al., 2018b). It is also 
possible to perform genetic crosses and develop segregating pop-
ulations (Lamour et al., 2007; Lamour et al., 2014). Additionally, 
genome sequences for both species are available to delineate 
genes important for pathogenicity (Lamour et al., 2012) (note that 
the P. parasitica genome data has not been formally published but 
is publicly available at fungidb.org and eumicrobedb.org). More-
over, successful genome editing by the CRISPR/Cas9 system has 
now been reported for P. capsici (Wang et al., 2018b). Consider-
ing these experimental advantages and the practical value of re-
search involving these emerging, broad host range pathogens, we 
expect that P. capsici and P. parasitica will become increasingly 
important for exploiting the experimental advantages of Arabidop-
sis to understand how diseases are caused by oomycetes. 

Pythium species

Members of the Pythium genus cause a number of destructive 
“damping-off” diseases (Martin and Loper, 1999). Contrasting 
with downy mildews and Phytophthora, many Pythium species 
are classical necrotrophs that lack a biotrophic phase during in-
fection (Kamoun et al., 2015). These pathogens exhibit filamen-
tous growth but do not produce haustoria and induce host cell 
death soon after contact. 

Pythium irregulare has been used as a model soilborne 
pathogen of Arabidopsis since the late 1990s. Bioassays with this 
pathogen have been useful in mutants with reduced immune re-
sponses, particular those in jasmonate- and ethylene-mediated 
defense (Browse et al., 1998; Staswick et al., 1998; Geraats et 
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al., 2002; Huffaker et al., 2006; Huffaker and Ryan, 2007). Contrast-
ingly, research on Pythium pathogenicity, using Arabidopsis, is 
practically non-existent. The tools on the pathogen side are rea-
sonably good: Genome sequences from several species have 
been completed, the pathogen is easy to culture and is transform-
able (Levesque et al., 2010; Adhikari et al., 2013; Grenville-Briggs 
et al., 2013). Thus, there is good opportunity to exploit Arabidop-
sis-Pythium pathosystems to better understand how necrotrophic 
oomycetes subjugate their hosts. In addition, recent studies of the 
Arabidopsis root microbiome revealed Pythium species as promi-
nent endophytes, opening a new area of Arabidopsis-oomycete 
interactions (Durán et al., 2018; Sapp et al., 2018).

PATHOGEN PERCEPTION

Introduction to the plant immune system

Plants have evolved various ways to fend off microbes (Pieterse 
et al., 2009). A suite of surface-exposed detectors, named pattern 
recognition receptors (PRRs, Fig. 3), can recognize conserved 
microbe-associated molecular patterns (MAMPs), such as bacte-
rial flagellin or fungal chitin. Upon detection the PRRs activate a 
signaling cascade that leads to pattern-triggered immunity (PTI). 
Most PRRs require a co-receptor to initiate signaling: for exam-
ple, the receptor FLS2 interacts with the BAK1 co-receptor upon 

recognition of the MAMP flg22 (see (Macho and Zipfel, 2014) for 
details on the mechanisms of immune activation by PRRs). BAK1 
also interacts with other PRRs (Macho and Zipfel, 2014). PTI 
signaling via mitogen-activated protein kinase (MAPK) cascades 
and/or calcium-dependent protein kinases (CDPKs) (Bredow 
and Monaghan, 2019) activates pathogen-nonspecific immune 
responses such as the production of reactive oxygen species 
and nitric oxide, cell wall reinforcement, and induction of defense 
genes (Hein et al., 2009; Nürnberger and Kemmerling, 2009). 
Adapted pathogens are able to suppress PTI with effectors that 
have evolved to interact directly with host defense-associated 
proteins, resulting in effector-triggered susceptibility (Jones and 
Dangl, 2006). For example, bacterial effectors can interfere di-
rectly with FLS2 or BAK1 (Toruno et al., 2016). Intracellular nucle-
otide-binding, leucine-rich repeat (NLR, Fig. 3) receptors that rec-
ognize these effectors or their activity have evolved in plants as a 
second layer of pathogen perception. NLR proteins are encoded 
by plant disease resistance genes and mediate so-called Effec-
tor-Triggered Immunity (ETI). This is the molecular basis of the 
genetic model of “gene-for-gene” resistance, in which pathogen 
“avirulence (Avr) genes” (now known to encode secreted effector 
proteins) are recognized inside plant cells by plant “resistance 
(R) genes” (now known to encode NLR proteins). Resistance to 
adapted pathogen species is often rapidly broken by loss or mu-
tation of avirulence effector genes or through suppression of ETI 
by different effectors (Woods-Tor et al., 2018).

Figure 3. Schematic of PTI and ETI against oomycetes
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Pattern recognition receptors

The majority of plant PRRs identified so far belongs to the family 
of leucine-rich repeat receptor-like kinases (LRR-RLKs), which 
has more than 600 members in Arabidopsis (Shiu et al., 2004), 
or receptor-like protein (LRR-RLPs) that lack a C-terminal kinase 
domain and interact with RLKs for transducing signals (Gust and 
Felix, 2014). The best-described plant PRR is FLS2 from Ara-
bidopsis that recognizes bacterial flagellin, a major structural 
protein of bacterial flagella. An N-terminal 22-amino acid residue 
fragment of this protein (flg22) is sufficient to be recognized by 
FLS2 and to induce PTI (Gómez-Gómez and Boller, 2000). Naito 
et al. (2008) showed that these residues are also essential for 
flagellum function and motility of bacteria, which makes it difficult 
for bacteria to circumvent this recognition by evolving different 
amino acid sequences in this region of the protein. A second well-
described plant PRR that seems restricted to Brassicaceae is 
EFR, which recognizes the bacterial elongation factor Tu (EF-Tu) 
or its shorter N-terminal fragment elf18 (Kunze, 2004). When this 
PRR is expressed in the solanaceous plants Nicotiana benthami-
ana and tomato (Solanum lycopersicum), it confers resistance to 
a broad spectrum of bacteria (Lacombe et al., 2010), illustrating 
the potential use of PRRs as new sources for genetic resistance 
to crop diseases.

Fungi can also be recognized by PRRs, e.g. through the Ara-
bidopsis RLK CERK1 that is required for responses to fungal 
chitin and bacterial peptidoglycan (Miya et al., 2007; Willmann 
et al., 2011), and the RLP30 PRR that mediates recognition of 
necrotrophic fungi through a currently unknown proteinaceous 
MAMP (Zhang et al., 2013). As we will detail in the next section, 
only a few receptors have been identified so far that mediate the 
extracellular recognition of oomycete MAMPs.

Oomycete pattern-triggered immunity

The extracellular recognition of oomycetes triggers the first line of 
defense that plant cells deploy (Raaymakers and Van den Ack-
erveken, 2016). However, only two PRRs recognizing oomycete 
MAMPs have been identified to date, the receptor-like proteins ELR 
of potato and RLP23 of Arabidopsis. ELR mediates the recognition 
of elicitins, secreted oomycete proteins that have a putative func-
tion as extracellular sterol carriers (Derevnina et al., 2016). Elicitins 
are known to act as MAMPs in certain plant species, e.g. in Sola-
num microdontum in which it induces a cell death response. ELR 
was cloned from this wild potato species and found to encode a 
receptor-like protein that requires the RLK BAK1 to induce elicitin-
triggered immunity. The second PRR identified against oomycetes 
is Arabidopsis RLP23. This protein recognizes Nep1 (Necrosis- and 
Ethylene-inducing Protein 1)-like proteins (NLPs), secreted proteins 
that are found in many plant-associated microbes that belong to 
three different kingdoms of life (Oome et al., 2014). RLP23 was 
found to require the co-receptors SOBIR1 and BAK1 for NLP-
triggered immunity (Albert et al., 2015). NLP genes are found in 
oomycetes belonging to the Peronosporales and also in fungi and 
bacteria. In oomycetes both cytotoxic and non-cytotoxic NLPs have 
been found, but both types act as MAMPs in Arabidopsis (Oome et 
al., 2014; Böhm et al., 2014). The immunogenic fragment of NLPs 

could be reduced to a synthetic peptide of <20 amino acids that was 
shown to bind the RLP23 receptor (Albert et al., 2015).

Other molecules of oomycetes have been proposed to act as 
MAMPs (Hein et al., 2009): (i) glucans derived from oomycete cell 
wall polysaccharides that bind to a soybean glucan-binding protein 
that has glucanase activity, but is insufficient to trigger immunity 
(Glycine max) (Fliegmann et al., 2004), (ii) the 13-amino acid frag-
ment Pep-13 derived from GP42, a calcium-dependent transglu-
taminase that is abundant in the cell wall of Phytophthora sojae, 
and is sufficient to elicit PTI responses in parsley (Brunner et al., 
2002), and (iii) the Phytophthora cellulose-binding elicitor lectin 
(CBEL) that elicits a response in tobacco and Arabidopsis (Hein 
et al., 2009; Khatib et al., 2004). (iv) The glycoside hydrolase 12 
protein XEG1 from Phytophthora sojae, recently shown to be rec-
ognized by a receptor complex in N. benthamiana that includes an 
extracellular LRR receptor, BAK1, and SOBIR1 (Ma et al., 2015; 
Wang et al., 2018a). Other groups of cell death-inducing or cyto-
toxic proteins from oomycetes, such as the Crinkler proteins, might 
also qualify as MAMPs based on their widespread occurrence 
among different pathogens (Thomma et al., 2011). We only know 
the tip of the iceberg with respect to oomycete MAMPs and we 
expect that many new patterns and their cognate receptors will be 
identified in the coming years. Finally, it is likely that oomycete en-
zymes release compounds from the host cell wall and membrane 
that can act as damage-associated molecular patterns (DAMPs). 
It was proposed that Hpa has evolved to circumvent the release 
of DAMPs by strong reduction of the number of genes encoding 
for hydrolytic enzymes compared to Phytophthora species (Baxter 
et al., 2010). Further exploitation of Arabidopsis to explore these 
aspects will undoubtedly be productive.

Intracellular perception of oomycetes in Arabidopsis

Plants have evolved intracellular receptors with nucleotide-binding, 
leucine-rich repeat domains (NLRs) to detect oomycete effectors, 
or their activity, to trigger immunity (ETI). NLR proteins typically 
have an N-terminal variable region, either of the coiled-coil type 
(CC) or Toll/Interleukin-1 receptor-like (TIR), or an RPW8-like do-
main. The N-terminal domains are followed by a nucleotide bind-
ing domain (NB) and C-terminal leucine-rich repeat region (LRR), 
further detailed in an excellent review (Cui et al., 2015). 

The genes encoding these intracellular receptors were first 
identified in Arabidopsis through genetic mapping of resistance 
genes. The Arabidopsis genome (Col-0) encodes a total of 
around 150 NLR proteins, of which only a limited number have 
an assigned function. The first cloned NLR gene was RPS2 that 
confers resistance to Pseudomonas bacteria expressing the ef-
fector AvrRpt2 (Mindrinos et al., 1994). Soon after that also R 
genes for resistance to downy mildew and Albugo were cloned 
(Table 2), based on natural variability of their functions in differ-
ent accessions of Arabidopsis (Slusarenko and Schlaich, 2003; 
Holub, 2008; Coates and Beynon, 2010). These included the first 
R genes to be cloned against oomycetes (Parker et al., 1997; 
Botella et al., 1998; McDowell et al., 1998). More than 25 R loci 
conferring isolate-specific resistance to Hpa have been geneti-
cally identified in Arabidopsis and are named RPP, for RECOG-
NITION OF PERONOSPORA PARASITICA, the older name of 
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this pathogen (Slusarenko and Schlaich, 2003). So far, 8 RPP 
genes have been cloned: RPP1, RPP2, RPP4, RPP5, RPP7, 
RPP8, RPP13, and RPP39 and all encode cytoplasmic NLRs. Al-
leles of RPP1 confer different isolate-specific resistances (Botella 
et al., 1998), and also RPP4 and RPP5 can be considered allelic 
variants (Van der Biezen et al., 2002). Many of the other RPP loci 
map to the position of cloned RPP genes and could constitute 
allelic variants (Nemri et al., 2010). Broad resistance to downy 
mildew, observed in certain Arabidopsis accessions, appeared to 
be mediated by combinations of isolate-specific resistance loci 
(Lapin et al., 2012). Recently, the “helper” NLR proteins ADR1 
and NRG1 were identified as signaling components for RPP pro-
teins containing the TIR domain (Bonardi et al., 2011; Castel et 
al., 2019; Lapin et al., 2019; Wu et al., 2019), It is becoming clear 
that ETI can be underpinned by networks of NLRs, and decon-
volution of these networks is an emerging area of interest (Wu et 
al., 2018).

At a broad scale, little is known about whether and how the 
activity of RPP genes is regulated (Lai and Eulgem, 2018). In one 
case, feedback control involving salicylic acid and WRKY pro-
teins has been implicated (Mohr et al., 2010). In another, gene ac-
tivity is subject to post-transcriptional control involving alternative 
polyadenylation, which is regulated by histone marks (Tsuchiya 
and Eulgem, 2013; Lai et al., 2018). This research has opened up 
a new avenue towards understanding the mechanisms and evo-
lution of NLR gene regulation (McDowell and Meyers, 2013). An-
other recent study identified eQTLs providing resistance against 
Hpa, emphasizing the potential of this pathosystem to understand 
epigenetic factors that are relevant to plant-oomycete interactions 
(Furci et al., 2019).

Several avirulence genes from Hpa have also been cloned 
(Table 2), thanks to the development of genetic and genomic tools 
for the pathogen (Coates and Beynon, 2010; McDowell, 2014). In 
fact, the first oomycete Avr gene to be cloned was ATR13 from 
Hpa (Allen et al., 2004). This gene encodes a small, secreted pro-
tein with a signal peptide followed by the conserved protein motif 
Arg-X-Leu-Arg, first described in (Rehmany et al., 2005). Downy 
mildew pathogens and Phytophthora species contain hundreds 
of putative “RXLR genes” in their genomes, and it is clear that 
they play an important role in pathogen virulence (discussed 
extensively below). RXLR proteins are secreted from pathogen 
haustoria and enter the interior of plant cells to reprogram plant 
regulatory networks and thereby promote virulence. However, 
RXLR proteins can also be recognized inside plants cells by 
NLR surveillance proteins. Indeed, every Avr gene cloned from a 
downy mildew or Phytophthora species to date encodes an RXLR 
or RXLR-like protein, recognized by the corresponding plant NLR 
protein. To date, Hpa Avr proteins recognized by RPP1, RPP13, 
RPP4, RPP5, and RPP39 have been molecularly identified, and 
the determinants of their virulence and avirulence functions are 
under investigation (Allen et al., 2004; Rose et al., 2004; Rehm-
any et al., 2005; Bailey et al., 2011; Chou et al., 2011; Krasileva 
et al., 2011; Leonelli et al., 2011; Goritschnig et al., 2012; Stein-
brenner et al., 2015).

Comparative and molecular studies of RPP genes have pro-
vided novel insights into the molecular mechanisms and selec-
tive forces that drive NLR gene evolution (McDowell and Simon, 
2006). For example, RPP5, RPP1, and RPP8 multigene families 
are physically linked in clusters and are subject to intra- and inter-

genic recombination, to produce new NLR gene variants in host-
pathogen arms race (Botella et al., 1998; McDowell et al., 1998; 
Noel et al., 1999). RPP1 homologs have diversified through re-
peat duplication and sequence divergence, such that they can de-
tect multiple surfaces of the corresponding effector (Goritschnig 
et al., 2016). ATR1 is a modular protein that can evolve to escape 
detection by mutations in any of several surfaces that mediate 
recognition by RPP1 (Chou et al., 2011). RPP13 provides an ex-
ample of a simple locus, in which a single copy gene displays 
substantial allelic polymorphism, driven by diversifying selection 
and intra-allelic recombination (Bittner-Eddy and Beynon, 2001). 
Interestingly, the Hpa ATR13 locus, encoding the RXLR effector 
protein recognized by RPP13, displays similar attributes, sug-
gesting that co-evolution has been a major driver for this diversity, 
along with balancing selection to maintain repertoires of useful 
alleles in the plant and pathogen populations (Allen et al., 2004). 
The ATR13 protein displays a novel structure and polymorphisms 
that mediate recognition specificity by RPP13 map to a single, 
surface exposed region (Leonelli et al., 2011). Much remains to 
be learned about plant-oomycete coevolution, and we expect a 
resurgence of this topic to be driven by our new capacity for cost-
effective populations genomics of plants and pathogens sampled 
from natural populations along with sophisticated genetics (Kara-
sov et al., 2018; Woods-Tor et al., 2018).

In the years following RPP gene cloning, only the RPP1 protein 
has been investigated in significant mechanistic detail. This pro-
tein binds directly to ATR1 via the LRRs. This interaction displays 
extensive allelic variability (Krasileva et al., 2010; Steinbrenner 
et al., 2015). In the absence of the ATR1 effector, RPP1 is likely 
maintained in an inactive state by intramolecular interactions be-
tween the N-terminal TIR domain, the NB domain, and the LRRs. 
Binding of ATR1 via the LRRs disrupts these interactions and per-
mits oligomerization of RPP1, thereby triggering cell death and 
other immune responses (Krasileva et al., 2010; Steinbrenner et 
al., 2015). This mode of inactivation/activation appears to be a 
general aspect of NLR proteins, although details vary between 
different NLR proteins. As with other NLR proteins, the molecular 
events between RPP1 activation and deployment of the ultimate 
cellular immune response remain to be identified. This is a major 
knowledge gap that extends across all plant-pathogen interac-
tions (Cui et al., 2015) and could be productively addressed by 
further studies of RPP proteins. 

Several Arabidopsis genes for resistance to Albugo have also 
been cloned (Table 2). The RAC1 gene provides isolate-specific 
resistance to Albugo laibachii Nc14 (Borhan et al., 2004)(Cevik 
et al., 2019). WRR4 confers broad spectrum resistance to many 
Albugo candida isolates and functions as a transgene in Bras-
sica juncea (Borhan et al., 2008 (2010). These R genes encode 
cytoplasmic NLRs that act similar to many of the RPP proteins, 
and helper NLRs have also been implicated for WRR-mediated 
resistance (Castel et al., 2019). Interestingly, the phenomenon 
of non-host resistance of Arabidopsis to Brassica-infecting races 
of Albugo candida is mechanistically underpinned by NLR re-
ceptors that can be identified by segregation analysis (Cevik et 
al., 2019). This led to the molecular cloning of WRR4B, WRR8, 
WRR9 and WRR12. Some of these genes were shown to pro-
vide resistance as transgenes in Brassica species (Cevik et al., 
2019). Avirulence genes from Albugo remain to be identified, but 
this task is now feasible thanks to the genomic resources that 
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exist for this pathogen. Considering that RXLR genes do not ap-
pear prominently in the Albugo genome (see below) it will be very 
interesting to compare the structure and function of Avr genes 
from Albugo with those from Hpa.

IMMUNE SIGNALING AND RESPONSES

Following the perception of pathogens, signaling is initiated that 
ultimately results in the execution of a broad range of defense 
responses that stop the invading microorganism. Here, we sum-
marize important signal transduction components and defense 
responses against oomycete infection of Arabidopsis.

In Arabidopsis, many genetic screens have been performed to 
identify genes that are important for defense signaling. Some of 
these screens were focused on signaling downstream of specific 
R proteins, while others were aimed to identify more general signal 
transduction components. It is beyond the scope of this chapter to 
describe the large number of genes involved in immune signaling, 
which are discussed in a number of excellent reviews (Pieterse et 
al., 2012; Cui et al., 2015). We focus on important plant proteins, 
EDS1 and NPR1, that play crucial roles in the interaction with 
oomycetes and are well studied in Arabidopsis. EDS1 and NPR1 
are closely linked to the immunity-related hormone salicylic acid 
(SA) that is also key for resistance to oomycetes.

EDS1 (ENHANCED DISEASE SUSCEPTIBILITY 1) is a li-
pase-like protein that is required for the function of a subgroup 
of NLRs, those with a Toll–interleukin 1 receptor domain called 
TIR-NLR. In addition, EDS1 has a function in oxidative stress re-
sponses and as a positive regulator in basal resistance to virulent 
pathogens making the eds1 mutant enhanced disease-suscepti-
ble (Wiermer et al., 2005). Two sequence-related signaling part-
ners, PAD4 (PHYTOALEXIN-DEFICIENT 4) and SAG101 (SE-
NESCENCE-ASSOCIATED GENE 101), form complexes with 
EDS1 and have signaling functions in the cytoplasm and nucleus. 
The NLR helper protein NRG1 also resides in this complex and 
plays a role in cell death signaling (Lapin et al., 2019). Interesting-
ly, EDS1 was found to associate with AvrRps4, a Pseudomonas 
effector, and to interact with TNLs, like RPS4 that mediate recog-
nition of AvrRps4. It was hypothesized that EDS1, being impor-
tant for basal resistance, could be a target for pathogen effectors 
and thus serve as a molecular bridge to mediate recognition by 
R proteins that guard the EDS1 protein in addition to its signaling 
functions (Cui et al., 2015). This hypothesis is currently debated 
and under further investigation (e.g., (Huh et al., 2017; Halane et 
al., 2018). The eds1 mutant was originally identified in a screen 
for loss of resistance to downy mildew (Parker et al., 1996). EDS1 
was shown to be required for the function of TIR-NLR genes such 
as RPP1, RPP4, RPP5, and WRR4. Virulent strains of Hpa and 
Albugo are also able to cause more severe infections on eds1 
mutant plants because of the reduced level of basal resistance 
(Wiermer et al., 2005). Arabidopsis eds1 mutants are also en-
hanced susceptible to a number of Phytophthora species, such 
as P. capsici (Wang et al., 2013a) and P. parasitica (Attard et al., 
2010). The lowered basal immunity is associated with reduced 
production of the defense hormone SA, that is essential for de-
fense against biotrophic pathogens (Vlot et al., 2009). EDS1 posi-
tively regulates SA accumulation, acting upstream of SA, but the 
EDS1 gene is also activated at the transcriptional level by SA. 

EDS1 thus seems to be part of an SA-associated positive feed-
back loop of plant defense (Feys et al., 2001).

SA is not only crucial for resistance to downy mildew, but also 
affects basal and R gene-mediated resistance to many other 
oomycetes, such as P. capsici (Wang et al., 2013), or P. parasitica 
(Attard et al., 2010). Exogenous application of the hormone SA is 
sufficient to trigger efficient defense responses to a broad range 
of pathogens, including many oomycete pathogens, and in partic-
ular to downy mildew and hemi-biotrophic Phytophthora species. 
SA (2-hydroxybenzoic acid) is synthesized via two main routes, 
the isochorismate (IC) and phenylalanine ammonia lyase (PAL) 
route (Dempsey et al., 2011). The Arabidopsis IC route goes via 
two IC synthases (ICS) and downstream steps that differ from 
the canonical pathway defined in bacteria (Rekhter et al., 2019b; 
Torrens-Spence et al., 2019). The ics1 (sid2) mutant has received 
the majority of experimental attention to date. Ics1 mutants ex-
hibit 90% lower levels of SA (Wildermuth et al., 2001), and levels 
are ~95% lower in the ics1 ics2 double mutant following powdery 
mildew infection (Garcion et al., 2008). The ICS1 gene is induced 
by MAMPs and by NLR-mediated pathogen recognition (Mishina 
and Zeier, 2007; Cui et al., 2015) leading to high local levels of 
SA that activate defense. Besides local defenses, SA plays an 
important role, together with pipecolic acid, in systemic acquired 
resistance (SAR), that enhances immunity of distant plant tissues 
to protect against future infections (Bernsdorff et al., 2016; Kles-
sig et al., 2018). Recently the export protein EDS5 was implicated 
in synthesis of pipecolic acid, in addition to its well-known role in 
SA biosynthesis, revealing a surprising instance of immune con-
vergence (Rekhter et al., 2019a). 

Downstream of SA, the central NPR1 (NONEXPRESSOR of 
PR GENES 1) protein plays a crucial role in the transcriptional 
activation of SA-induced defense in Arabidopsis (Pieterse and 
Van Loon, 2004). Mutation of NPR1 leads to loss of basal re-
sistance to (hemi-)biotrophic pathogens and of SAR (Cao et al., 
1997). NPR1 proteins form a multimeric complex in the plant cell 
cytoplasm. Upon triggering of the plant immune system SA accu-
mulates and subsequently elicits the thioredoxin-mediated reduc-
tion of a cysteine residue in NPR1 (Yan and Dong, 2014). This 
results in the release of monomeric NPR1 that can travel into 
the nucleus where it interacts with TGA transcription factors to 
activate transcription of defense genes, like pathogenesis-related 
(PR) genes (Boyle et al., 2009). NPR1 and the two paralogous 
Arabidopsis proteins NPR3 and NPR4 have been shown to bind 
SA and could thus constitute the SA immune receptors (Ding et 
al., 2018; Innes, 2018).

Interestingly, RPP proteins vary significantly in their require-
ments for functionality of these signaling components. For exam-
ple, resistance mediated by the TIR-NLR protein RPP5 is strongly 
compromised by mutations that nullify EDS1, NPR1, or SA bio-
synthesis (van der Biezen et al., 2002). On the other hand, the 
CC-NLR proteins RPP7 and RPP13 retain almost full functionality 
in these backgrounds (McDowell et al., 2000; Bittner-Eddy and 
Beynon, 2001). These differences underscore the complexity of 
ETI regulation.

Other defense related hormones, in particular jasmonic acid 
(JA) and ethylene, play important roles in immunity to Pythium 
infection. Enhanced susceptibility to necrotizing Pythium species 
was observed in Arabidopsis mutants with reduced JA levels of 
responses; (i) in the JA nonaccumulating fad3-2_fad7-2_fad8 
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triple mutant (Browse et al., 1998), and (ii) in the JA-insensitive 
jar1-1 mutant (Staswick et al., 1998). Also, the ethylene-insensi-
tive ein2-1 mutant, but not the partially-ethylene insensitive mu-
tant etr1-1, showed enhanced susceptibility to Pythium infection 
(Geraats et al., 2002). Interestingly, small endogenous peptides 
encoded by the PROPEP1, 2, and 3 genes, function in a feed-
back loop amplifying JA and ethylene defense signaling pathways 
initiated by Pythium (Huffaker and Ryan, 2007). Consequently, 
Arabidopsis transgenics overexpressing PROPEP1 show en-
hanced resistance to Pythium irregulare (Huffaker et al., 2006).

It is well known that many proteins are specifically produced 
during plant defense (van Loon et al., 2006). In particular, many 
secreted and vacuolar proteins have been classified as patho-
genesis-related proteins. Also in Arabidopsis many PR proteins 
have been identified, e.g. PR1, PR2, and PR5 that were found 
in apoplastic fluid of Arabidopsis treated with 2,6-dichloroisonic-
otinic acid (INA), which is a mimic of SA (Uknes et al., 1992). 
Several of these PR proteins have anti-microbial activities, while 
others contribute to resistance in unknown ways. One of the most 
used marker genes of SA-induced plant defense is PR1. Plants 
have multiple PR1 genes encoding different protein variants with 
different activities (van Loon et al., 2006). Several tobacco PR1 
proteins have anti-microbial activity on the oomycete P. infestans. 
Spore germination and pathogen growth in planta was effectively 
inhibited by PR1 protein purified from tobacco and other solana-
ceous plants (Niderman et al., 1995). Overexpression of several 
PR1 genes in different plant species also increased their resis-
tance to oomycetes (Sarowar et al., 2005; Broekaert et al., 2000), 
whereas the effect on other pathogen taxa is unclear. Interest-
ingly, PR1 was recently shown to bind sterols, indicative of defen-
sive mode of action that is based on restriction of this important 
nutrient for oomycetes (Gamir et al., 2017). The PR2 proteins are 
ß-1,3-beta-glucanases that are thought to attack the cell wall of 
invading fungi and oomycetes. Several cases of enhanced resis-
tance of plants overexpressing PR2 to oomycetes were reported 
(Broekaert et al., 2000).

Another important family of PRs are the PR5 proteins, that 
encompass the osmotins and thaumatin-like proteins (van Loon 
et al., 2006). A 24-kD protein, named osmotin, isolated from 
tobacco, was shown to have inhibitory activity to P. infestans 
in vitro (Woloshuk et al., 1991). Overexpression of osmotin in 
transgenic potato plants delayed the development of late blight 
disease caused by P. infestans (Liu et al., 1994). Osmotin was 
shown to trigger cell death in Saccharomyces cerevisiae through 
its interaction with a plasma membrane protein (Narasimhan et 
al., 2005). It is unclear whether a similar activity is also effective 
against oomycetes.

Other non-proteinaceous compounds that are important for 
resistance to oomycetes in Arabidopsis are small secondary me-
tabolites. Important anti-microbial compounds produced by Ara-
bidopsis are for instance indole-glucosinolates (iGS) and the phy-
toalexin camalexin (Glawischnig, 2007; Bednarek, 2012). Mutant 
plants that no longer produce either iGS or camalexin are only 
slightly more susceptible to P. brassicae (Schlaeppi et al., 2010; 
Schlaeppi and Mauch, 2010). The effect appeared stronger when 
tested with P. capsici (Wang et al., 2013). In both cases, a very 
strong gain in susceptibility was observed in the double mutant 
cyp79b2 cyp79b3, that is blocked in the production of indole-
3-aldoxime, which is a common precursor for iGS and camalexin. 

Camalexin appears to contribute to resistance to Arabidopsis 
downy mildew, as several phytoalexin-deficient (pad) mutants are 
slightly more susceptible to Hpa. Whether iGS also contributes to 
downy mildew resistance is not clear, although a proposed role 
of iGS in innate immunity suggests it would contribute to basal 
resistance (Clay et al., 2009). Many new compounds with anti-mi-
crobial activity are still being discovered in Arabidopsis, such as 
the recently discovered 4-hydroxyindole-3-carbonyl nitrile (4-OH-
ICN), a previously unknown Arabidopsis metabolite (Rajniak et 
al., 2015). This is not surprising as each plant species is thought 
to produce thousands of secondary metabolites, many of which 
have a presumed role in defense (Dixon, 2001). However, much 
remains to be learned about the exact mechanisms that inhibit 
oomycete growth during PTI and ETI.

GENES INVOLVED IN SUSCEPTIBILITY TO OOMYCETES

Many non-immunity related processes are thought to contribute 
to plant disease susceptibility. Plants often inadvertently facilitate 
pathogens in establishing disease. Three different levels of sus-
ceptibility-enabling processes can be distinguished: (i) attraction 
and attachment of pathogens to host cells, (ii) accommodation 
of specialized infection and feeding structures inside plant cells, 
and (iii) nutrient production and transport from host to pathogen 
(Lapin and Van den Ackerveken, 2013). One can imagine that 
mutation of host genes that affect any of these processes leads 
to plants with reduced disease susceptibility. However, such 
mutations could also affect basal plant processes that affect the 
overall physiology of the plant. In genetic terms, susceptibility (S) 
genes can be defined as genes that are involved in disease sus-
ceptibility and contribute positively to the infection process. By 
this definition, impairment of S genes leads to enhanced disease 
resistance. 

In Arabidopsis several genes for susceptibility to oomyce-
tes have been identified. Several of these are involved in host 
amino acid metabolism, e.g., the ASPARTATE KINASE2/RAR1 
SUPPRESSOR 1 (AK2/RSP1), DIHYDRODIPICOLINATE SYN-
THASE2/RAR1 SUPPRESSOR 2 (DHDPS2/RSP2) and DOWNY 
MILDEW RESISTANT 1 (DMR1). The rsp1 and rsp2 mutants ac-
cumulate methionine, threonine and isoleucine, which is linked to 
increased resistance to Hpa (Stuttmann et al., 2011). Similarly, 
the Arabidopsis dmr1 mutant, that is mutated in HOMOSERINE 
KINASE (HSK), has increased levels of homoserine, which is a 
common precursor of methionine, threonine, and isoleucine. L-
homoserine application was sufficient to make Arabidopsis resis-
tant to Hpa (van Damme et al., 2009). The resistance in rsp1, 
rsp2 and dmr1 mutants is independent of salicylic acid (SA)-in-
duced defense (van Damme et al., 2009; Stuttmann et al., 2011). 

A very different group of susceptibility genes are those that 
encode negative regulators of immunity. When impaired, for in-
stance by mutation, these regulators are no longer able to sup-
press certain immune responses and therefore show an en-
hanced disease resistance. Two examples from Arabidopsis are 
the IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) and the 
DOWNY MILDEW RESISTANT 6 (DMR6) proteins. IOS1 is a leu-
cine-rich repeat receptor-like kinase (LRR-RLK) and is required 
for full susceptibility to Hpa. In addition, the ios1 mutant is also 
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resistant to the oomycete P. parasitica (Hok et al., 2011; Hok et 
al., 2014). The loss of susceptibility of the ios1 mutant seems 
linked to ABA hypersensitivity and independent of plant defense 
mechanisms. Impairment of negative regulation of ABA signal-
ing in ios1 is suggested to lead to impaired susceptibility to Hpa 
(Hok et al., 2014). Also, Arabidopsis dmr6 mutants are resistant 
to Hpa, the oomycete P. capsici, and other biotrophic pathogens 
(van Damme et al., 2009; Zeilmaker et al., 2015). DMR6 and 
its close paralog DMR6-LIKE OXYGENASE 1 (DLO1/S3H) are 
needed for hydroxylation of SA to 2,5- and 2,3-dihydroxybenzoic 
acid, respectively. Overexpression of DMR6 and DLO1 leads to 
depletion of SA, which renders the plants highly susceptible to 
Hpa (Zeilmaker et al., 2015).

An important question to keep in mind when analyzing mu-
tants with lesions in genes encoding negative regulators of im-
munity is whether they truly have a suppressive role in defense. 
This is particularly important for mutants that show autoimmune 
phenotypes, also referred to as lesion mimic mutants (Rodriguez 
et al., 2015). There are several examples of “negative regulator” 
mutants that can be suppressed by mutations in NLR genes en-
coding for cytoplasmic immune receptors. For instance, the Ara-
bidopsis mpk4 mutant exhibits constitutive activation of defense 
and was classified as a negative regulatory mutant. However, it 
appeared that the mpk4 mutation required the presence of the 
NLR SUMM2 (Zhang et al., 2012). The idea is that the MPK4 
protein, which is a target of the Pseudomonas effector HopAl1, is 
guarded by the NLR SUMM2. In the mpk4 mutant, SUMM2 would 
be constitutively triggered resulting in an autoimmune phenotype.

Ongoing and future studies are likely to reveal more plant 
proteins that have an important role in disease susceptibility to 
oomycete pathogens. Besides finding additional components of 
the plant immune system that are targeted by oomycetes, non-
immunity-related proteins that function in ‘attracting’, ‘accommo-
dating’, and ‘feeding’ pathogens can be found. The identification 
and functional analysis of the encoding genes could uncover so 
far unknown molecular processes in plant disease susceptibility, 
that will be instrumental in the design of novel strategies for dis-
ease resistance breeding. Our understanding of such processes, 
in the context of Arabidopsis-oomycete interactions, is discussed 
in the following sections.

SUPPRESSION OF IMMUNITY 

The preceding sections of this chapter have established that 
plants can deploy an effective immune response against oomy-
cete pathogens. However, it is also well-documented that phyto-
pathogenic oomycetes are capable of potent immune suppres-
sion (Jiang and Tyler, 2012). This is illustrated in Figure 4A, in 
which a co-infection experiment demonstrates that Albugo lai-
bachii can suppress Arabidopsis immunity and thereby enables 
colonization by otherwise incompatible isolate of Hpa (Cooper 
et al., 2008). As mentioned earlier, A. laibachii can even render 
Arabidopsis susceptible to Phytophthora infestans, which is non-
pathogenic on Arabidopsis due to several layers of genetically 
redundant resistance mechanisms (Belhaj et al., 2017; Prince et 
al., 2017). An example of immune suppression at the cellular level 
is shown in Figure 4B, where activation of PR1 promoter-GUS re-
porter gene fusion is suppressed specifically in Arabidopsis cells 

adjacent to Hpa infection structures (Caillaud et al., 2013; Asai et 
al., 2014). These images graphically illustrate oomycetes’ capac-
ity to tamper with plant immune systems. In the sections below, 
we will summarize how Arabidopsis is used to dissect the molecu-
lar mechanisms that underpin this suppression of an otherwise 
potent immune response.

It is becoming increasingly clear that oomycetes’ most impor-
tant tools for host immune suppression are effector proteins that 
are secreted from the pathogen to the outside (apoplast) or the 
interior of plant cells (Stassen and Van den Ackerveken, 2011; 
Fawke et al., 2015). Genomic analyses, coupled with genetic and 
molecular experiments, have allowed for discovery of hundreds 
of putative effector-encoding genes in oomycete genomes (Jiang 
and Tyler, 2012; Pais et al., 2013). The majority of oomycete ef-
fectors contain a classical signal peptide motif directing secretion 
from the pathogen. C-terminal of the signal peptide are additional 
known or putative functional motifs that enable classification of the 
secreted proteins into families (Kamoun, 2006). Such classifica-
tions provide a foundation from which to investigate the functions 
of the genes. Table 3 lists several families of oomycete effectors 

Figure 4. Suppression of host immunity by adapted oomycete pathogens.

(A) Cotyledons of Arabidopsis thaliana Col-5 inoculated solely with aviru-
lent H. Arabidopsis Cand5 and showing no symptoms (left) or sequentially 
inoculated with Albugo candida subsp. arabidopsis isolate Acem1 and 
Cand5 showing downy mildew sporangiophores (center, upper surface) 
and white blisters (right, lower surface). Image reproduced from (Cooper 
et al., 2008).
(B) GUS staining of pro(PR1)::GUS in Arabidopsis leaves 6 DAI Hpa 
Waco9. No GUS was detected in Hpa-haustoriated mesophyll cell (black 
stars), while GUS staining was restricted to nonhaustoriated mesophyll 
cells (red stars). Image reproduced from (Caillaud et al., 2013).



 Oomycetes Used in Arabidopsis Research 13 of 26

and estimates of their copy numbers in genomes of oomycetes 
that infect Arabidopsis. These can be considered only an approxi-
mate inventory of effectors in the respective pathogens, and it is 
likely that these numbers will change as the quality of genome 
data, experimental evidence, and predictive motifs are iteratively 
refined (Dalio et al., 2018). 

The best studied oomycete effector family is defined by the 
motif RXLR that is found adjacent to the N-terminal signal pep-
tide. Hundreds of putative RXLR effector genes are present in 
genomes of downy mildew pathogens and species within the 
Phytophthora genus (Jiang and Tyler, 2012). The RXLR motif is 
proposed to mediate entry of the protein into plant cells, although 
this is controversial (Kale et al., 2010; Petre and Kamoun, 2014). 
Once inside the plant the RXLR motif does not appear to play a 
functional role. Rather, the function-specific region of the protein 
is downstream of the signal peptide and RXLR motif (Birch et al., 
2006). We previously summarized how some RXLR proteins are 
recognized as avirulence proteins by NLR immune surveillance 
proteins. More relevant to this section of the chapter are lines 
of evidence indicating that RXLR proteins play a major role in 
immune suppression. These studies are reviewed in detail else-
where (Birch et al., 2009; Schornack et al., 2009; de Jonge et al., 
2011; Kale and Tyler, 2011; Koeck et al., 2011; Stassen and Van 
den Ackerveken, 2011; Wawra et al., 2012; Pais et al., 2013; An-
derson et al., 2015; Fawke et al., 2015). Below, we highlight sev-
eral examples in which the experimental resources of Arabidopsis 
have been used to accelerate progress towards understanding 
how RXLR proteins promote oomycete diseases. 

RXLR effectors are thought to enter plant cells and target spe-
cific plant proteins or protein complexes for destruction or modi-
fication to benefit the pathogen. Thus, the experimental tools of 
Arabidopsis are well-suited to identify RXLR protein targets, to 
understand the functions of these targets in plant regulatory net-
works and define the mechanisms through which the target is 
engaged by the corresponding effector and the resultant effect on 
plant cellular functions. Arabidopsis has been used to particularly 
good advantage in studies aimed at high- to medium-throughput 
examination of effectors to provide first steps toward mechanistic 
understanding (Anderson et al., 2015). One such approach uti-
lized a phytopathogenic Pseudomonas bacterial strain as a sur-
rogate to deliver Hpa effectors to Arabidopsis cells via Type III se-
cretion (Fabro et al., 2011). This system was based on two clever 
features: The first was an “effector-detector vector” in which the 
effector of interest is fused to a leader from a bacterial Type III 
effector that directs the oomycete effector through the Type III 
system and thus to the interior of plant cells (Sohn et al., 2007). 

The second feature was to engineer the bacteria with a constitu-
tively active luciferase gene, by which in planta bacterial growth 
could be easily quantified by light emission (Fabro et al., 2011). 
This assay provided an estimation of whether the secreted effec-
tor promoted or retarded bacterial growth, indicative of virulence 
or avirulence activity, respectively. This system enabled facile 
examination of 64 RXLR genes, providing evidence for virulence-
promoting activity for 42 effectors (Fabro et al., 2011). 

Another approach is to exploit the ease of Arabidopsis trans-
formation to generate stably transformed plants that express ef-
fector protein genes, controlled by plant regulatory sequences. 
This approach has been very productive for bacterial Type III ef-
fectors and is now being used to characterize RXLR proteins. For 
example, Pel and colleagues created transgenic lines express-
ing several RXLR proteins from Hpa and used these lines to 
establish virulence-promoting activities using pathogen disease 
phenotypes, cytological assays, and marker genes that are well-
established in Arabidopsis (Pel et al., 2014). Arabidopsis trans-
genic plants have also been used in genetic screens to identify ef-
fectors that target specific signaling pathways/sectors, based on 
suppression of a promoter-reporter gene fusion that provides a 
readout for the pathway of interest. This approach has implicated 
RXLR effectors that suppress SA-mediated signaling based on 
reduction of SA-induced PR1-GUS activity (Asai et al., 2014). An-
other approach was to use Arabidopsis expressing RXLR effector-
GFP protein fusions to estimate subcellular localization of 49 Hpa 
RXLR effectors (Caillaud et al., 2012). This approach revealed 
the nucleus and plasma membrane as predominant destinations. 
These clever screens represent only the beginning of what might 
be achieved using different Arabidopsis genetic resources. For 
example, it would be of great interest to exploit Arabidopsis lines 
that could report reprogramming of relevant host processes other 
than immune signaling (e.g., host cell structure, trafficking, or me-
tabolism) (Lapin and Van den Ackerveken, 2013).

The most dramatic application of Arabidopsis tools to under-
stand RXLR effector biology was described in two studies that 
exploited the Arabidopsis ORFeome to conduct a protein-protein 
interaction screen with effectors from Hpa, the bacterium Pseudo-
monas syringae, and the obligate biotrophic fungus Golovinomy-
ces orontii (Mukhtar et al., 2011; Wessling et al., 2014). Together, 
these studies revealed nine Arabidopsis proteins that interact with 
effectors from all three pathogens, along with another 23 that in-
teract with effectors from two of the three pathogens. The biologi-
cal relevance of these interactions could then be tested by testing 
loss of function mutations, easily obtained from the Arabidopsis 
T-DNA knockout collection, for effects on susceptibility to patho-

Table 3. Predicted secreted proteins from oomycete pathogens of Arabidopsis.

Species Genome Size Total Secretome RxLR CRN NEP Elicitin-like Reference

H. arabidopsidis 81.6 Mb 2157 134 20 10 15 (Baxter et al., 2010)

A. candida 45.3 Mb 929 29* 6 0 9 (Links et al., 2011)

A. laibachii 43 Mb 672 49 2 0 1 (Kemen et al., 2011)

P. capsici 64 Mb 2911 357 29 NP NP (Lamour et al., 2012)

NP-No prediction
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gen infection. The targeting of plant proteins by pathogens from 
different biological kingdoms validates the prediction that patho-
gens might evolve convergently to target points of vulnerability in 
host signaling networks. This reaffirms that Arabidopsis studies 
will yield important knowledge of conserved immune strategies 
in crop species. In addition to these points of convergence, the 
screen also revealed proteins that bind to effectors from only one 
of the three species, providing leads into virulence strategies that 
are specific to oomycete, bacterial, or fungal lineages (Mukhtar et 
al., 2011; Wessling et al., 2014). 

These screens provide an important basis for prioritizing hun-
dreds of RXLR effector genes for the painstaking studies to reveal 
their modes of action. The experimental tools of Arabidopsis pro-
vide obvious advantages for studies aimed at deep mechanistic 
understanding. This is exemplified by examination of the Hpa ef-
fector RXLR44, through which a subunit of the mediator transcrip-
tional complex was revealed as the target (Caillaud et al., 2013). 
RXLR44 targets the Med19 subunit for proteosomal degradation. 
Nullification of Med19 affects hormone signaling sectors that con-
trol immunity: JA-responsive genes are de-repressed, which ac-
tivates antagonistic cross-talk through which SA signaling is re-
pressed and the plant immune response is compromised (Caillaud 
et al., 2013). In this way, it was revealed that Hpa exploits JA-SA 
interplay to promote virulence, thereby joining bacteria and fungi in 
convergent exploitation of this malleable node in the immune sig-
naling network (Gimenez-Ibanez et al., 2016; Zhang et al., 2017).

Although most of the studies discussed so far focus on effectors 
from the natural Arabidopsis pathogen Hpa, it is important to em-
phasize that Arabidopsis is also an informative system for effectors 
from Phytophthora species. For example, the Penetration-Specific 
Effector 1 (PSE1) effector from P. parasitica was shown to affect 
auxin signaling in Arabidopsis (Evangelisti et al., 2013). Arabidop-
sis can also be exploited to identify functions for effectors from non-
pathogens of Arabidopsis that presumably target plant proteins 
which are broadly conserved and are targeted by diverse oomyce-
tes. This is illustrated by a study in which Phytophthora infestans 
RXLR proteins that affect PTI were identified from screens of Ara-
bidopsis expressing the PAMP-inducible FRK9 promoter fused to a 
Luciferase reporter (Zheng et al., 2014). The Arabidopsis extracel-
lular ATP receptor kinase LeRK-I9 is targeted by the Phytophthora 
RXLR effector IPI-O, perhaps to destabilize the plasma membrane-
cell wall interface and/or interfere with perception of eATP (Bouw-
meester et al., 2011b; Bouwmeester et al., 2011a; Bouwmeester 
et al., 2014; Balague et al., 2017). Another example is the Phy-
tophthora suppressor of RNA silencing (PSR) effectors from the 
soybean pathogen Phytophthora sojae that suppress plant RNA 
interference to manipulate immune signaling (Qiao et al., 2013; 
Xiong et al., 2014). In this case, Arabidopsis was used to identify 
one target of these proteins: an RNA-binding protein that had not 
been previously linked with immune system regulation (Qiao et al., 
2015). These and other studies illustrate how Arabidopsis could be 
used to identify effector target proteins that are “conserved” in the 
sense that they are targeted in diverse plant species, perhaps by 
diverse pathogens (Anderson et al., 2012; Deb et al., 2018b; Deb 
et al., 2018a; Tomczynska et al., 2018). Such proteins could be at-
tractive targets for breeding/bioengineering.

The above examples also illustrate a major benefit of effector-
driven research: the effectors often “lead” us to novel insights into 
the composition and function of plant regulatory networks (Win et 

al., 2012). In this context, we draw attention back to Table 3, which 
illustrates that oomycetes contain several effector families with im-
portant functions in disease. The Nep1 (Necrosis and Ethylene-
inducing 1)-like proteins (NLPs) were introduced previously in the 
section on PTI. These proteins are thought to be utilized by necro-
trophic and hemi biotrophic pathogens to induce plant cell death; 
however, the obligate biotroph Hpa expresses a number of NLP 
proteins that are not capable of inducing necrosis (Baxter et al., 
2010). Their virulence function awaits definition. The “crinkler” fam-
ily of effectors was functionally defined by plant cell necrosis activ-
ity and also contains a definitive protein motif (Stam et al., 2013). 
Another broadly conserved class of effectors are elicitin-like pro-
teins, which are thought to bind sterols in the apoplast (Derevnina 
et al., 2016). This is important because phytopathogenic oomy-
cetes do not synthesize sterols. These and other effector families 
have received little attention, compared to RXLR proteins, and 
represent good opportunities for productive experimentation, using 
the Arabidopsis tools described above. It will be particularly intrigu-
ing to explore Pythium or Albugo effector families that might be 
analogous to RXLR effectors in these important but poorly studied 
oomycete lineages. The recently described CHXC family from Al-
bugo is particularly intriguing and might provide a mechanistic link 
to the recent report that Albugo can alter Arabidopsis tryptophan 
metabolism and interfere with responses to salicylic acid (Kemen 
et al., 2011; Prince et al., 2017). As mentioned earlier, Albugo can 
also act as a hub to affect the microbiome of infected plants and 
appears highly tolerant to host immune responses (McMullan et 
al., 2015; Ruhe et al., 2016). These traits are theorized to provide 
a competitive advantage for niche colonization in the wild. Much 
more remains to be learned about these and other fascinating as-
pects of Arabidopsis-oomycete interactions.

ACCOMMODATION OF OOMYCETE INFECTION 
STRUCTURES

The preceding section established that secretion of effectors is a 
major mechanism through which oomycetes can suppress host 
immunity. Another critical process in which the pathogen likely 
manipulates the host is in accommodation of infection structures, 
particularly the haustorium which penetrates the plant cell wall to 
create intimate associations with individual host cells (Fig. 2, Fig. 
5) (Lapin and Van den Ackerveken, 2013). As mentioned previ-
ously, the haustorium is a specialized feeding structure that is 
formed by biotrophic and hemi-biotrophic oomycetes during plant 
colonization (Spencer-Phillips, 1997; Szabo and Bushnell, 2001; 
Wang et al., 2017). Effectors are secreted from haustoria to the 
exterior and interior of host cells (Wang et al., 2017). Hausto-
rium formation is initiated when oomycetes secrete hydrolases 
to locally degrade the plant cell wall and establish an entry point. 
Microscopy of infected Arabidopsis leaves has illustrated the ul-
trastructure of oomycete haustoria (Mims et al., 2004; Soylu et 
al., 2004; Lu et al., 2012) (Fig. 5). Following penetration, hausto-
ria grow into the host cell by invagination of the plant cell mem-
brane. The pathogen haustorial membrane is distinct from the 
host extrahaustorial membrane and the two membranes are sep-
arated by a glycan-rich extrahaustorial matrix. The haustorium 
itself contains numerous large organelles including vacuoles, mi-
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Figure 5. Manipulation of host cell structure and metabolism.

(A) Transmission electron micrograph of fixed Hpa haustoria in leaf cells of At. Near-median longitudinal section of a haustorium (H) showing its continuity 
with an intercellular hypha (ICH). collar of host cell wall material (C). Host-cell structures: the cell wall (asterisks), plastids (P), the central vacuole (HCV), 
and cytoplasm (arrow). Pathogen structures: nucleus (N), mitochondria (M), lipid bodies (L), vacuoles (V), and extrahaustorial matrix (arrowheads). Scale 
bar = 1 μm. Image reproduced from (Mims et al., 2004).
(B) Secretory vesicles differentially localize around Hpa. Confocal micrographs of At transgenic lines expressing the indicated fluorophore fusions show 
cross-sections of non-infected and Hpa-infected leaves at 3 dpi. Hpa haustoria are shown in bright field images indicated by asterisks. RPW8.2–YFP, 
YFP–SYP32 and YFP–Got1p are detected in vesicles around Hpa haustoria. Red signals seen in uninfected RPW8.2–YFP leaves are chlorophyll auto-
fluorescence. Bar = 10 µm. Image reproduced from (Lu et al., 2012). 

tochondria, and lipid bodies (Fig. 5A). These structures suggest 
the haustoria maintains an active metabolism and reinforces the 
hypothesis that it is the primary site of pathogen feeding (Mims et 
al., 2004). The extrahaustorial membrane displays a highly con-
voluted topology, perhaps resulting from vesicle traffic to and from 
the haustoria (Fig. 5A).

The signaling and trafficking differences that constitute host 
resistance versus successful haustorial formation are not well 
understood. It is clear that many responses originate from the 
plant, but the pathogen likely coopts some of these functions for 
its own purposes. The extrahaustorial membrane is synthesized 
de novo and lacks many integral proteins typically found in the 
plant PM (Lu et al., 2012). Some plant defensive proteins local-
ize to the extrahaustorial membrane, including immune receptors 
such as FLS2 and trafficking proteins such as PENETRATION1 
(PEN1, Fig. 5B). Studies of early Hpa infection reveals haustorial 
penetration is accompanied by reorganization of GFP-tagged cy-
toskeleton and organelles in Arabidopsis mesophyll cells (Take-
moto et al., 2003; Mims et al., 2004; Lu et al., 2012). This reorga-
nization is observed in compatible and incompatible interactions. 

Some of these responses are stimulated by plant immune signal-
ing as well as mechanical disturbance (Hardham et al., 2008). 
However, a successful infection would likely benefit from plant 
organelles close to haustorium for access to plant cell traffick-
ing and metabolism. Host cell rearrangements are accompanied 
by accumulation of secretory vesicles, flush with lipids for the 
new membrane (Takemoto et al., 2003). Other cargo contained 
in these vesicles remains to be identified. The purpose of these 
vesicles as defense mechanism or transporter of nutrients to the 
pathogen is unclear.

A signature of successful Arabidopsis resistance to Hpa and 
Albugo invasion is robust production of cell wall appositions, or 
encapsulation of haustorium in callose (Donofrio and Delaney, 
2001). These callose-containing structures are hypothesized to 
provide physical protection against pathogen feeding structures 
(Allen and Friend, 1983). Arabidopsis PLASMODESMATA-LO-
CATED PROTEIN 1 moves to haustorial sites and stimulates 
callose production to impede haustorial entry. Suppression of im-
munity likely includes reduction in PDLP1 expression and activity, 
as the gene is not expressed in fully colonized cells (Caillaud et 
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al., 2014). Plants deficient in salicylic acid signaling fail to pro-
duce robust callose depositions and often produce callose bands 
at the neck of haustorium (Donofrio and Delaney, 2001). While 
abundant callose appears to stymie haustorium formation, cal-
lose neck bands at the site of cell wall penetration of Hpa and 
Albugo haustorium may promote haustorial accommodation. 

Although studies with Arabidopsis have provided some ini-
tial insights, the biogenesis of haustoria and cellular aspects of 
interaction with plant cells are poorly understood and represent 
a very fruitful area for inquiry that encompasses cell biology of 
the plant and the oomycete. Recently, Arabidopsis orthologs of 
symbiosis genes of legumes were shown to also play a role dur-
ing downy mildew infection. Mutants were affected in haustorial 
maintenance, suggesting overlap in accommodation of microbes 
between the different plant species (Ried et al., 2018). Arabidop-
sis will be particularly useful for identifying host factors that are 
manipulated during haustorial accommodation.

NUTRIENT ACQUISITION

Another challenge faced by oomycetes is the need to obtain 
nutrients from the host (Lapin and Van den Ackerveken, 2013). 
This challenge is compounded in obligate oomycetes by the 
loss of conserved metabolic pathways (McDowell, 2011; Kemen 
and Jones, 2012). For example, genome analysis of the obli-
gate biotroph Hpa revealed loss of the machinery to reduce inor-
ganic nitrate and sulfite to their essential organic forms (Baxter 
et al., 2010). The Albugo genome reveals similar deficiencies 
along with the loss of the thymine synthetic pathway (Links et 
al., 2011). Thus, these pathogens must have a way to compen-
sate for the lack of metabolic machinery in their own genomes, 
and it will be interesting to compare their nutrient acquisition 
strategies with those employed by Phytophthora pathogens in 
which these pathways are intact. Unfortunately, similar to ac-
commodation of haustoria, nutrient acquisition by oomycetes is 
poorly understood and Arabidopsis has not been fully exploited. 
Only one publication reports physiological aspects of an Arabi-
dopsis-oomycete interaction: Arabidopsis invertase activity is in-
duced during Albugo infection, while chlorophyll production and 
photosynthesis are down-regulated (Chou et al., 2000). These 
changes occurred only in regions directly associated with the 
pathogen, suggestive of pathogen manipulations or a localized 
defense response. 

Much potential exists to exploit the tools of Arabidopsis to 
better understand the metabolic interplay between plants and 
oomycetes. Vesicle traffic through the extrahaustorial matrix is 
hypothesized to contain effectors and virulence factors from the 
pathogen, and sugars, proteins, and lipids from the host. Bac-
terial plant pathogens are now known to induce expression of 
sugar transporters in their hosts at the site of infection (Chen et 
al., 2010), and research is ongoing to identify if this phenomenon 
occurs during oomycete infections. Indeed, a mutant in the Arabi-
dopsis SWEET2 gene reduces susceptibility to Pythium in roots 
(Chen et al., 2015). However, initial clues are evident in recent 
gene expression profiling studies: A survey of gene expression 
in Phytophthora parasitica during Arabidopsis root colonization 
suggested that uptake of host amino acids is prevalent during 

early infection (Attard et al., 2014). A survey of Arabidopsis gene 
expression during infection of leaves by Hpa identified an up-
regulated cluster of genes involved in nitrate transport (Asai et 
al., 2014). Detailed experimental follow-up of these observations 
would likely provide important insights into the relationship be-
tween host and pathogen metabolism.

In this context, the accessible genetic tools of Arabidopsis and 
capacity for gene editing provide a splendid resource to identify 
genes related to metabolism that affect the interaction with the 
pathogen (Sonawala et al., 2018). If a pathogen requires specific 
metabolites as a carbon or nitrogen source, pathogen starvation 
may be caused by loss of a gene responsible for that metabolite’s 
synthesis or transport. Such genes might fulfill the genetic defini-
tion of a susceptibility gene (S-gene) as discussed in the immune 
signaling section. Importantly, such genetic knockouts could be 
resistant because of deficiencies in nutrients critical to pathogen 
growth, rather than activation/priming of an immune response. One 
such example might be the aforementioned mutants rsp1 and rsp2, 
which accumulate methionine, threonine and isoleucine, without 
induction of a defense response (Stuttmann et al., 2011). These 
alterations in metabolism are linked to increased resistance to Hpa 
and a biotrophic fungal pathogen (Stuttmann et al., 2011). Simi-
larly, the Arabidopsis dmr1 mutant, that is mutated in HOMOSER-
INE KINASE (HSK), has increased levels of homoserine, which 
is a common precursor of methionine, threonine, and isoleucine. 
L-homoserine application was sufficient to make Arabidopsis resis-
tant to Hpa (van Damme et al., 2009). The resistance in rsp1, rsp2 
and dmr1 mutants is independent of salicylic acid (SA)-induced 
defense (van Damme et al., 2009; Stuttmann et al., 2011). This 
separation of metabolic incompatibility from canonical immunity 
demonstrates that pathogen virulence depends on more than host 
immune suppression. Pathogens have adapted to use metabolites 
present in their host, and perturbations of these host nutrient pools 
apparently leads to host resistance, particularly to biotrophic spe-
cies. Certain metabolic genes may be the direct or downstream tar-
gets of effectors, as is the case for bacteria. These targets might be 
more difficult to identify than well conserved immune hubs. Even 
so, Arabidopsis provides an ideal system for continued study in this 
area. The well-studied metabolism, and availability of T-DNA inser-
tion mutants for most genes will allow for screens and analysis of 
additional S-genes and sources of metabolic incompatibility. 

Although much remains to be discovered, it is clear that oomy-
cete plant pathogens are adapted to exploit their host to their own 
ends. These pathogens turn their hosts’ cell biology against them 
to achieve full virulence. Host cells respond differently in compat-
ible and incompatible interactions giving indication of pathogen 
manipulations. Structures are rebuilt to physically accommodate 
the parasite. The pathogen metabolism is streamlined to utilize 
molecules found in the host. Understanding how plants accommo-
date pathogens has potential to establish new mechanisms of re-
sistance. Crop species can be bred or engineered as inhospitable 
hosts, by removing S-genes or establishing metabolic incompat-
ibility. This may provide novel forms of protection from dangerous 
and economically important plant diseases. Work in Arabidopsis-
oomycete pathosystems will yield further insights into these inter-
actions and open these translational opportunities. 
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Table 4. Major insights into plant-oomycete interactions from Arabidopsis research. 

Insight Key References

Cloning of the first R genes against oomycetes Parker et al., 1997; Botella et al., 1998; 
McDowell et al., 1998

First insights into evolutionary dynamics of R genes against oomycetes Botella et al., 1998; McDowell et al., 1998; 
Bittner-Eddy et al., 2000

Definition of important immune system regulators Parker et al., 1996

Identification and map-based cloning of the first mutants exhibiting gain of resistance to oomycetes Van Damme et al., 2005; van Damme et al., 2008

Genetic definition of the complexity of the immune signaling network against oomycetes Aarts et al., 1998; McDowell et al., 2000; 
Bittner-Eddy and Beynon, 2001

Definition of penetration resistance Lipka et al., 2005

Molecular cloning of the first oomycete Avr gene Allen et al., 2004

First insights into evolutionary dynamics of Avr gene loci Allen et al., 2004; Armstrong et al., 2005; 
Rehmany et al., 2005

Identification of the RxLR motif Rehmany et al., 2005

Test bed for new technologies to understand effector functions Fabro et al., 2011; Caillaud et al., 2012

Discovery that oomycete, fungal, and bacterial effectors can target the same plant signaling hubs Mukhtar et al., 2011; Wessling et al., 2014

First insights into genomic basis and evolution of obligate biotrophy Baxter et al., 2010; Kemem et al., 2011

Table 5. Major knowledge gaps in understanding of plant-oomycete interactions that can be efficiently addressed with Arabidopsis research.

Challenge

Comprehensive map of the plant immune system, including connections to other processes

Understand how points of vulnerability in the immune network are targeted by oomycetes and other pathogens

Functional studies of unknown effector proteins

Explore how oomycetes obtain nutrients from plant hosts

Understand how oomycetes manipulate plant cell structure and physiology

Exploring the evolution and ecology of plant-oomycete interactions

Defining how the plant microbiome influences interactions with oomycetes

Leverage Arabidopsis resources to test innovative strategies for disease control

SUMMARY AND OPPORTUNITIES FOR FUTURE 
RESEARCH

Much progress has been made over the three decades in which 
Arabidopsis has been used to understand plant-oomycete inter-
actions. Indeed, research with Arabidopsis has been at the fore-
front of some of the most important insights in this area, which are 
summarized in Table 4. 

However, there are many aspects of plant-oomycete inter-
actions that are poorly understood. Table 5 outlines a number 
of general challenges and questions that remain open: For ex-
ample, despite the impressive steps forward in understanding 

how plants perceive oomycete PAMPs and effectors, we lack 
a comprehensive map of downstream immune signaling path-
ways and we have limited direct proof about the causal mecha-
nisms through which oomycete growth is impaired during a suc-
cessful immune response. Linkages of the immune system to 
other plant physiological process also remain to be revealed. 
In addition, we have only scratched the surface of mechanistic 
comprehension of how oomycetes target key nodes in the im-
mune system. The interactome studies referenced above pro-
vide an inspiring example of how these questions can be ad-
dressed productively. Furthermore, we emphasize strongly that 
suppression of immunity represents only one of several tasks 
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that an adapted pathogen must accomplish to complete its life 
cycle on the host. Very little is known about how oomycetes 
interpret physical and/or chemical cues to navigate through host 
tissues, nor how they manipulate host cell structure establish 
feeding conduits, nor how they manipulate host metabolism to 
serve their own needs (Lapin and Van den Ackerveken, 2013). 
All of these processes comprise major gaps in understanding of 
how plants and oomycetes interact. In addition, huge potential 
exists to exploit natural variation in Arabidopsis-oomycete inter-
actions to consider host-microbe ecology and evolution, along 
with the role of the microbiome in plant-oomycete interactions 
and the impacts of oomycetes on plant-microbiota interactions 
(Holub, 2008; Kemen and Jones, 2012). In summary, there is 
extensive space for innovative, impactful research within Arabi-
dopsis-oomycete pathosystems. 

For these reasons, we strongly recommend that the molecular 
plant-microbe research community continue to exploit the well-
developed experimental advantages of Arabidopsis as a refer-
ence system. In this way, we can move efficiently towards a sys-
tems-level understanding of plant-oomycete interactions, which 
will undoubtedly inspire new approaches towards low-input miti-
gation of crop diseases (Michelmore et al., 2017). Indeed, leads 
for translational research are already emerging directly from ba-
sic research on Arabidopsis-oomycete interactions. For example, 
cloned pattern-recognition receptors (e.g., RLP23) (Albert et al., 
2015) and NLR proteins could be moved to crop species, as al-
ready demonstrated for WRR proteins (Borhan et al., 2010; Cevik 
et al., 2019). Another approach is to use the power of Arabidopsis 
genetics to identify plant genes in which loss-of-function mutants 
lead to reduced susceptibility (i.e., mutants of oomycete disease 
susceptibility genes or negative regulators of immunity) (Boevink 
et al., 2016). Such genes can then be mutated in crops (e.g., by 
TILLING or by editing) and tested for pathogen resistance. This 
approach is currently being pursued for the DMR6 gene (Zeil-
maker et al., 2015). Finally, Arabidopsis can serve as a test bed 
for high-risk approaches, such as host-induced gene silencing, 
for which a genetically facile host could speed optimization (Gov-
indarajulu et al., 2015).
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