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Magnesium hydroxide-incorporated  
PLGA composite attenuates inflammation 
and promotes BMP2-induced bone 
formation in spinal fusion

Tarek M. Bedair1,2*, Chang Kyu Lee3*, Da-Seul Kim1,4* ,  
Seung-Woon Baek1,5, Hanan M. Bedair6, Hari Prasad Joshi7 ,  
Un Yong Choi7, Keun-Hong Park1, Wooram Park8, InBo Han7 and 
Dong Keun Han1

Abstract
Spinal fusion has become a common surgical technique to join two or more vertebrae to stabilize a damaged spine; 
however, the rate of pseudarthrosis (failure of fusion) is still high. To minimize pseudarthrosis, bone morphogenetic 
protein-2 (BMP2) has been approved for use in humans. In this study, we developed a poly(lactide-co-glycolide) (PLGA) 
composite incorporated with magnesium hydroxide (MH) nanoparticles for the delivery of BMP2. This study aimed to 
evaluate the effects of released BMP2 from BMP2-immobilized PLGA/MH composite scaffold in an in vitro test and an in 
vivo mice spinal fusion model. The PLGA/MH composite films were fabricated via solvent casting technique. The surface of 
the PLGA/MH composite scaffold was modified with polydopamine (PDA) to effectively immobilize BMP2 on the PLGA/
MH composite scaffold. Analyzes of the scaffold revealed that using PLGA/MH-PDA improved hydrophilicity, degradation 
performance, neutralization effects, and increased BMP2 loading efficiency. In addition, releasing BMP2 from the PLGA/
MH scaffold significantly promoted the proliferation and osteogenic differentiation of MC3T3-E1 cells. Furthermore, the 
pH neutralization effect significantly increased in MC3T3-E1 cells cultured on the BMP2-immobilized PLGA/MH scaffold. 
In our animal study, the PLGA/MH scaffold as a BMP2 carrier attenuates inflammatory responses and promotes BMP2-
induced bone formation in posterolateral spinal fusion model. These results collectively demonstrate that the BMP2-
immobilized PLGA/MH scaffold offers great potential in effectively inducing bone formation in spinal fusion surgery.
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Introduction

Spinal fusion is a gold standard surgical intervention to 
connect two or more vertebrae to restore spinal stability in 
the treatment of various spinal diseases, including spinal 
stenosis, spinal instability, spinal fractures, and progres-
sive scoliosis. Pseudarthrosis (failure of fusion) is a seri-
ous and challenging complication of spinal fusion surgery; 
it leads to severe pain and mobility impairment and the 
rate of pseudarthrosis following spinal fusion is reportedly 
as high as 48%.1

To enhance the spinal fusion rate, spine surgeons have 
used various methods, including autologous bone graft 
materials, allogeneic bone graft materials (e.g. demineral-
ized bone allograft), synthetic bone graft materials (e.g. 
tricalcium phosphate, hydroxyapatite, bioglass), and bone 
morphogenetic protein-2 (BMP2); each material has ben-
efits and disadvantages.1–8 BMP2 was approved in 2002 
and is currently used in spinal fusion surgery. Despite the 
effectiveness of BMP2 on osteogenic differentiation and 
bone formation, the delivery of BMP2 alone is not effec-
tive in assisting bone formation due to its short half-life. 
BMP2 experiences rapid diffusion throughout the body’s 
fluids and thus quick clearance.7 Therefore, supraphysio-
logical doses of BMP2 have been used clinically to pro-
mote bone formation; high doses of BMP2 have been 
associated with serious complications, including soft tis-
sue inflammation and heterotopic ossification.9–11

Therefore, given the rapid clearance of BMP2 from the 
body, substantial amounts of research have focused on 
developing more suitable biomaterials for BMP2 delivery. 
Many carriers and delivery systems comprised of different 
materials have been investigated to maintain the controlled 
release and improve the safety and therapeutic efficacy of 
BMP2.5,10–16 The delivery systems come in the form of 
hydrogels, microspheres, nanoparticles, and fibers. The 
carriers used for delivery are made of metals, ceramics, 
polymers, and composites.5,10–19

Poly(lactic-co-glycolic acid) (PLGA) has been the most 
successful polymeric biomaterial for use in controlled 
drug delivery systems.16,18,20 Many PLGA delivery sys-
tems for BMP2 have shown promise for bone repair.21–26 
However, the degradation of PLGA can decrease the pH in 
the surrounding tissues, causing inflammation or foreign 
body reactions in vivo.27 Thus, many attempts have been 
made to reduce the inflammation and improve the biocom-
patibility of PLGA.21–26

We have developed a composite scaffold composed of 
PLGA and magnesium hydroxide (MH, Mg(OH)2) with a 
solvent casting method to reduce pH and inflammation. 
Following the pattern of previous reports, our PLGA/MH 
composite scaffold promoted a pH neutralization effect in 
the acidic microenvironments, an anti-inflammatory effect, 
and mechanical strength3,28–31 compared to the PLGA scaf-
fold. We also confirmed the positive effect of the PLGA/
Mg(OH)2 scaffold on tissue regeneration through pH 

neutralization of acids and anti-inflammation in a partially 
nephrectomized mouse model and a rat osteochondral 
defect model.31,32 Based on the finding from our previous 
studies, in this study, we designed a PLGA/MH composite 
scaffold with pH neutralization and anti-inflammatory 
properties on the implanting site.7,19,32–36 Additionally, in 
order to enhance osteogenic activity, the PLGA/MH com-
posite scaffold surface was coated with polydopamine 
(PDA) as an adhesive interlayer and BMP2 was sequen-
tially immobilized on the PDA-coated PLGA/MH compos-
ite scaffold. After configuring the scaffold, we evaluated  
in vitro and in vivo osteogenic activity of the BMP2-
immobilized PLGA/MH scaffold. Our results indicate that 
this approach could be applied to mitigate the disadvan-
tages of the materials currently available for spinal fusion 
and effectively enhance bone regeneration.

Materials and methods

Materials

Poly(lactic-co-glycolic acid) (PLGA, lactide/glycolide =  
50:50, molecular weight 110 kDa) was obtained from 
Evonik Ind. (Essen, Germany). Magnesium hydroxide 
(MH), dopamine (DA), and tris(hydroxymethyl)ami-
nomethane (Tris) were purchased from Sigma-Aldrich 
(Korea). Bovine serum albumin was purchased from 
MoreBio Co., Ltd and Pivotal Scientific (Korea). 
Phosphate-buffered saline (PBS) tablets were purchased 
from Gibco (Grand Island, NY, USA). Recombinant 
human bone morphogenetic protein-2 (rhBMP2) was 
obtained from CGBio Co., Ltd (Seongnam, Korea). The 
BMP2 ELISA kit was obtained from Antigenix America 
Inc. (New York, USA). The Micro BCA protein assay kit, 
Calcein AM, and ethidium homodimer-1 were purchased 
from Thermo Fisher Scientific (USA). A cell Counting 
Kit-8 (CCK-8) was purchased from Dojindo Molecular 
Technology, Inc. (USA).

Fabrication of the PLGA composite

The formation of PLGA film has been performed using a 
solvent casting method. In the beginning, 2 g of PLGA 
were dissolved in 8 g of chloroform under rolling using 
desktop ball mill (LM-BD6030, LK lab, Namyangju-si, 
Korea) for 4 h. Next, the solution was carefully poured into 
a Teflon mold. The solvent was allowed to evaporate 
slowly for 2 days at room temperature. The PLGA film that 
formed was further dried under vacuum at room tempera-
ture for 1 day, and then it was cut into 3 × 7 mm sections 
for in vitro and in vivo experiments.

Fabrication of the PLGA/MH composite

The PLGA/MH films were prepared using the same proto-
col for PLGA film preparation. Briefly, 1.7 g of PLGA and 
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0.3 g of MH nanoparticles were dissolved in 8 g of chloro-
form followed by bath sonication for 30 min. Thereafter, it 
was rolled for 4 h until a homogenous solution was 
obtained. The remaining protocol was similar to the stand-
ard for PLGA film and the resulting film was coded as 
PLGA/MH.

Polydopamine coating on the PLGA and PLGA/
MH composites

For all PLGA and PLGA/MH films, 250 µL of the prepared 
dopamine solution (2 mg of dopamine, and 1 ml of Tris solu-
tion (10 mM, pH 8.5) were used to coat polymer film at room 
temperature for 4 h under shaking conditions. The films were 
sonicated in water for 5 min in low mode, followed by wash-
ing in deionized water three times. These steps were repeated 
one more time to obtain films with a homogenous coating  
of PDA. The prepared films were coded as PLGA-PDA and 
PLGA/MH-PDA films, respectively.

BMP2 immobilization on the PLGA-PDA and 
PLGA/MH-PDA composites

The PLGA-PDA and PLGA/MH-PDA films were steri-
lized in ethanol and under UV light, then immersed in 
TRIS/BMP2 solution and allowed to react for 24 h at 37°C 
under 100 rpm shaking conditions. The BMP2 immobi-
lized films were immersed in sterilized deionized water to 
remove the physically and loosely bound BMP2. For in 
vitro analysis, the films were dried under vacuum at room 
temperature, whereas for in vitro cells and in vivo experi-
ments, the samples were immersed in sterilized PBS solu-
tion and implanted directly into mice.

Characterizations of the PLGA/MH composite

Surface characterization.  Attenuated total reflectance-Fou-
rier transform infrared spectroscopy (ATR-FTIR, FT/
IR-4100, Jasco Analytical Instruments, USA) was used to 
determine the chemical bonds and the functional groups 
present in the control PLGA and PLGA composites. Sur-
face wettability of PLGA film was determined using con-
tact angle goniometry (DGD Fast/60 Contact Angle Meter, 
Phoenix, AZ, USA). A droplet of deionized water (2 μL) 
was carefully dropped on the surface for 45 s and the aver-
age of six readings was calculated from three different 
films. The change in surface morphology of the surface 
was confirmed by field emission-scanning electron 
microscopy (FE-SEM, S-4100, Hitachi, Japan). The sur-
faces of the samples were sputtered with platinum under 
an argon atmosphere for 60 s before observation.

Thermal property.  The amount of MH in the PLGA matrix 
and the thermal stability were investigated by thermo-
gravimetric analysis (TGA, TGA 4000 instrument, 

PerkinElmer, USA). Approximately, 8 mg of polymer 
film was heated from room temperature to 800°C at a 
heating rate of 10°C/min with a nitrogen flow of 19.8 mL/
min. The amount of inorganic MH content was recorded 
from the mass change versus temperature curve.

Degradation behavior and pH study.  Control PLGA and 
PLGA/MH composites were placed in vials containing 
1 ml of PBS solution in a shaking water bath under physi-
ological conditions (pH 7.4, 100 rpm and 37°C). At pre-
determined time points (1, 3, 5, 7, 14, 21, 28, 35, 42, 49, 
and 56 days), pH level was determined via pH-meter 
(Mettler Toledo, Ohio, USA). For the residual mass per-
centage determination, the film was cut (3 × 7 mm), ini-
tially weighted (W0), immersed in PBS solution for a 
predetermined time, washed by deionized water, dried 
under vacuum for 2 days, and finally weighed (Wt). The 
residual weight percentage was calculated from the fol-
lowing equation:

Residual weight percentage % W W W x( ) = −( )( )o t o/ 100

Quantification of the amounts of residual polydopamine on the 
composites.  The amounts of residual PDA on the surfaces 
of the PLGA and PLGA/MH composites were determined 
through Micro BCA assay. In short, the coated films were 
immersed in 500 µL of Micro BCA solution and 500 µL of 
deionized water for 2 h at 37°C. Thereafter, 200 µL of the 
violet color was transferred to non-tissue culture 96 well 
plate for UV absorbance at 562 nm. A standard curve was 
obtained through a series of standard dopamine solution.

BMP2 quantification using ELISA method.  The amount of 
BMP2 onto the surface of polymer films, was determined 
by using an indirect method, in which the initial and the 
unreacted BMP2 was measured using the ELISA kit, and 
the UV absorbance was recorded at 450 nm. The load of 
BMP2 was calculated by subtracting the amount of unre-
acted BMP2 from the initial amount. The BMP2 loaded 
onto control PLGA and PLGA/MH composites was 
immersed in 4 M Guanidine-HCI and protease inhibitors. 
It followed the assay procedure and at predetermined time 
(1, 3, 5, 7, 14, 21, 28, 35, 42, 49, and 56 days), the amount 
of released BMP2 was determined.

In vitro cell study

Cell culture.  The osteoblast precursor cells (MC3T3-E1) 
were cultured in a humidified atmosphere incubator at 
37°C with 5% CO2. The cells were grown in a T25 tissue 
culture flask containing 7 mL of α-MEM containing 10% 
fetal bovine serum and 1% antibiotic-antimycotic solution. 
The culture medium was changed every other day until the 
cells reached 85% confluence. The cells were then 
detached with trypsin/EDTA solution. After centrifugation 
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at 1300 rpm for 3 min, the cells were suspended in α-MEM 
with a concentration of 1 × 104 cells/mL.

Cell attachment study.  The PLGA and PLGA/MH compos-
ites were placed in 24-well culture plates and sterilized 
with 70% alcohol for 3 h. The cell suspensions at densities 
of 2.5 × 104 cells/mL were seeded in the wells. After 4 h, 
the films were washed with PBS solution followed by 
CCK-8 assay. Briefly, 400 µL of 10% CCK-8 solution was 
added to the well. After incubating the samples for 3 h, 
100 µL of solution was transferred to a 96-well for UV 
measurements at 450 nm using a microplate reader (Spec-
traMax M2, Molecular Devices, San Jose, USA).

Cell proliferation assay.  The sterilized films were dipped in 
a cell suspension of 1 × 104 cells/mL. The proliferation 
study of MC3T3-E1 cells was evaluated using a CCK-8 
assay at days 1, 3, and 7. Briefly, after day 1, the films 
were transferred to new non-treated 24-well culture plates, 
washed with 500 µL of fresh media, and a CCK-8 assay 
was performed as outline above. The proliferated cells 
were stained using live/dead staining kits as previously 
reported.37

Osteoblast differentiation

Alkaline phosphatase (ALP) staining.  The cells were cul-
tured on each film for 1 day before treatment with osteo-
genic differentiation medium. After allowing 1 day for 
cell adhesion to take place, osteogenic differentiation 
medium (10 mM β-glycerophosphate, 50 µg/ml ascorbic 
acid, and 100 nM dexamethasone in growth medium) 
were added to the cell culture film for 21 days. The ALP 
staining was performed with Takara TRACP&ALP dou-
ble-stain kit following the manufacturer’s protocol 
(Takara Bio, Kyoto, Japan).

Gene expression analysis.  Quantitative real-time reverse 
transcription polymerase chain reaction (qRT-PCR) was 
used to quantify the bone related mRNA expression levels 
of GAPDH, alkaline phosphatase (ALP), osteocalcin 
(OCN), and runt-related transcription factor 2 (RUNX2). 
Total RNA from the cultured cells was extracted using 
AccuPrep universal RNA extraction kit (Bioneer, Dea-
jeon, Korea) following the manufacturer’s protocol. The 
RNA concentration was determined by spectrophotome-
try (ND-1000, NanoDrop; Thermo Fisher Scientific, Mas-
sachusetts, USA). RNA was reverse-transcribed using a 
PrimeScript™ RT Reagent Kit (Perfect Real Time) to 
cDNA in triplicate for each sample. PCR was performed 
using Power SYBR Green PCR Master Mix (Applied 
Biosystems, California, USA) with a QuantStudio 3 real-
time PCR instrument (Applied Biosystems, California, 
USA). The primer sequences related to osteogenic differ-
entiation are shown in Supplemental Table S1.

Animal response to BMP2-immobilized PLGA/
MH scaffolds

Animal grouping and surgery.  All the animal experiments were 
performed under the approval of the Institutional Animal 
Care and Use Committee of CHA University. Ten-week old 
male C57BL/6 mice weighing 20 g were purchased from 
Orient Bio, Inc. (Seongnam, Korea) and were raised at 55–
65% humidity and a controlled temperature of 24 ± 3°C 
with a light/dark cycle of 12 h. Animals were randomly 
divided into five groups: Group 1 received decortication-
only (n = 7), group 2 received PLGA films bilaterally (n = 10), 
group 3 received PLGA/MH films bilaterally (n = 10), group 
4 received PLGA/BMP2 films bilaterally (n = 10), and group 
5 received PLGA/MH/BMP2 films bilaterally (n = 10) 
(BMP2 dose; 0.3 μg/film).

Surgical procedures.  Mice were anesthetized with Zoletil 
(50 mg/kg; Virbac Laboratories, France)/Rompun (10 mg/
kg; Bayer, Korea) solution administered intraperitoneally. 
Skin and hair covering the surgical site was shaved with a 
blade once mice were anesthetized, and the surgical site 
was prepped with povidone–iodine and 70% ethanol. Ani-
mals were positioned prone with folded gauze beneath the 
abdomen, increasing the excursion of the lumbar spine to 
facilitate access to and visibility of the surgical field. Asep-
tic technique was used for all surgical procedures. Postero-
lateral lumbar fusion at L4–6 was performed. Briefly, a 
20 mm midline skin incision was performed through the 
skin and subcutaneous tissue over L4–6 down to the lum-
bodorsal fascia along the spinous processes. The lumbar 
paravertebral muscles overlaying the articular processes of 
L4–6 were separated from the spinous processes by scrap-
ing with a #10 blade. After exposing the articular processes, 
a pneumatic 1 mm diamond burr was used to decorticate the 
articular processes. We fabricated PLGA and PLGA/MH 
films through solvent casting and finally cut into (width: 
3 mm, length: 7 mm). Films, two pieces of PLGA (3 mm 
[W] × 7 mm [L] × 0.5 mm [H]) contained with MH or 
BMP2 (0.3 μg/film), were implanted over the bilateral 
decorticated articular processes on each site. The fascia and 
skin were closed layer by layer with 6–0 Vicryl. Mice were 
placed on a heating pad following surgery and monitored 
for recovery. Antibiotics were administered via drinking 
water for 24 h postoperatively. All mice were euthanized 
using carbon dioxide inhalation 4 weeks after implantation, 
and their spines were excised for evaluations.

Micro-computed tomography (CT)-based bone analysis.  All 
the spinal samples were sacrificed at 4 weeks after implan-
tation and scanned by Skyscan 1173 micro-CT machine 
(Skyscan, Kontich, Belgium). For bone histomorphome-
try, the new bone mass was isolated from native bone by 
means of a manually drawn region of interest (ROI). To 
quantify the density of bone formed within each new mass, 
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percent bone volume (BV) (BV/TV (the total volume of 
the mass)), bone mineral density (BMD), and trabecular 
thickness (Tb.thick, mm) were calculated.

Histology and immunohistochemistry.  After micro-CT scan-
ning, the spine samples were decalcified using decalcifica-
tion solution (National Diagnostics, Atlanta, GA), the 
tissues were dehydrated by placing them in a graded series 
of ethanol and xylene and were finally embedded in paraf-
fin; the axial sections (4 μm thickness) were obtained. The 
sections were stained with hematoxylin and eosin (H&E, 
Sigma-Aldrich, St. Louis, MO) and Masson's trichrome 
(Sigma-Aldrich, St. Louis, MO) to demonstrate new bone 
formation. For immunohistochemistry, the sections were 
incubated for 10 min at room temperature. Primary anti-
bodies to osteocalcin (Santa Cruz Biotechnology, CA) and 
IL-6 (Santa Cruz Biotechnology, CA) were used, and bio-
tin-conjugated anti-IgG secondary antibody was used.

Statistical analysis

The results were expressed as mean ± standard deviation 
and statistically examined using one-way ANOVA follow-
ing Tukey’s post-hoc analysis using GraphPad Prism soft-
ware (version 8). The results considered insignificant when 
p > 0.05 and statistically significance when *p < 0.05, 
**p < 0.01, and ***p < 0.001.

Results and discussion

Surface modifications and characterizations

We fabricated a novel biodegradable anti-inflammatory 
polymeric composite for bone regeneration. Supplemental 
Figure S1 represents the schematic illustrations of the 
BMP2 immobilization on the surface of PLGA and PLGA/
MH film with detailed process of BMP2 immobilization 
via PDA interlayer. Initially, PLGA was mixed with MH to 
enhance mechanical strength and reduce the inflammation 
due to the acidic microenvironment of polymer degrada-
tion. The surface of the composite scaffold was further 
modified with PDA to facilitate immobilization of BMP2 
and to promote osteogenesis.38

Figure 1(a) shows SEM images of the PLGA, PLGA/
BMP2, PLGA/MH, and PLGA/MH/BMP2 films, respec-
tively. The control PLGA film showed smooth and uni-
form surface; PLGA/MH composite also displayed a 
smooth and uniform surface. However, PLGA/BMP2 
film and PLGA/MH/BMP2 film exhibited rough surfaces 
due to the PDA grafting and presence of BMP2 mole-
cules. These composites experienced a slight loss of MH 
nanoparticles from the surfaces of the films during BMP2 
immobilization. When compared with PLGA/BMP2 
film, PLGA/MH/BMP2 film showed more roughness and 
some holes on the surface due to the partial loss of MH 

particles during PDA coating and BMP2 immobilization 
(Figure 1(a)). Figure 1(b) shows the wide scan (650–
4000 cm-1), and narrow scan (650–2000 cm-1) of ATR-
FTIR spectra of the PLGA, PLGA/MH, PLGA/BMP2, 
and PLGA/MH/BMP2 films, respectively. FTIR is a 
technique commonly used to characterize the functional 
groups of coatings and film with a depth of up to 5 µm.37,39 
For all of the films, several characteristic peaks were 
observed at 2950, 2850, 1755, 1453, 1380, and 1040 cm-1, 
which are attributed to aliphatic C‒H asymmetric, C‒H 
symmetric stretching, O‒C=O stretching, ‒CH2 bending, 
‒CH3 bending, and C‒CH3 stretching vibrations, respec-
tively. Moreover, two absorption peaks occured at 1270 
and 1085 cm-1, which represent C‒O‒C stretching vibra-
tions.35 These peaks represent the characteristic peaks of 
PLGA structure as previously reported.40 Interestingly, 
after the incorporation of MH nanoparticles, a new peak 
was observed at 3698 cm-1, which is attributed to Mg‒OH 
stretching.35 After PDA coating and BMP2 immobiliza-
tion, two new peaks were observed at 3505 and 1610 cm-1, 
which represent N‒H and C=C stretching vibrations, 
respectively.41 TGA analysis demonstrated that MH nan-
oparticles were incorporated on the film surface. Due to 
the MH presence, PLGA/MH and PLGA/MH/BMP2 
demonstrate decrease in weight at at 400 to 500°C (Figure 
1(c)). Figure 1(d) shows water contact angle images of 
each films and measurements. The water contact angle 
measures the wettability of the surface, which could have 
a hydrophobic or hydrophilic property based on the phys-
icochemical properties of the surface coating. A hydro-
philic surface plays a crucial role, in both cell interactions 
and protein adsorption. This facilitates the incorporation 
of growth factors including fibronectin, and vitronectin; 
a hydrophobic surface does not exhibit the same incorpo-
ration tendencies.42,43 Compared to PLGA, the PLGA/
MH composite film possessed more hydrophilic charac-
teristics on its surface; its water contact angle was 
reduced from 94.6 to 87.6° due to the presence of surface 
MH. MH is a basic hydrophilic ceramic that could 
improve the hydrophilicity of polymer composites.32 
After the modification of PLGA and PLGA/MH films 
with a thin layer of PDA, the wettability of the surface 
was improved with water contact angles of 66 and 48.6°, 
respectively.44,45 This change could be due to the amino 
groups present in the PDA structure on the surface. The 
water contact angle measurements are close to the theo-
retical value of a film containing purely PDA.45,46 After 
further modification of PLGA and PLGA/MH films with 
BMP2, the film demonstrated greater hydrophilicity with 
water contact angles of 55.5 and 44.4°, respectively.38,44 
The higher hydrophilicity of the PLGA/MH/BMP2 sam-
ple could come from the presence of MH and hydrophilic 
BMP2 molecules on the surface, and furthermore its 
increased roughness value as compared to PLGA/BMP2 
film could explain the difference.38 The optimum range 
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for cell adhesion on the culture substrate comes at a water 
contact angle of between 5 and 40°.38,47,48 This result 
shows that the PLGA/MH/BMP2 combination can pro-
vide the optimum microenvironment for cell attachment 
and proliferation.38

Supplemental Figure S2 demonstrates the time depend-
ent polymerization of PDA on the surface of PLGA and 

PLGA/MH films. During the first 3 h, there are no signifi-
cant differences in the amount of PDA on PLGA and 
PLGA/MH films. After 4 h of grafting, however, the 
PLGA/MH films show greater PDA coating as compared 
to PLGA (***p < 0.001). This might be a function of the 
rougher nature and higher hydrophilicity value of PLGA/
MH film as compared to PLGA film. Moreover, the release 

Figure 1.  Surface modification and characterization of the PLGA films. (a) SEM images of surface and cross section of PLGA, 
PLGA/BMP2, PLGA/MH, and PLGA/MH/BMP2. Scale bar = 100 µm. (b) FTIR wide scan (650–4000 cm−1) and narrow scan 
(2000–4000 cm−1) spectra. (c) TGA thermograms for each film (37−800℃). (d) The water contact angle images of each films and 
measurements.
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of MH during the polymerization increased the pH value, 
which in turn accelerated the PDA polymerization, and 
consequently the amount of coating that was able to take 
place. In addition, the existence of magnesium cation on 
the surface could chelate with the catechol group of PDA 
and therefore increase the coating amount.49 The optical 
images indicated different colors between PLGA and 
PLGA/MH before and after the PDA coating. Before coat-
ing with PDA, the control PLGA film displayed a colorless 
film, whereas the PLGA/MH composite film showed a 
white color. After PDA coating, the color became deep and 
dark with time, which denoted the presence of more PDA 
coating based on previous findings using Micro BCA. 
Moreover, the PDA-coated PLGA/MH films exhibited 
darker colors than the PDA-coated PLGA films.

Change of pH value and percentage of residual 
weight during degradation

The degradation of PLGA was took place under physiologi-
cal conditions (100 rpm, pH 7.4, 37°C) for up to 8 weeks. 
Figure 2(a) represents the change in pH seen during the deg-
radation of PLGA and PLGA/MH composites. In the first 
2 weeks, the PLGA films did not show any change in pH 
value, whereas at 3 weeks, the pH of PLGA dropped signifi-
cantly to 3.7 and 3.2 for PLGA and PLGA/BMP2, 

respectively, which was close to the pH values of lactic acid 
and glycolic acid.31 This phenomenon of PLGA degradation 
with acidic byproducts was duplicated across of several 
other publications.4,30,50 By contrast, the MH-incorporated 
PLGA samples showed a pH neutralization effect at a pH 
value slightly higher than physiological pH due to the 
release of basic MH ions; both PLGA/MH and PLGA/MH/
BMP2 samples finally decreased to pH levels of 5.2 and 5.9 
with mild acidity at 8 weeks, respectively. The weight 
changes seen during degradation of the control PLGA and 
PLGA/MH composites were significantly different as 
shown in Figure 2(b). Initially, the PLGA/MH composites 
showed rapid weight loss until the 21st day as compared to 
PLGA films, which might be due to the release of MH from 
the surface. At 42 days, PLGA films showed weight loss up 
to 98% to 99%, whereas the PLGA/MH composites dis-
played 52% to 53% weight loss. This sudden loss of weight 
at day 42 could have been the result of the self-backbiting 
mechanism of the PLGA film’s under acidic environment.

Figure 2(c) shows the optical images before and after 
degradation of (i) PLGA, (ii) PLGA/BMP2, (iii) PLGA/
MH, and (iv) PLGA/MH/BMP2 under physiological con-
ditions. It was clear that after 3 weeks of degradation, 
PLGA and PLGA/BMP2 lost their shape and formed a gel-
like structure. By contrast, PLGA/MH and PLGA/MH/
BMP2 retained shapes similar to the originals; they were 

Figure 2.  (a) The change of pH value and (b) percentage of residual weight (%) during degradation in PBS solution at physiological 
conditions (pH 7.4, 37°C, 100 rpm). (c) The optical images of (i) PLGA, (ii) PLGA/BMP2, (iii) PLGA/MH, and (iv) PLGA/MH/BMP2 
films before and after degradation for 3 weeks under physiological conditions (PBS solution, pH = 7.4, 100 rpm, and 37°C).
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only slightly longer and wider, which could be due to 
water uptake encouraged by MH nanoparticles.

Loading efficiency of BMP2 and release of 
BMP2 and MH

Figure 3 shows the efficiency and the total amount of 
grafted BMP2 onto the surfaces of PDA-coated PLGA and 
PLGA/MH films. It was clearly observed that the PLGA/
MH film retained approximately 2.2 times more grafted 
BMP2 (237.4 ng) than the PLGA film (107.1 ng) (Figure 
3(a)–(c)). These results demonstrate that PDA-coated 
PLGA/MH film bound BMP2 with more efficiently 
(63.4%) as compared to PDA-coated PLGA films (28.6%) 
(Figure 3(b)). This could be attributed to the more signifi-
cant PDA surface coating on PLGA/MH film compared to 
control PLGA film (Supplemental Figure S2).38 As men-
tioned previously, many approaches are available to over-
come the disadvantages of BMP2 and improve both its 
safety and therapeutic efficacy by utilizing different carrier 
systems.5,10–16,38 The release profile of BMP2 from PLGA/
BMP2 and PLGA/MH/BMP2 exhibited an initial burst 
release followed by slow release for up to 8 weeks (Figure 
3(b) and (c)). Interestingly, the PLGA/MH/BMP2 film 
indicated a more significant release of BMP2 when com-
pared to PLGA/BMP2 film. Figure 3(d) and (e) represents 

Figure 3.  (a) BMP2 binding amount (ng/film) and BMP2 binding efficiency (%). (b) Cumulative BMP2 release and percentage of 
BMP2 release. (c) Amount of BMP2 released between every successive time points and percentage of BMP2 released between every 
successive time points for PLGA and PLGA/MH films. (d) and (e) Mg2+ release from PLGA/MH and PLGA/MH/BMP2 films (Film size: 
3 mm × 7 mm, n = 3, *** p < 0.001).

the Mg2+ release profile during degradation for up to 
8 weeks under physiological conditions. From the release 
profile, it was determined that both MH-containing films 
follow a sustained release profile without initial bursts. 
The BMP2 immobilized film released MH faster than the 
control PLGA/MH film. The improved hydrophilicity of 
the PLGA/MH/BMP2 film (40°) compared to PLGA/MH 
film (85°) might be responsible for this differential release.

In vitro biocompatibility

Figure 4(a) shows the viability of MC3T3-E1 cells on  
the PLGA, PLGA/MH, PLGA/BMP2, and PLGA/MH/
BMP2 films for up to 7 days. At day 1, cell attachment 
was lower on the PLGA/BMP2 sample compared to other 
groups due to the better hydrophilicity of MH-polymer 
composites. On day 7, the proliferation of the cells on 
PLGA/MH/BMP2 significantly (***p < 0.001) increased 
compared to control PLGA along with the proliferation 
of the cells on PLGA/MH (*p < 0.05). Due to MH nano-
particles, PLGA/MH and PLGA/MH/BMP2 groups resist 
pH change from acidic PLGA byproducts. The Calcein 
AM stained images of MC3T3-E1 showed more live cells 
on the PLGA/MH and PLGA/MH/BMP2 surface com-
pared to other samples, which indicates improved cell 
compatibility.
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In vitro effect on osteogenic differentiation of 
osteoblast precursor cells

Based on the characterization of PLGA/MH/BMP2 
(Figure 3), we hypothesized that the BMP2-immobilized 
films could accelerate osteogenic differentiation of osteo-
blast precursor cells. The MC3T3-E1 (murine calvarial 
cell line) cells were cultured on PLGA, PLGA/MH, 
PLGA/BMP2, and PLGA/MH/BMP2 films, and treated 
with a medium containing typical osteogenic differentia-
tion factors, ß-glycerophosphate, ascorbic acid and dexa-
methasone. In Figure 5, as mentioned previously, the 
BMP2-immobilized composite scaffold displayed the 
same significant differentiation seen in multiple studies 
prior to this one.2,9,19,25,38 Figure 5(a) contains the ALP 
stained images of each films after 7 days of osteogenic 
induction. The largest ALP stained area was found on the 
PLGA/MH/BMP2 film. To confirm the osteogenic differ-
entiation, the mRNA expression levels of the two 

pre-osteogenic markers (ALP and RUNX2) and the 
mature osteoblastic marker (OCN) were quantified by 
RT-qPCR. Figure 5(b) shows that the expressions of all 
three markers on PLGA/MH/BMP2 were significantly 
higher than what was seen on the other three films after 
21 days of differentiation.

Bony fusion in animal studies

After 4 weeks of implantation, bony fusion between the L4 
and L6 and new bone formation were determined by 
micro-CT analysis. New bone formation was not found in 
the decortication-only group and the PLGA-implanted 
group (group 2). Although the PLGA/MH-implanted 
group (group 3) showed no significant new bone forma-
tion, slightly increased new bone mass was found com-
pared to groups 1 and 2, demonstrating that MH may 
enhance osteoblast activity temporarily.51 A large volume 
of new bone was observed in PLGA/BMP2 (group 4) and 

Figure 4.  In vitro biocompatibility of each PLGA films. (a) Cell viability test using CCK-8 for 1, 3, and 7 days (*p < 0.05, **p < 0.01, 
and ***p < 0.001). (b) Calcein AM staining for live cells on each film. Scale bar = 500 µm.
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PLGA/MH/BMP2 (group 5) (Figure 6(a)). PLGA/MH/
BMP2-implanted group exhibited enhanced new bone for-
mation and bony bridges at the inter-transverse, articular 
process area and film-implanted sites (Figure 6(a)). Based 
on micro-CT images, the new bone formation was evalu-
ated by the following parameters including bone mineral 
density (BMD, g/cm2), percent bone volume (BV/TV, %), 
and trabecular thickness (Tb.Th, mm) (Figure 6(b)–(d)). 
The PLGA/MH/BMP2-implanted group showed signifi-
cant increases in BMD, percent bone volume, and trabecu-
lar bone thickness, meaning that PLGA/MH/BMP2 could 
provide a more effective substrate for the promotion of 
bone formation.

Histological analysis

The spinal samples were decalcified for histology (Figure 7) 
and immunohistochemistry (Figure 8). Results of H&E 
staining demonstrated osteoblasts, osteocyte, and lympho-
cyte around the implantation site (Figure 7(a)) and revealed 
significant differences in average osteoblast cell counts 
between groups (66,585 in group 1, 102,905 in group 2, 
139,897 in group 3, 321,495 in group 4, and 422,383/mm2 
in group 5; p = 0.0053) (Figure 7(b)). The average inflam-
matory cell count was lower in the PLGA/MH group 
(169,492) and the PLGA/MH/BMP2 group (151,332) com-
pared to PLGA group (429,782), which even lower than 

Figure 5.  MT3T3-E1 cell differentiation on each PLGA films. (a) ALP stained images for 7 days. (b) The mRNA expression of ALP, 
OCN, and RUNX2 was determined by qPCR for 21 days (*p < 0.05, **p < 0.01, and ***p < 0.001).

Figure 6.  Micro-CT analysis of the L4-6 fusion mass. (a) Representative 3D micro-CT images of the fusion mass. (b) Bone 
histomorphometry showing bone mineral density (BMD), bone volume fraction (BV/TV), and trabecular thickness (*p < 0.05, 
**p < 0.01, and ***p < 0.001).



Bedair et al.	 11

group 1 (322,841/mm2). Incidentally, the average inflam-
matory cell count in group 3 was quite higher than in the 
groups that contained MH due to the acidic degradation 
products of PLGA (Figure 7(c)). Masson’s trichrome stain-
ing (Figure 8(a)) and immunostaining for osteocalcin 
(Figure 8(b)) were performed to evaluate new bone forma-
tion. IL-6 immunohistochemical staining (Figure 8(c)) was 
carried out to confirm the inflammatory response. The 
PLGA/MH/BMP group showed new bone formations, 
which were confirmed at ROI (yellow box) using Masson’s 
trichrome staining and highest intensity. The average 
immunoreactivity of osteocalcin showed statistically sig-
nificant differences between the groups; the PLGA/MH/
BMP group also revealed the highest osteocalcin immuno-
reactivity (decortication-only group: 2,195,334, PLGA 
group: 33,214,786, PLGA/MH group: 60,477,386, PLGA/
BMP group: 52,115,659, and PLGA/MH/BMP group: 
124,816,009A.U.) (Figure 8(b)). IL-6 immunohistochemi-
cal staining indicated that the expression of IL-6, an inflam-
matory marker, was high in both the PLGA and PLGA/
BMP groups, whereas IL-6 expression was very low in the 
PLGA/MH and PLGA/MH/BMP groups (Figure 8(c)). 
These results suggested that MH may significantly sup-
press inflammatory responses (414,801 in decortications 
group, 1,894,904 in PLGA group, 376,402 in PLGA/MH 
group, 1,930,988 in PLGA/BMP group, and 549,566A.U. 
in PLGA/MH/BMP). PLGA/MH/BMP was the most effec-
tive combination in both the promotion of bone formation 
and the reduction of inflammation.

Conclusion

Numerous bone tissue engineering studies aim to mitigate 
problems associated with bone grafting by using degrada-
ble scaffolds.16,18,20,52 PLGA has become one of the most 
widely used bone grafting biomaterials. As mentioned pre-
viously, using PLGA as a surgical biomaterial is required 
to improve biocompatibility; the acidic byproducts it pro-
duces during its degradation cause an inflammatory 
response at the implant site.53,54 The primary intention of 
this study was to develop a method for BMP2 immobiliza-
tion on the surface of PLGA to facilitate a sustained 
release. The PLGA/MH/BMP2 composite was able to 
slowly release for up to 8 weeks. Moreover, the PLGA/
MH/BMP2 composite showed higher water wettability 
and BMP2 loading capacity by utilizing a PDA interlayer, 
as well as improved cumulative BMP2 release percentage 
due to the incorporation of MH nanoparticles. Our find-
ings demonstrated that the BMP2-immobilized PLGA/
MH composite promoted cell attachment, proliferation, 
and osteogenic differentiation of MC3T3-E1 cells through 
increased anti-inflammatory action and pH neutralization 
via the addition of MH. Furthermore, in our animal study, 
BMP2-immobilized PLGA/MH scaffolding significantly 
enhanced bone formation by increasing osteogenesis and 
suppressing inflammatory responses. Taken together, our 
results suggest that the BMP2-immobilized PLGA/MH 
scaffold could be a good candidate for enhancing bone 
regeneration in spinal fusion surgery.

Figure 7.  Hematoxylin and eosin (H&E) staining of the spine samples. (a) Representative images of H&E staining. Semi-
quantification of osteoblasts (b) and inflammatory cells (c). Scale bar = 500 µm (*p < 0.05, **p < 0.01, and ***p < 0.001).
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