Table 1. .
Basic ML | Type | A | I | E | Improved ML | Type | A | I | E |
Logistic regression20,21 | IP | * | **** | *** | GA2M68 | IP | ** | *** | ** |
Ridge Regression22 | IP | ** | ** | * | |||||
LASSO23 | IP | ** | *** | ** | |||||
Elastic Net9,24 | IP | *** | ** | * | |||||
Decision tree
24,30,31 |
IP | ** | ***** | ***** | CART32 | IP | *** | **** | ***** |
Random Forests7 | NIP | **** | * | NA | |||||
GBM9,33 | NIP | **** | * | NA | |||||
MediBoost9,34 | IP | **** | ** | * | |||||
Naïve BN
35,37 |
IP | * | **** | **** | HBN38,40 | IP | ** | *** | ** |
HBN-EK41 | IP | ** | **** | *** | |||||
Linear SVM
24 |
NIP | ** | ** | * | SVM-RBF43 | NIP | *** | * | NA |
SVM-LRBF44 | NIP | *** | ** | * | |||||
Deep learning49,50 | NIP | **** | * | NA | DL-HLV 48,55,56 |
NIP | ***** | ** | NA |
DL-SA52,57 /AM59,60 | NIP | ***** | ** | NA | |||||
DL-DHLR61–63 | NIP | ***** | *** | NA | |||||
DL-LIME69 | NIP | ***** | *** | NA |
BN, Bayesian network; CART, classification and regression tree; DHLR, disentangled hidden layer representation; DL-AM, deep learning withattention mechanisms; DL-HLV, deep learning withcombination of handcrafted features and latent variables; GBM, gradient boosting machine; HBN, hierarchical Bayesian network; HBN-EK, hierarchical Bayesiannetwork with expert knowledge; HLV, handcrafted features and latent variables; IP, interpretable; LASSO, least absolute shrinkage and selection operator; LIME, local interpretable model-agnostic explanation; ML, machine learning; NIP, non-interpretable; SVM, support vector machine.