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Abstract 

Background:  Gastric cancer (GC) is a digestive system cancer with a high mortality rate globally. Previous experi-
ences and studies have provided clinicians with ample evidence to diagnose and treat patients with reasonable thera-
peutic options. However, there remains a need for sensitive biomarkers that can provide clues for early diagnosis and 
prognosis assessment.

Results:  We found 610 independent prognosis-related 5′-cytosine-phosphate-guanine-3′ (CpG) sites (P < 0.05) 
among 21,121 sites in the training samples. We divided the GC samples into seven clusters based on the selected 610 
sites. Cluster 6 had relatively higher methylation levels and high survival rates than the other six clusters. A prognostic 
risk model was constructed using the significantly altered CpG sites in cluster 6 (P < 0.05). This model could distinguish 
high-risk GC patients from low-risk groups efficiently with the area under the receiver operating characteristic curve of 
0.92. Risk assessment showed that the high-risk patients had poorer prognosis than the low-risk patients. The methyl-
ation levels of the selected sites in the established model decreased as the risk scores increased. This model had been 
validated in testing group and its effectiveness was confirmed. Corresponding genes of the independent prognosis-
associated CpGs were identified, they were enriched in several pathways such as pathways in cancer and gastric 
cancer. Among all of the genes, the transcript level of transforming growth factor β2 (TGFβ2) was changed in different 
tumor stages, T categories, grades, and patients’ survival states, and up-regulated in patients with GC compared with 
the normal. It was included in the pathways as pathways in cancer, hepatocellular carcinoma or gastric cancer. The 
methylation site located on the promoter of TGFβ2 was cg11976166.

Conclusions:  This is the first study to separate GC into different molecular subtypes based on the CpG sites using 
a large number of samples. We constructed an effective prognosis risk model that can identify high-risk GC patients. 
The key CpGs sites or their corresponding genes such as TGFβ2 identified in this research can provide new clues that 
will enable gastroenterologists to make diagnosis or personalized prognosis assessments and better understand this 
disease.
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Background
Gastric cancer (GC) is one of the leading causes of can-
cer-related deaths worldwide. Patients are often diag-
nosed with GC at an inoperable stage, and recurrence is 
common after resection [1]. The mortality rate for GC 
ranks second among all cancers globally [1]. Traditional 
classification methods for GC are primarily based on the 
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anatomic or histological features [2, 3]. The main cause 
of GC is helicobacter pylori (H. pylori) infection, which 
may lead to chronic inflammation and consequently tum-
origenesis [4]. In addition to H. pylori infection, other 
risk factors such as environmental, genetic, and epige-
netic factors have also been identified [5]. Although the 
etiology, clinical characteristics, and classifications have 
previously been described in detail, the same treatment 
methods are routinely applied for all patients with GC 
despite the complex genetic heterogeneity of the disease, 
which can result in poor prognosis. Therefore, specific 
biomarkers that can help clinicians better understand the 
mechanism of GC and develop personalized treatments 
are needed.

Epigenetic changes mainly include DNA methylation, 
non-coding RNA, chromatin remodeling, and histone 
modifications [5]. These factors can regulate the expres-
sion of genes without DNA sequence changes and are 
inheritable across generations [5]. DNA methylation is a 
well-characterized epigenetic modification and plays an 
important role in carcinogenesis [6, 7]. It is mediated by 
DNA methyl-transferase (DNMT), which transfers meth-
ylated groups from S-adenosyl-L-methionine (SAM) 
to the pyrimidine ring of cytosine residues on DNA [8]. 
The methylation reaction often occurs on the cytosine 
of 5′-cytosine-phosphate-guanine-3′ (CpG) dinucleo-
tide, with few methylations on non-CpG sequences [9]. 
Previous studies showed that DNA hypermethylation at 
promoter regions could silence the expression of the tar-
geted genes, further having influence on the bioprocesses 
such as cell cycles, DNA repair, and even the signaling 
pathway for tumor development, indicating that it might 
play an important role in promoting cancers [7, 10–12]. 
Abnormal changes of DNA methylation or demethylation 
exist in different tumor suppressor genes or oncogenes 
[5]. These changes often occur before tumor formation 
or development and can be considered as early diagnostic 
tumor markers or the predictors for people with high risk 
of developing cancer [5, 7, 13, 14]..

Studies on nasopharyngeal carcinoma have dem-
onstrated that methylation in promoters of the Ras 
association domain family 1A and disheveled-associ-
ated binding antagonist of β-catenin 2 can help clini-
cians perform early diagnosis [15, 16]. Teng et  al. [17] 
reported that inter- and intratumor DNA methyla-
tion heterogeneity in esophageal squamous cell car-
cinoma was associated with lymph node metastasis 
and patient prognosis. For GC, although several CpGs 
sites had been found involving in the processes of GC 
development including invasion and metastasis [5], 
there was no systematical analysis to establish an effi-
cient model which could identify patients with high 

risk of poor prognosis. Here, we analyzed the methyla-
tion data from more than 400 GC samples, in order to 
find the key prognosis-related methylation biomarkers 
and establish a prognosis assessment model, providing 
more evidences for doctors to perform early diagnosis 
and prognosis assessments.

Methods
Data download and preprocessing
Three hundred and forty-three transcript files for pri-
mary GC were obtained from the cancer genome atlas 
(TCGA) repository (https​://porta​l.gdc.cance​r.gov/, 
2020-04-01), and the platform of gene expression 
RNAseq was Illumina. The information for 406 patients 
and their follow-up data are downloaded (https​://porta​
l.gdc.cance​r.gov/, 2020-04-02) and presented in Addi-
tional file 1: Table S1. Methylation data were obtained 
from the University of California Santa Cruz (UCSC) 
Cancer browser (https​://xena.ucsc.edu/, 2020-04-01). 
In total, 470 DNA methylation files were downloaded, 
among all of the methylation files 397 DNA methyla-
tion files were from Illumina Human Methylation 450 
platform and 73 files were from Illumina Human Meth-
ylation 27 platform, the overlapped methylation sites 
of the two platforms were selected for further study. 
Because one patient might have two DNA methyla-
tion files, the number of DNA methylation files was 
more than the number of the patients, while because 
some patients might not have transcript files, the num-
ber of transcript files was less than the number of GC 
patients.

The criteria for deletion of the methylation sites were 
as follows: The site had missing values in more than 
70% of the samples; it was located in the sex chromo-
somes; single-nucleotide polymorphisms; CpGs above 
2  kb upstream to 0.5  kb downstream (gene promoter 
regions); and cross-reactive genome CpG sites [18]. 
The clinical samples would be excluded if: its follow-up 
duration was less than 30 days, or there was no follow-
up data; it was lack of survival status; its clinical data 
such as TNM staging system (T indicates the extent of 
the primary tumor, N indicates lymph node involve-
ment, and M indicates distant metastases), grade, age, 
tumor stage, and gender were missing or unknown. The 
Impute R package and ComBat algorithm in the sva R 
package were used for batch corrections [19–21]. We 
divided them randomly into two groups (training group 
and testing group). We selected the intersection of the 
training dataset (Additional file  2: Table  S2) and the 
testing dataset (Additional file 3: Table S3) to perform 
the further study; thus, the model created with the 
training dataset could be applied to the testing.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
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Determination of classification features for methylation 
sites by Cox proportional risk regression analysis
The methylation levels for the CpG sites, age, stage, gen-
der, tumor classifications (T, M, N), grade, and follow-
up data were used to create univariate Cox proportional 
risk regression models from which 1054 significant CpG 
sites (P < 0.05) were obtained (Additional file 4: Table S4). 
These significant sites were imported into multivariate 
Cox proportional risk regression models. We selected 
the CpG sites that were significant in both models as 
the characteristic methylation sites (P < 0.05, Additional 
file 5: Table S5) that could significantly affect the survival 
of patients with GC.

Determination of prognosis‑related methylation subtypes
The CpG sites shown in Additional file 5: Table S5 were 
analyzed using the ConsensusClusterPlus package [22] in 
R in order to define the GC subtypes. Each sample in the 
data we collated was divided into k groups based on the 
mean k values (k-means), and the number of times this 
process was repeated was used to establish consensus 
values and evaluate the stability of the classification sets. 
The calculated pairwise consensus values were recorded 
in a consensus matrix for each k value. Pairwise consen-
sus values were defined as the proportion of two sub-
jects that appeared in the same cluster compared to the 
number of times they appeared in the same subsample. 
The final results from agglomerative hierarchical consen-
sus clustering based on 1-Pearson correlation distances 
were also divided into k groups. Eighty percent of the 
data for the tumor samples were calculated in each itera-
tion. The Euclidean squared distance metric was applied 
in the k-means calculation, and more than 100 iterations 
were included in the results matrix. The exported graphs 
contained the consensus matrices, consensus cumula-
tive distribution function (CDF) plot, delta area plot, and 
tracking plot. We determined the k value if there was a 
low relative change in the area under the CDF curve, rela-
tively high conformity in the clusters, and a low variation 
coefficient. The coefficient of variation was calculated as 
(standard deviation/mean number of samples) * 100%. 
The area under the CDF curve was described as the cat-
egory number. The pheatmap package in R was used to 
create the heat map [23]. Squares were distributed diago-
nally in the map when the matrix consensus was perfect.

Correlation between the molecular subtypes and survival 
or clinical features of GC patients
The Survival package [24–26] in R was used to perform 
survival analysis for GC patients whose subtypes were 
determined from the methylation profiles and the results 
are shown in Kaplan–Meier plots. The log-rank test was 

applied to compare the methylation levels in different 
clusters. The Chi-squared test was used to find the differ-
ences in categorical data as the clinical characteristics or 
other features among these subtypes. The tests were two-
sided with a significance level of 0.05.

Prognostic risk model construction and assessment
Based on the methylation levels of the CpG sites in the 
cluster with relatively high or low survival probability 
and the follow-up information, the Cox proportional 
hazard model was created with the coxph function in 
the Survival R package [27, 28]. The formula for this 
model was: Risk score = ID1 * Coefficient1 + ID2 * Coef-
ficient2 + ID3 * Coefficient3…… + IDn*Coefficientn, all 
of the methylation sites’ IDs and their coefficients are 
shown in Additional file 6: Table S6.

Functional enrichment analysis
We identified the gene symbols related to the methyl-
ated sites using the Strawberry Perl 5.30 software, and 
the symbols were transformed into gene ID. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis 
were performed by ClueGO [29, 30]. Tree interval was 
from 3 to 8, the minimal number of genes in pathways 
was 3. Network connectivity (kappa score) was 0.4, the 
statistical option was enrichment/depletion (two-sided 
hypergeometric test) and pV correction was Bonferroni 
step-down. The study workflow of this research is shown 
in Fig. 1.

Statistics
The correlation between two continuous data was ana-
lyzed with Spearman’s correlation analysis if the data 
distribution was not normal, whereas Pearson’s correla-
tion test was used for data with a normal distribution. 
Comparisons of two groups were made with the t-test 
or Mann–Whitney U test; if there were more than two 
groups, the comparison was made with analysis of vari-
ance (ANOVA) or Kruskal–Wallis test. The Wilcox test 
was used to compare the methylation levels between the 
seven clusters. All the statistical analysis results described 
below were obtained with IBM SPSS statistics 21.0 or the 
R software. The significance level was set to P < 0.05.

Results
Determination of prognosis‑related methylation sites
The methylation data were downloaded and preproc-
essed as described in “Methods” section. Four hundred 
and six patients (150 women and 256 men) with GC 
were included in this study (Additional file 1: Table S1). 
Their mean age was 65.6  years. After conditional fil-
tering and batch correction, the number of methyla-
tion sites in both the training and testing matrixes was 
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21,121 (Additional file  2: Table  S2, Additional file  3: 
Table S3). The number of patients with grades 1, 2, and 
3 tumors was 10, 149, and 240, respectively, while the 
number with stages I, II, III, and IV tumors was 56, 118, 
167, and 39 (Additional file  1: Table  S1). For the pri-
mary tumor status according to the TNM staging sys-
tem, there were 23 patients with T1, 85 with T2, 185 
with T3, and 103 with T4 (Additional file 1: Table S1). 
For the tumor metastasis status, the number of patients 
in the tumor M0 stage was 361, while 27 were in the M1 
stage (Additional file 1: Table S1). For the lymph node 
involvement status, there were 122 patients with N0, 
109 with N1, 80 with N2, and 78 with N3 (Additional 
file 1: Table S1). Using univariate Cox regression analy-
sis, we found that 1054 methylation sites were related 
to patient prognosis (Additional file 4: Table S4). Multi-
variate Cox regression was used to analyze these meth-
ylation sites, and 610 independent prognosis-related 

methylation CpG sites were observed (Additional file 5: 
Table S5).

Identifying clusters of GC by prognosis‑associated DNA 
methylation sites and their relationships with clinical 
features
After combining the CDF-consensus plot and delta area 
(Fig. 2a, b), we observed that when k = 7, there were rela-
tively few changes in the area under the CDF curve and 
high conformity in the clusters with a low variation coef-
ficient. The map of the seven clusters was mostly diago-
nal, indicating a good polymerization effect (Fig.  2c). 
Figure 3a shows that the methylation levels of the seven 
clusters were different and the methylation expression in 
cluster 6 was higher than that in the other clusters. The 
clinical features were evenly distributed in each cluster 
(Additional file 7: Figure S1, Fig. 3a). Survival curve anal-
ysis showed there was a significant difference between 

Fig. 1  Diagram of study flow. UCSC, University of California Santa Cruz; GC, gastric cancer



Page 5 of 15Li et al. Clin Epigenet          (2020) 12:161 	

different categories (P = 0.04), which indicated that the 
classification system separated the patients into differ-
ent subgroups with different prognoses (Fig.  3b). Clus-
ter 6 had a higher survival rate than the other clusters 
(Fig. 3b). There was no difference in the seven clusters in 
terms of clinical features such as age (P = 0.593) and gen-
der (P = 0.559). The detailed composition ratios for the 
clinical features in the seven clusters are shown in Addi-
tional file 7: Figure S1 and Fig. 3a, which indicate the dif-
ferences in the prognosis for the seven clusters were not 
affected by clinical characteristics such as age and gen-
der. In cluster 6, the clinical M status was M0, and the 
number of patients with N0 and T1 was greater in cluster 

6 than in the other clusters (Additional file 7: Figure S1), 
indicating that patients in the other clusters had more 
severe disease than those in cluster 6.

Comparison of levels of methylation in different clusters
The methylation levels of 610 independent progno-
sis-associated sites were compared among the seven 
tumor clusters in the training group (Additional file  8: 
Table S7). If there was statistical difference in the meth-
ylation levels between the selected cluster and the other 
clusters, the methylation site was chosen and the dif-
ference was presented in red (Fig.  4a). Otherwise, the 
methylation site was shown in blue (Fig.  4a). A total of 
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173 sites were altered in at least one cluster and these are 
shown in Fig.  4a. From the heat map, we observed the 
altered methylation sites were mainly located in cluster 
6. The results of the Wilcox test showed that 149 meth-
ylation sites were altered in cluster 6 compared with the 
other clusters (fold change > 2, P < 0.05, Additional file 8: 
Table  S7). Combined with the survival curve (Fig.  3b), 
which indicated that cluster 6 had a higher survival rate 
than the other clusters, we selected the different meth-
ylated expression files for cluster 6 to create a box plot 
(Fig.  4b). The methylation level was higher in cluster 6 
than in any other cluster (Fig. 4b).

Construction and efficiency of the prognosis risk model 
for GC
We assessed the efficiency of this approach for dis-
tinguishing high-risk cases from low-risk cases using 
receiver operating characteristic (ROC) analysis. The area 
under the ROC curve was 0.92 (95% confidence interval: 
0.88–0.97, P < 0.0001), indicating that this model had 
good examining efficiency (Fig. 5a). The construction and 
computation processes for the prognosis risk model were 
performed as described in “Methods” section. We calcu-
lated the risk scores for all patients in the training group 
and ordered the patients according to their risk scores 
(Additional file  9: Table  S8). The median risk score was 
− 50.07; patients with risk scores below the median value 
were classified into the low-risk group and those with 
higher scores were placed in the high-risk group (Addi-
tional file  9: Table  S8). The survival curve showed that 
the high-risk group had a lower survival probability than 
the low-risk group overall (P < 0.0001, Fig. 5b). Figure 5c, 
d shows that as the risk score increased, the number of 
deaths increased, while the methylation levels of the 
selected sites decreased. Furthermore, we found a nega-
tive correlation between patients’ survival time and the 
risk score (Fig. 5e, rs = − 0.582, P < 0.0001). After exclud-
ing the discrete data, the survival time of patients was 
also negatively correlated with the risk scores (Fig.  5e, 
rs = -0.583, P < 0.0001). These results confirmed their neg-
ative relationship and indicated that patients with high 
risk scores had lower survival time than patients with low 
risk.

We next applied the constructed system in the testing 
group (Additional file  10: Table  S9). From the survivor-
ship curve, we could see that patients in high-risk group 
had lower survival probability than in low-risk group 
(Fig. 6a). With the increasing risk scores, the number of 
dead patients increased and the levels of the methylation 
sites in the Cox regression model decreased (Fig. 6b, d). 
The results demonstrated that the established model by 
training group could be validated in the testing group.

Function enrichment analysis of the annotated genes 
for methylation sites
Six hundred and seventy genes were found correspond-
ing to the 610 independent prognosis-related methyla-
tion sites. Function enrichment analysis of these genes 
showed that they were mainly enriched in 10 pathways 
such as pathways in cancer, gastric cancer, and colorec-
tal cancer, and all of the pathways and associated genes 
are presented in Additional file 11: Table S10 and Fig. 7a, 
b. The networks for the pathways and the involved 
genes are presented in Fig. 7b, from which we could see 
they were all related to the cancer processes and might 
involve in the pathological processes of GC; interestingly, 
we also found that TGFβ2 was included in 8 pathways, 
i.e., pathways in cancer, proteoglycans in cancer, hepa-
tocellular carcinoma, gastric cancer, colorectal cancer, 
chronic myeloid leukemia, cell cycle, and renal cell car-
cinoma. We further compared the gene expression lev-
els in Fig. 7b among different tumor stages, T categories, 
grades and patients’ states, and found that the levels 
of integrin subunit alpha 5 (ITGA5), TGFβ2, platelet-
derived growth factor subunit B (PDGFB), and G protein 
subunit gamma 11 (GNG11) were changed with statis-
tical difference in the above four terms (Fig.  7c, Addi-
tional file 12: Table S11). The expression of nuclear factor, 
erythroid 2-like 2 (NFE2L2), and G protein subunit alpha 
12 (GNA12) were significantly different in clinical terms 
of survival state, T category, and grade, and detailed 
information for other genes is shown Additional file 12: 
Table  S11. We also compared their transcript levels 
between the normal and the patients with GC, and found 
the gene expression levels such as TP53, TGFβ2 were sig-
nificantly changed (P < 0.05), and detailed information is 
presented in Additional file 13: Table S12 and Fig. 7b.

Discussion
GC accounts for 20% of the burden of disability-adjusted 
life-years from cancer worldwide [31]. It is a cancer with 
complex genetic heterogeneity and because of this, the 
classification of GC using Lauren’s or other histological 
criteria is ignored when treating the subtypes [3, 5, 32, 
33]. Although cancer-related biomarkers and targeted 
drugs such as trastuzumab have been found and are used 
in clinical practice, the tumors are often inoperable when 
patients are diagnosed and can recur after resection [1]. 
To better understand the mechanism for GC and provide 
early diagnosis biomarkers, epigenetic biomarkers espe-
cially DNA methylation sites are critical [5, 6]. Specimens 
for the evaluation of DNA methylation can be obtained 
from the body fluids of patients through noninvasive pro-
cedures, providing a promising method for patient diag-
nosis at a relatively early stage without pain.
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receiver operating characteristic; AUC, area under the curve; CI, confidence interval; rs, coefficient of Spearman correlation analysis
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In this study, we analyzed the methylation data for GC 
based on a large number of clinical samples (235 files in 
the training group and 235 in the testing group) using 
systematic analysis methods. We constructed a Cox risk 
regression model based on training group as described 
earlier. This model could effectively predict the patients’ 
prognosis. Its efficiency could be validated in the test-
ing group. Although the TCGA research network iden-
tified two different CpG island methylator phenotypes 
(CIMP) of gastric cancer: Epstein-Barr virus-CIMP 
(EBV-CIMP) and Gastric-CIMP, it did not reveal the 
relationship between the prognosis and the two meth-
ylator phenotypes; furthermore, the TCGA network 
did not do a systematical analysis to find the key CpGs 
or establish an efficient model to identify patients with 
poor prognosis [34–36]. In the research by Nikolay et al. 
[37], they aimed to find methylation biomarkers to solve 
the problem of the misclassifications of gastroesopha-
geal junction tumors. For the data preprocessing, they 
excluded the probes that were not part of the IIumina 
Human Methylation 27k array probes and used multi-
ple survival screening methodology to find the targeted 
CpGs such as cg26117023, cg0402816 and cg21475255, 
which were very close to their downstream transcrip-
tion start sites (TSSs) [37]. In our study, we aimed to find 
the methylation sites that could predict the prognosis of 
patients diagnosed with gastric cancer. To achieve it, we 
merged the patients’ prognosis information such as the 
survival time or survival state with the methylation files 
and specially examined CpGs in promoter regions (2 kb 
upstream to 0.5 kb downstream); then, we used the mul-
tivariate Cox proportional risk regression models to find 
the independent prognosis methylation sites and divided 
the gastric cancer into 7 subtypes; these identified inde-
pendent prognosis methylation sites were different from 
the sites in the study of Nikolay’s team [37]. Furtherly 
we analyzed the corresponding genes of the independ-
ent prognosis-related CpGs by ClueGo and found most 
genes were enriched in pathways in cancer, hepatocel-
lular carcinoma, and gastric cancer (Fig. 7a, b), while in 
the research of Nikolay et  al. [37], the identified meth-
ylation signatures were associated with protein binding, 
gene expression, and cellular component organization 
cellular processes. In the study of Hu et  al. [38], they 
found DNA methylation gene signatures consisting of 
five genes (SERPINA3, AP00357.4, GZMA, AC004702.2, 
and GREB1L) as prognosis predictors with AUC of 0.72. 
As we know, one methylation site might correspond-
ing to two genes, and it is not a one-to-one relationship; 
thus, we directly used the methylated level of the CpGs 
to predict the prognosis risk of every patient; this is more 
accurate and the AUC of our study is 0.92; it is much 
higher than the AUC of 0.72 in the study of Hu et al. [38]. 

Furthermore, we only included the CpGs in the region of 
gene promoter as described above, and the exclusion cri-
teria for methylation sites and the clinical samples were 
relatively strict compared with the research by Hu et al. 
[38]. In addition to finding the CpGs which could pre-
dict the prognosis of patients with gastric cancer, we also 
made the gene functional enrichment analysis and found 
some key genes that were associated with patients’ clini-
cal categories such as tumor stages.

Functional enrichment analysis of the corresponding 
genes for these methylation sites revealed that they were 
enriched in several pathways, with the highest enrich-
ment in the pathway for pathways in cancer (Fig.  7a). 
Platelet-derived growth factor receptor alpha (PDGFRA) 
was shared in pathways of gastric cancer and hepato-
cellular carcinoma (Fig.  7b). To further select the key 
genes in the complex network, we analyzed all of genes 
integrating with the clinical categories and found that 
TGFβ2, GNG11, PDGFB, and ITGA5 were changed 
among different patients’ tumor stages, states, T catego-
ries, and grades (Fig. 7b, c). Previous studies showed that 
in lung squamous cell carcinoma GNG11 was a novel hub 
gene in module-related tumor size, and the low mRNA 
expression of GNG11 was associated with the higher 
overall survival rate for patients [39, 40]. The secretion 
of PDGFB by gastric carcinoma cells was associated with 
lymphatic metastasis [41]. For ITGA5, it was reported 
to be a potential diagnosis biomarker and therapeutic 
target for GC [42, 43]. The secretion of TGFβ2 by mela-
noma cells was essential for their metastases to the brain 
parenchyma [44]. In breast cancer, a novel functional 
polymorphism in TGFβ2 gene promoter could enhance 
TGFβ2 expression levels in vivo and therefore contribute 
to the tumor progression and the development of metas-
tases [45]. For gliomas, Arslan et  al. [46] showed that 
TGFβ2 could trigger the malignant phenotype of high-
grade gliomas by inducing migration, and Zhang et  al. 
[47] reported that there exited a potential mechanism 
of autophagy-associated glioma invasion that TGFβ2 
could initiate autophagy via Smad and non-Smad path-
way to promote glioma cells’ invasion. In gastric cancer, 
Yang et al. demonstrated that TGFβ2 played a vital role 
in linking epithelial–mesenchymal transition and tumor 
mutational burden, which suggested that TGFβ2 may be 
a predictive therapeutic target for GC [48]. Wang et  al. 
[49] showed that the tumor-associated macrophages par-
ticipated in GC cell invasion and metastasis through the 
TGFβ2/ nuclear factor kappa B /Kindlin-2 axis, providing 
a possibility for new treatment options and approaches. 
In this study, we found the level of TGFβ2 was not only 
significantly changed among different patients’ tumor 
stages, states, T categories, and grades as described 
above, but also up-regulated in patients with GC vs the 
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normal (Additional file 12: Table S11, Additional file 13: 
Table S12, Fig. 7b, c). Moreover, it was involved in almost 
all of the 10 pathways as shown in Fig.  7b except p53 
signaling pathway and melanoma, indicating that it might 
be an important factor which could affect the prognosis 
of patients with gastric cancer independently of p53 sign-
aling pathway. Furthermore, among the 610 independ-
ent prognosis-related methylation sites, cg11976166 was 
located on the promoter region of TGFβ2, it might affect 
this gene’s expression and therefore influence its func-
tion. However, there were also limitations in this study. 
Although the established prognosis-predicting model 
had been validated in the testing group, there were few 
datasets which could be obtained to retest the efficiency 
of this model.

Conclusion
We constructed a Cox risk regression model based on the 
independent prognosis-associated methylation sites, to 
distinguish patients in the high-risk (poor prognosis) and 
low-risk (relatively good prognosis) groups. This model 
was based on more than 400 DNA methylation samples 
of GC and was highly efficient in identifying high-risk 
patients. DNA methylation sites can be determined from 
noninvasive samples such as body fluids, which enables 
patients to avoid the pain associated with biopsy. In addi-
tion, the epigenetic levels in lesions were often altered 
before the expression of the genes, indicating that infor-
mation about pathological changes in the tissues can be 
obtained earlier. Corresponding genes of these independ-
ent prognosis-associated methylation sites were mainly 
enriched in pathways in cancer. Among all of the genes 
TGFβ2 was emphasized and associated with patients’ 
prognosis or tumor progression, its expression could be 
affected by cg11976166. In the future, we plan to make 
the further insight into the mechanism of the critical 
genes and the key methylation sites in GC that were iden-
tified in this research.
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