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Abstract

The potential emerging pollutants (PEPs) such as hazardous chemicals, toxic metals, bio-wastes, 

etc., pose a severe threat to human health, hygiene and ecology by way of polluting the 

environment and water sources. The PEPs are originated from various industrial effluent 

discharges including pharmaceutical, food and metal processing industries. These PEPs in contact 

with water may pollute the water and disturb the aquatic life. Innumerable methods have been 

used for the treatment of effluents and separating the toxic chemicals/metals. Of these methods, 

membrane-based separation processes (MBSPs) are effective over the conventional techniques for 

providing clean water from wastewater streams at an affordable cost with minimum energy 

requirement. Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), 

and forward osmosis (FO) methods as well as hybrid technologies are discussed citing the 

published results of the past decade.
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Introduction

Of the World’s total availability of water, nearly 71% of Earth’s surface is covered by 

saltwater and people living with the remaining 29% need fresh water to sustain life. The 

World Health Organization (WHO) estimates that there are more than 1 billion people who 

cannot get clean water. Health monitoring authorities report that ∼4000 children die every 

day due to waterborne diseases as result of water pollution around the world [1]. Therefore, 

the world is facing severe drinking water crisis due to environmental hazards. The available 

water sources are polluted due to human activities and discharge of effluents from 

industrialization. If proper treatment methodologies are not developed or adopted, then there 

will be more severe health issues in the near future due to water contamination with 

waterborne pathogens due to increased discharge of potential emerging pollutants (PEPs) 

(toxic chemicals, pharmaceuticals, heavy metals, fertilizers, sludge, endocrine disrupters, 

etc.,) into the water sources [2–4].

There is thus an urgent need via technology innovation to avoid the already strained good 

water supply for providing human health, and hygiene. Even though distillation-based 

technologies dominate the industrial scale water treatment approaches, more efforts have 

been directed to develop economical, energy efficient and straightforward methods such as 

MBSPs to provide clean water [5,6]. Though several of these MBSPs including some hybrid 

technologies have been emerged as potential water treatment technologies, yet only a few 

are successful for a large-scale application.

PEPs are originated from several industrial processes and effluents discharged at the source 

require clear identification, separation, and disposal as otherwise these wastes can pose 

serious problems to water quality and ecology at large [7]. The United States Environmental 

Protection Agency (USEPA) categorized the PEPs as hazardous materials that lack the 

regulatory standards [8]. The PEP-contaminated wastewaters usually follow many vicious 

pathways [9,10] as typically displayed in Fig. 1, finally reaching the water sources used for 

various human consumption. Therefore, handling of PEPs is a severe problem, because the 

majority of conventional wastewater treatment technologies have repeatedly proven to be 

inefficient to eliminate even the trace amounts of toxic components [10]. In the case of 

sewage sludge and soils, PEPs may directly diffuse from the waste streams to reach the 

groundwater, making the treatment methods even more difficult.

Conventional water treatment methods such as adsorption, bio-oxidation, coagulation, 

sedimentation, and filtration, in addition to hybrid combinations such as chlorination and 

UV radiation, have been widely explored in the literature though majority of these 

approaches are inadequate for an effective treatment of wastewater [11]. On the other hand, 

water purification via MBSPs even though are somewhat expensive, but they are energy-

intensive compared to other conventional treatment technologies. In addition, MBSPs have 

several distinct advantages, such as producing high water quality with a high rate of precious 

chemical/metal recovery and having low maintenance costs [12,13].

The objective of the present review is to present an overview of the various membrane-based 

technologies used for the separation of PEPs, and mainly addressing water pollution issues. 
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Thus, the MBSPs considered in this review are: microfiltration (MF), ultrafiltration (UF), 

nanofiltration (NF), reverse osmosis (RO), and forward osmosis (FO). Some of the hybrid 

technologies such as membrane bioreactors (MBRs) and photocatalytic membrane reactors 

(PMRs) are also covered. A discussion will also be made on the types of membrane 

materials, their pore characteristics, operating methods to control the filtration processes, 

and performance test protocols in comparison to other technologies. However, desalination 

and related technologies, including thermal and solar distillation, will not be covered as 

these aspects have been reviewed in earlier publications [14–16] (see Fig. 2).

Potential environmental pollutants (PEPs)

The effect of PEPs on human health and ecology even if present in trace quantities is an 

issue that requires an extensive study in terms of human biology, chemical nature of the 

PEPs as well as the surrounding atmospheric parameters. Studies in the literature suggest 

that > 70% of PEPs are environmentally hazardous and toxic to the human health [17]. 

Though several toxic organic chemicals and metals have potential applications as raw 

materials in developing industrial products, but their discharge in the atmosphere without 

proper treatment may pose severe threat to the ecology. Some available data on the 

production of PEPs (in million tons) are summarized in Table 2 under three categories viz., 

(i) total production of PEPs, (ii) environmentally harmful PEPs (causing superficial 

damage), and (iii) PEPs with severe environmental impact. It can be realized that the 

magnitude of PEPs produced remains constant year-by-year, which may increase in the near 

future. Among the PEP sources, pharmaceutical wastes including antibiotic drugs, biologics, 

diagnostic agents, nutraceuticals, fragrances, sunscreen agents, etc., have received the 

highest attention [18,19] as most of these turn into complex mixtures of PEPs when present 

in an aquatic environment.

The data compiled in Table 1 are taken from reference [2], where the information was 

collected from 45 published research articles from various sources. All the WWTPs included 

primary, secondary and in some cases, even the tertiary treatment. In order to obtain 

quantitative results for the data mining only the concentrations and removal efficiencies of 

WWTPs in the dissolved phases such as water sources were included. The median and 

standard deviations were calculated from three or more concentrations, but only average data 

are given.

The dioctyl phthalate, also known as DOP, is commonly used as an ingredient in personal 

care products, food packaging materials, blood containers, and tubings; these are to be 

treated quite effectively to eliminate their toxicity levels [20]. Polychlorinated biphenyls 

(PCBs) are another group of PEPs that generally exist in fatty tissues of the humans and are 

frequently discharged in the environment from various industries and are generally deposited 

in the sediments due to their limited solubility in water [21]. On the other hand, 

polyaromatic hydrocarbons (PAHs) are the listed hazardous PEPs on a priority basis by the 

USEPA. For instance, bisphenol-A is used as a raw material for polycarbonate-based 

healthcare plastics products. Deblonde et al. [2] carried out a survey on the efficiency of 

WWTPs to remove the PEPs.
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The concentration of PEPs in effluent water ranged from as low as 0.007 to as high as 56.63 

g/L, but their removal rate ranged from 0 to 97 %. Phthalates showed > 90% removal, while 

for antibiotics it varied from 50 to 71%. Analgesics, anti-inflammatory and beta-blockers are 

the most resistant to degradation with a value of 30–40%. The removal efficiency of 

pharmaceuticals such as tetracycline, codeine was alarmingly low (> 10%) (see in Table 1). 

Dyeing of fabrics in textile mills consume enormous amounts of water of which > 98% will 

end up as wastewater containing PEPs. Majority of textile wastewater will therefore, 

combine with the urban wastewater, sewage and surface waters to end up contaminating the 

groundwater, surface water sources as well as the soil [24,22,23]. Organic dyes and metal 

traces used for dye preparation will further contaminate food that may directly affect the 

human health (see Table 3).

Various MBSPs for the treatment of PEPs

MBSPs are the well-known separation technologies providing a variety of applications in 

water desalination, toxic metal separation and recovery of valuables. The membrane 

processes depend on the nature of membranes that are produced from a variety of materials 

including polymers, ceramics, zeolites etc., having specific filtering features that depends 

upon the surface charge, pore size, membrane morphology and hydrophobicity/

hydrophilicity characteristics. The MBSPs are available in several modules such as MF, UF, 

NF, RO, and FO that utilize different types of membranes depending on their pore sizes and 

morphologies as well as specific separation needs as displayed in Fig. 3. The mode of 

separation in each of these processes varies from solution-diffusion to molecular diffusion to 

size exclusive principle [25].

MF membranes have larger pore sizes (0.1 to 5 μm) than the UF membranes, which typically 

reject materials in size range of 0.1–10 μm. On the other hand, UF membranes with pore 

sizes of 0.01 to 0.1 μm reject colloidal particles, macromolecules, biopolymers, and viruses 

whose sizes generally range from 0.01 to 0.2 μm, and the process is based on the size 

exclusion principle. Commercially, UF has been widely used for wastewater treatment, 

recovery of surfactants in industrial cleaning, food processing, protein separation, etc. The 

UF membranes are fabricated from cellulose derivatives, inorganic materials such as TiO2, 

Al2O3, ZrO, etc in addition to typical polymers such as poly(a__crylonitrile) (PAN), 

poly(sulfone amide) (PSA), poly(ether sulfone) (PES), poly(vinylidene fluoride) (PVDF), 

etc. [26].

NF membranes reject molecules in the size range of 0.001–0.01 μm, which includes most of 

organics, biomacromolecules, and a variety of metallic salts (beyond divalent salts). The 

performance of NF falls between RO and UF, while the RO membranes are non-porous, 

prepared from dense polymers with voids, free volume channels or pore sizes ranging from 

∼0.0001 to 0.001 μm. The RO membranes separate low molecular weight minerals, 

including metal ions [25]. The most common applications of RO are in the treatment of pulp 

and paper mill effluents to produce potable water [28,29]. In any of the above membrane 

processes water flux, high PEP rejection, engineering design, stability under stress, chemical 

resistance and operating temperature as well as pressures applied govern the choice of 

polymers [30–34]. In recent years, ceramic or zeolite composite membranes have emerged 
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as high-performance RO and NF membranes that are successfully commercialized in PEP 

separations [35–41]. Various configurations based on hollow fiber, tubular, and spiral 

wound, and flat sheet structures have been employed in domestic and industrial wastewater 

treatment applications.

The RO technology developed for water desalination studies [42,43] has several issues such 

as high energy requirement, membrane fouling, and concentration polarization. This has 

prompted researchers to develop osmotically driven forward osmosis (FO), in which the 

osmotic gradient across the membrane plays an important role in mass transport and 

separation [44,45]. Thus, FO is more suitable and energy efficient for treating the feed with 

a high fouling tendency (e.g., landfill leachate), which may not be economical by RO. 

However, the standalone FO has some niche applications, such as fertilizer dilution and fruit 

juice concentration. Initially, FO has been treated as an efficient pre-treatment step for 

subsequent processes in which purified water can be recovered from the diluted draw 

solution [44–46]. In the following sections, we will discuss the individual MBSPs for the 

treatment of PEPs.

Microfiltration (MF)

Research efforts on the utilization of MF have concentrated on the removal of colloidal 

particles, dyes, organic matter and other high molecular weight soluble PEPs from the waste 

streams. MF has been generally employed in combination with other techniques for the 

removal of complex industrial PEPs. For instance, domestic wastewater containing 

hormones such as estrone (E1), 17β-estradiol (E2), and 17αethynylestradiol (EE2) [47,48] 

as well as bisphenol A (BPA) that are classified as endocrine disrupters [49]; These 

compounds even if present in trace quantities can seriously damage the human endocrine 

system. In efforts to solve this problem, Han et al. [50] employed the bench scale crossflow 

MF system using a series of membranes prepared from polyether sulfone (PES), cellulose 

acetate (CA), nitrocellulose, polyester, regenerated cellulose, and polyamide-66 (PA). For 

the PA membranes having a pore size of 0.2 μm, the wastewater containing 0.2 μM estrogens 

showed sorption capacity of 81 L m−2 (0.44 μg cm−2), while for E1, 150 L m−2 (0.82 μg cm
−2) for E2, 208 Lm−2 (1.23 μg cm−2) for EE2, and 69 L m−2 (0.32 μg cm−2) for BPA. The 

surface adsorption of some of these PEPs at higher concentrations severely affected the 

membrane performance, causing membrane fouling due to the presence of organic matter in 

the feed that has significantly affected the flux of PA membrane. In any case, all the PEPs 

showed a consistent interaction with the polyamide membrane via H-bonding, thereby 

showing their efficient removal from the feed streams. The above studies indicate the 

usefulness of PA membranes compared to other cellulose-based membranes used for the 

treatment of biowastes from polluted water sources.

Health and safety regulatory authorities are continually documenting the risks associated 

with the presence of micro-PEPs involving. progesterone. Apart from MBSPs, Utrilla et al. 

[51] applied the adsorption method using activated carbon and biopolymers to separate 

micro-PEPs from wastewater sources, but these methods face shortcomings due to high-

pressure drops, clogging, slow mass transfer and lack of appropriate techniques to recover 

the adsorbed materials. Realizing these drawbacks, Ragab et al. [52] employed the spiral-
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wound configuration using zeolite imidazolate metal-organic framework (ZIF-8) 

nanoparticles incorporated into poly(tetrafluoroethylene) (PTFE) double layer polymer 

membrane in an MF mode that provided shorter bed height and larger pore s for convective 

flow. Here, the ZIF-8 nanoparticle-induced MF membrane showed high flux assizes giving a 

rejection rate of as high as 95% for the PEPs (hormones) even at low operating pressures. 

The high rejection efficiency data are the result of hormones chemically interacting via H-

bonding with the high surface area of ZIF-8 nanoparticles. Therefore, such an approach is 

good for separating micro PEPs, such as hormones from the waste streams.

The pharmaceutically active compounds (PhACs) such as diclofenac and ibuprofen if 

present in the concentration ranges of 0.14–1.48 μg/L and 160–169 μg/L [53,54] can be 

degraded using the UV-based TiO2 photocatalytic process [55]. However, the photocatalyst 

used in these processes has to be separated from the contaminated wastewater in order to 

obtain disinfected potable water. A hybrid MF can be useful in these applications for 

separating not only the PEPs but also to simultaneously recycle the photocatalyst TiO2. In 

continuation of these efforts, Fischer et al. [56] suggested an in-situ TiO2 synthesis process 

to develop composite membranes with PVDF polymers using titanium tetra-isopropoxide 

(TTIP). Furthermore, these photoactive TiO2-induced composite membranes were used to 

remove the degraded methylene blue, diclofenac and ibuprofen. Further, the high 

concentration PEPs, such as carbamazepine, diclofenac, atenolol, azithromycin 

erythromycin and pesticides (162–240 ng/L) were removed from wastewater in a treatment 

plant to the extent of ∼98% using hybrid MF-RO process [57]. This work demonstrates the 

performance of a pilot wastewater treatment plant for on-site effluents of a urban wastewater 

facility. The multi-monitoring approach included selected pharmaceuticals as emerging 

environmental contaminants, and a group of pesticides to reduce their concentration levels to 

a minimum of nano-concentration levels.

Liu and Wong [58] in a review article summarized the current contamination status of 

different PEPs including sewage, surface water, sludge, sediments, soil, and wild animals, by 

the pharmaceutical and personal care products (PPCPs). The authors further evaluated the 

adverse effects of these PEPs on human health and hygiene. However, the authors did not 

mention deeply about the membrane technologies but discussed more about other 

technologies that are based on chemical treatment methods; they further assessed the 

potential ecological and health hazard nrisks. In continuation of research efforts on the 

removal of PPCPs, Wang et al. [59] employed the composite membranes loaded with single-

walled and multi-walled carbon nanotubes (SWCNT and MWCNT) onto PVDF membrane 

surface that significantly enhanced the removal rate of PPCPs, thus demonstrating the 

potential of MF technology for water treatment polluted with PPCPs. The removal of 

triclosan (TCS), acetaminophen (AAP), and ibuprofen (IBU) were achieved from 10 to 95%, 

which increased with increasing number of aromatic rings as well as specific surface area of 

the fillers. The variation of solution pH from 4 to 10 also influenced the PPCP removal rate 

up to 70% and higher removal was observed for neutral PPCPs than with the ions due to the 

reduced electrostatic repulsion. The capability of these membranes to remove PPCPs may be 

due to the favorable PPCP–CNT interactions.
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Ultrafiltration (UF)

Unlike the MF process, UF has a solute rejection regime of above 2 kDa molecular weight 

for the separation of macro-PEPs. Considering that many of the PEPs fall under the category 

of macromolecular range, UF has been successful in treating such PEPs from wastewaters 

[60]. However, for the removal of macro-PEPs in the wastewater containing other organics, 

UF alone may not produce ultrapure water. In such situations, the UF in combination with 

the commercial NF membranes can be used to achieve the desired levels of water purity by 

removing PEP-contaminated secondary effluents [61]. The study included the removal of 

eleven PEPs present in the municipal secondary effluents that contained various 

pharmaceuticals and pesticides. The separation was achieved mainly by adsorption of 

contaminants on the membrane surfaces, since adsorption is the principle mechanism for 

micropollutants retention by UF membranes, while size exclusion and electrostatic repulsion 

at high pH values are dominant for NF membranes. The results revealed that both UF and 

NF are necessary for secondary effluent treatment.

Several studies suggested that hybrid processes in which RO membrane showed severe 

fouling can be combined with coagulation and disk filtration methods to reduce the fouling. 

For instance, Chon et al. [62] developed a large-scale water reclamation unit comprising of a 

combination of coagulation and disk filtration (CC–DF) along with UF/ RO membranes to 

remove PEPs such as atenolol, carbamazepine, caffeine, and sulfamethoxazole, but the 

method was not effective to remove PEPs, while RO alone could achieve high removal 

efficiency. Interestingly, the negatively charged PEPs were retained efficiently by the tight 

membranes compared to neutral pollutants. In all these studies, membranes were washed by 

desorbing PEPs from the surface of UF and RO membranes. The removal of micro-PEPs by 

the hybrid CCDF and UF method was not dependent on the molecular weight of PEPs, but 

they showed a critical dependence on the RO process.

Micellar-enhanced UF can be a cost-effective alternative to separate the PEPs. In this 

pursuit, Acero et al. [63] used different micelles, such as sodium dodecyl sulphate (SDS), 

Triton X-100 (TX-100), Tween 20 (TW-20), cetylpyridinium chloride (CPC) and 

cetyltrimethylammonium bromide (CTAB) to improve the UF performance for separating 

PhACs (acetaminophen, metoprolol, caffeine, antipyrine, sulfamethoxazole, flumequine, 

ketorolac, atrazine, isoproturon, 2-hydroxybiphenyl and diclofenac). It was observed that 

CPC and CTAB, cationic micelles remove the negatively charged and hydrophilic PhACs. 

Among all the micelles studied, CPC showed the optimum separation up to 95%.

Several studies included the use of activated carbon as a pre-treatment as well as a post-UF 

adsorption step for the retention of PEPs. For this purpose, powder-activated carbon-UF or 

granular-activated carbon-UF was suggested for removing low molecular weight PEPs, 

which otherwise would be difficult to remove using UF alone [64]. In this study, activated 

carbon enhanced the rejection rates of PEPs and membrane fouling was minimized. A 

combined treatment approach based on adsorption and/or coagulation was also employed by 

Acero et al. [65] using activated carbon in a stepwise UF treatment plant to remove eleven 

emerging PEPs (acetaminophen, metoprolol, caffeine, antipyrine, sulfamethoxazole, 

flumequine, ketorolac, atrazine, isoproturon, 2-hydroxyphenyl and diclofenac). In this 

investigation, low PACs dose of 10–50 mg/L was adequate to remove the PEPs from 
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wastewater and the importance of combined treatment approach was discussed. Continuing 

the activities using hybrid approaches.

An UF-NF hybrid system was used by Benitez et al. [66] for separating four PhACs 

(amoxicillin, naproxen, metoprolol, and phenacetin) from the secondary effluents. In both 

UF and NF, permeate flow was influenced by the membrane morphology, applied pressure, 

and operating temperature. The retention coefficients in UF membranes were higher for 

naproxen than metoprolol with the lowest being phenacetin. In the case of commercial scale 

membranes, the trend was highest for amoxicillin and lowest for phenacetin, due to tight 

pore size structures, leading to direct rejection and electrostatic repulsion associated with the 

membranes. In this study, except phenacetin, NF achieved the highest retention of 80% for 

PhACs. Further, the flux decline and membrane fouling, were higher for UF, especially 

while treating the secondary effluent. It may be noted that observations made in this study 

were almost identical to those by Acero et al. [65]. A comparative assessment of the existing 

treatment techniques was considered by Boleda et al. [67] using a UF-RO process for 

removing twenty-nine PhACs to demonstrate that advanced treatment processes can be more 

efficient over the conventional treatment approaches in eliminating the PhACs up to 94%. 

This can be attributed to carbon filtration, which is suitable for removing the conventional 

pollutants, but not the emerging PEPs. This approach was found to be useful especially in 

drinking water treatment plants for the treatment of an effluent comprising oxy-chlorinated 

compounds.

Electrochemical oxidation (ECO) processes for waste-water treatment have been widely 

explored as these methods have proven to be efficient and versatile to handle wastewater. 

However, to achieve an efficient and cost-effective treatment, these methods require that 

wastewater should have relatively high conductivity. These methods have the advantage of 

coupling electricity-driven reactions with the in situ generation of oxidants, which makes 

this approach an attractive treatment alternative [68,69]. Overall, ECO approach was able to 

eliminate the PEPs from the RO concentrate streams. Urtiaga et al. [70] applied the ECO 

method to remove PhACs using a point-of-use hybrid UF-RO system. For major PEPs such 

as atenolol, bezafibrate, caffeine, and diclofenac, UF was useful up to 20%. The 

concentrations of PEPs in permeate varied between 4 and 44 ng/L (see Fig. 4 for process 

details). The ECO of RO reject with diamond electrodes were able to decrease the total PEP 

contents from 149 μg/L down to 10 μg/L. The authors concluded that at high electro-

oxidation intensity, PEPs’ concentration reduced drastically.

The impact of surface stress on membrane fouling control was studied by Wray et al. [71] 

for the removal of organic PEPs using an UF treatment plant for sixteen different PhACs and 

EDCs. The results of this study showed that retention was dependent on specific water 

matrix in which increased retention was achieved with higher concentrations of organic 

matter. Controlled study showed that contaminant scale formation did not act as the 

secondary selective barrier for retaining the macromolecules and hydrophobic micro-PEPs. 

Under higher shear stress conditions, a lower fouling retention was improved for water 

contaminated with higher concentrations of organic matter and biopolymers. The interaction 

between organic micro-PEPs, mainly hydrophobic, neutral compounds and biopolymers in 

solution, was responsible for enhanced retention in all the cases.

Dharupaneedi et al. Page 8

Sep Purif Technol. Author manuscript; available in PMC 2020 October 28.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Often, UF fails to achieve the required standards, and hence, various hybrid technologies 

have been designed and tested including AOPs [72]. Acero et al. [73] used AOP techniques 

for the removal of a series of PEPs, such as 1-H-benzotriazole, chlorophene, and 

nortriptyline, dissolved in different streams. Here, the pre-treated wastewater was fed into 

UF, and both permeate, as well as retentate were then treated using ozone or chlorine 

separately. The UF step removed all the PEPs traces except 1-H-benzotriazole. Chlorination 

and ozonation were also found to be effective in reducing PEPs from the concentrated 

stream, providing effluent that can be recycled using the activated sludge treatment in 

WWTPs. These data demonstrate the usefulness of both the treatment methods for the 

removal of micro-PEPs.

Recently, ultrasound treated AOPs have been used for removing the priority organic PEPs 

from wastewater and solid wastes [74]. Though ultrasonication works for both biodegradable 

and non-biodegradable/ refractory organic compounds, but these methods are not widely 

explored for large-scale applications. Cailean et al. [75] employed the hybrid 

ultrasonication-UF for the removal of 4-chlorophenol (4-CP), which by the use of 

homogeneous Sono-Fenton process could degrade 4-CP in less than 1 h up to about 45%. 

The ultrasound techniques can be effective to control membrane fouling. For instance, 

Naddeo et al. [76] used the ultrasonic assisted UF process with varying frequencies for 

cleaning the UF membrane surfaces during PEP removal, which reduced the membrane 

fouling even at lower frequency of 35 kHz. Especially when PhACs, such as diclofenac, 

carbamazepine, and amoxicillin are difficult to remove from WWTPs using the ultrasonic 

method [77], the hybrid UF coupled with ultrasonic irradiation [78] could reject PhACs from 

wastewater, while UF alone was ineffective as it could only remove up to 10%. Using 

ultrasonic irradiation, 99.5% PEPs could be removed at 35 kHz frequency.

Nanofiltration (NF)

NF has a much tighter pore regime than UF membranes, thus adding several benefits, such 

as divalent salts and textile wastewater recovery. A case study was performed by Neira-

Ruízet et al. [79] on untreated wastewater from agricultural and urban wastes to remove five 

PEPs viz., carbamazepine, BPA, triclosan, butyl benzyl phthalate, and 4nonylphenol using a 

commercial NF-270 under a pressure of 800 kPa. The study employed a pre-treatment step 

for preventing the scaling. The PEPs removal was increased for hydrophobic compounds 

due to adsorption onto membranes, while water solubility reduced the retention of BPA. 

Lopen-Muñoz et al. [80] employed NF for the removal of several emerging PEPs viz., 

sulfamethoxazole, diclofenac sodium, hydrochlorothiazide, 4-acetamidoantipyrine, nicotine 

and ranitidine hydrochloride using commercial NF-90 and NF-270 membranes. At low 

pressures, the rejection of PEPs varied almost linearly and steric hindrance and dynamic 

interaction between the solute PEPs and the membrane interface were responsible to achieve 

the desired rejection. Solute retention by NF-90 was quite high (> 95%), but for NF-270, it 

was low, ranging from 75% (for nicotine) to 95% (for ranitinide hydrochloride). The authors 

concluded that permeate flux and PEPs rejection rate were dependent on the 

physicochemical properties of pharmaceuticals and membranes in addition to 

transmembrane pressure.
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Polyamide membrane exhibits surface adsorption property leading to poor separation 

performance [81]. Using surface adsorption as a parameter, Semião et al. [81] studied the 

adsorption and retention of estrone and estradiol using polysulfone, polyester and polyamide 

membranes. Among all the membranes tested, polyamide NF membranes showed the 

highest hormone adsorption. Selective layer morphology and pore size were critical in 

surface adsorption and retention of PEPs. The size of the pores in association with steric 

exclusion and pH of the medium were also crucial for surface adsorption of hormones at 

neutral pH, the high solute and membrane interaction (compared to at pH 11) was attributed 

to electrostatic repulsive effect of the solute from the membrane surface. In another study, 

the presence of hormonetype moieties and tert-butyl phenol in secondary wastewater was 

studied using NF-270 [82]. The authors used a commercial membrane in which PEPs were 

retained up to 90%. Similar to the work reported by Semiao et al. [81], the present data 

further demonstrated the importance of steric exclusion for the separation of hormone-

mimicking compounds. The influence of pH, ionic strength, and organic matter content was 

responsible for the separation.

The PhAC elimination using traditional treatment processes have shown limited success 

[83]. Kim et al. [84] used grafted polyamide membranes with methacrylic acid cross-linked 

with ethylene diamine (ED) to separate BPA, ibuprofen and salicylic acid to demonstrate 

95% rejection for BPA, whereas pristine membrane showed a rejection of 74%. Also, the 

rejection of ED-modified membrane for ibuprofen and salicylic acid was slightly lower than 

those of the metallic acid modified membranes. Interestingly, succinic acid membranes 

recovered their electro-negative surface that helped to retain all the PEPs in the concentrate. 

In a study by Sun et al. [85] NF hollow fiber membrane having a charged surface was used 

for the efficient removal of cyclophosphamide. This membrane was fabricated using a 

hyperbranched polyethyleneimine (PEI) as a cross-linker onto the polyamide-imide 

backbone. The spongy-like porous membrane support provided a high flux with high 

structural stability for water permeation even at elevated pressures. Specifically, after 

crosslinking with PEI, membrane pore size reduced drastically, and surface became more 

hydrophilic with a positive charge. These synergic effects were responsible for increasing 

the rejection of ciprofloxacin. Also, high molecular weight of PEI of 60 K has a tremendous 

effect to exhibit the highest rejection. In continuation of these efforts, Nghiem et al. [86] 

evaluated the retention of non-ionizable carbamazepine in the presence of ionizable PhACs, 

sulfamethoxazole and ibuprofen using NF to show that retention of carbamazepine in the 

concentrate was independent of feed chemistry. The PhAC retention increased when the 

compound was transformed from neutral to negative charge with an increase in its pKa 

value. Therefore, retention of the negatively charged sulfamethoxazole and ibuprofen was 

increased due to increase of ionic strength.

Along with the MBSPs, adsorptive treatment [87] and AOPs [88] have also been attempted 

for eliminating PEPs from the wastewater. Liu et al. [89] performed a feasibility study of 

removing antibiotics, namely norfloxacin (NOR), ofloxacin (OFL), roxithromycin (ROX) 

and azithromycin, from a wastewater treatment plant as per the separation scheme depicted 

in Fig. 5. High rejections up to 98% could be obtained in all NF experiments. The UV/O3 

process achieved removal efficiencies up to 87%, dissolved organic carbon (DOC) of 40%, 

increased BOD/ COD ratio of 4.6 times, and a reduction of acute toxicity up to 58%. 
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Overall, the study demonstrated that NF could efficiently remove all the antibiotics from 

WWTP effluents, but UV/O3 was able to eliminate antibiotics from the NF concentrate, thus 

achieving zero discharge of micro-PEPs from the WWTPs.

Developing novel membranes for purification of active pharmaceutical ingredients (APIs) 

from the classes of genotoxic impurities has been a challenging task [90]. In this pursuit, 

Martínez et al. [90] used PES-NF membranes to recover 1-(5-bromo-fur-2-il)-2- bromo-2-

nitroethane in a crossflow NF configuration with retentions of > 80%. The most prominent 

results in terms of flux of ethanol were obtained from the membranes prepared with 25% 

and 75% of PES along with a commercial NF-270 membrane. Organic solvent NF (OSNF) 

or organophilic NF (ONF), is an emerging technology used for organic-based effluent 

treatment [91]. Székely et al. [91] used OSNF to remove genotoxic impurities from a total of 

nine API model feeds having macrolides and amides. The study focused on replacing 

extractions in traditional purification techniques that helped to API recoveries up to ∼80%. 

In a continuing study on the use of OSNF, Székely et al. [92] evaluated the feasibility of 

OSNF method for the removal of 1,3-diisopropylurea (IPU) at a dilution ratio of 3 to achieve 

90% removal with as low as ∼2.5% loss of API. A novel IPU selective molecularly-

imprinted polymer (MIP) was also used to remove the trace amounts of IPU, thereby 

achieving 83% removal for the feed containing 100 ppm concentration in a single step. Here, 

the combination of OSNF with diafiltration (DF) at a dilution ratio of 3:1 MIP showed a 

reduction of IPU from 100 mg IPU/g of API to 2 mg IPU/g.

Agricultural fields require the heavy usage of pesticides and hence, their elimination from 

wastewater sources is necessary to avoid the risk factors. In this regard, Ahmad et al. [93] 

used four types of commercial NF membranes (NF-90, NF-270, NF-200 and DK) of ∼200 

MWCO to separate two prominent pesticides viz., dimethoate and atrazine from the 

contaminated water sources. Among all the membranes tested, commercial NF-90 showed 

the highest rejection, while NF-90 showed the most significant potential for acetaminophens 

retention from aqueous media. Perfluro octane sulfonates (PFOS), a new class of PEPs with 

fluorinated alkane sulfonates, are widely used in surfactants, coating materials, fire 

retardants, lubricants, metal plating solutions and polymer additives [94]. PFOS are 

persistent, bio-accumulative, and toxic even at trace concentrations [95]. Among several 

methods employed for effective removal of trace amounts of PEPs from wastewater, Zhao et 

al. [96] attempted using NF-270 for removing PFOS from the simulated surface water 

containing calcium ions. The results showed that increase of calcium chloride concentration 

enhanced PFOS rejection from 94% to 99% for a feed containing 100 ppb PEP.

Chlorination has been the widely used disinfectant in wastewater treatment. Recent studies 

have reported that chlorination of organic matter in freshwater results in the formation of 

disinfection by-products. For instance, trihalomethanes (THM) is a by-product belonging to 

a new PEP class. NF-200 membrane was used by Uyak et al. [97] to enhance the retention 

efficiencies of THM. Verliefde et al. [98] summarized the separation data of NF membranes 

in Table 2 for various PEPs. The data display that NF is effective in removing larger PEPs, 

smaller hydrophiles as well as charged micro-PEPs. It was suggested that rejection of PEPs 

by NF can be qualitatively predicted, yet it is a debatable question as to whether RO is 

preferred over NF as regards the removal efficiencies including the operation and 
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maintenance costs. According to Yangali-Quintanilla et al. [99], NF appears to be an 

efficient technique for removing the organic PEPs compared to RO. Neutral PEP such as 

dioxane can be removed from ∼82% to 85% using both NF and RO, but for ionic 

compounds, removal efficiency can be > 97%.

Composite membranes are the recent trends. For instance, Zeng et al. [100] developed 

dopamine (DA)- modified halloysite nanotubes (HNT)/PVDF blends by functionalizing 

HNTs with DA and blending with PVDF. These membranes were tested for removing direct 

red-28 (DR-28), direct yellow-4 (DY-4) and direct blue-14 (DB-14) dyes. The blend 

membranes increased the water flux by about 80% compared to nascent counterparts. The 

modified membranes showed dye rejection of 86% for DR-28, 85% for DY-4 and 94% for 

DB-14. In efforts to separate micro-PEPs from wastewater and in drinking water sources, 

Ilyas et al. [101] recently developed weak polyelectrolyte multilayer (PEM)-based hollow 

fiber NF membranes. Notably, the PEMs consisting of weak polyelectrolytes, such as poly 

(allylamine hydrochloride) (PAH) and poly (acrylic acid) (PAA) were coated in a layered 

fashion onto the UF support to obtain PEM-based NF membranes. These membranes were 

further used to investigate the retention of varying size (200 – 400 g/ mol) micro-PEPs, 

which were charged and hydrophilic. These micro-PEPs included: atenolol, 

sulfamethoxazole, naproxen, atrazine, and bezafibrate and membranes prepared at a pH of 6 

showed the highest retention up to 80%. Similarly, multi-walled carbon nanotube 

(MWCNT)-based membranes were prepared [102] and used for the removal of primary 

effluent PEPs from wastewater. Here, coagulation was used as a pre-treatment to NF 

operation to overcome the interference of biopolymers and humic acid. But this approach 

has shown a limited separation ability.

Reverse osmosis (RO)

Recently, there has been a growing interest to utilize hybrid RO/NF membranes for the 

treatment of PEPs from the sewage and industrial wastewater. Boleda et al. [103] made an 

effort to study the feasibility using of RO in eliminating certain drugs and metabolites from 

secondary treated wastes in a pilot plant. Three different commercial membranes (LE, 

BW30, and XFR) were used for the rejection of a range of PEPs, but no significant data 

were observed. Realizing the drawback of this study, Ozaki et al. [104] in his study on 

retention efficiencies of thirteen pharmaceuticals and personal care products (PPCPs) and 

five EDCs by simultaneous adsorption, size exclusion, and diffusion methods observed that 

size exclusion was dominant in the tight NF membrane. Separation was improved when 

solution pH was higher than solute pKa values, suggesting the importance of electrostatic 

repulsion.

Drinking water treatment plants equipped with RO and activated carbon filters have been 

employed for the removal of several micro-PEPs [102]. Here, rejection rates for hydrophilic 

and small MW sPEPs, such as nitrosodimethyl amine, dioxane, and 2-methylisoborneol 

were quite low, but solute removal by activated carbon filtration was robust. Also, rejection 

of antibiotics by both RO and NF processes was > 98% [105,106], where for low MWCO 

NF membrane, retention for smaller size antibiotics was ineffective, which varied from 

0.517% to 0.976% for RO and tight NF, respectively. The N-nitrosodimethylamine 
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(NDMA), a member of a family of potent carcinogen, N-nitrosoamine, generally found in 

potable water as a result of disinfection carried out on wastewaters [107]. The critical level 

of concentration of NDMA in drinking water [108] is estimated to be 10 ng/L. Plumlee et al. 

[109] observed that solid phase extraction (SPE) method used for NDMA detection showed 

its presence in the secondary effluent up to 20–59 ng/ L, but by using RO with TFC 

membranes the NDMA rejection up to ∼50–65% was possible.

BPA is another possible toxic PEP that has been widely explored by membrane 

technologies. In one particular study, Khazaali et al. [110] used the low-pressure RO at the 

critical range of pressure (408–476 kPa) for the effective separation of BPA. It was found 

that by changing the pH from 8 to 10, BPA rejection decreased, but when BPA was ionized, 

the interaction between the ions caused higher rejection rate. At more elevated feed 

concentrations, the effect of concentration polarization was more significant, and BPA 

concentration in the permeate was elevated. In any case, a maximum of 87% BPA rejection 

was possible at 50 mg/L feed concentration.

Cyclophosphamide (CP) is one of the commonly used drugs in chemotherapy, which 

adversely affects the living organisms if present in water. The rejection of CP in feed water 

using NF, RO and MBR was investigated by Wang et al. [111]. It was found that RO was 

effective in CP retention up to 90%, but the rejection of CP was 20–40% in NF. For MBR 

effluent treatment, CP rejection rate by NF was enhanced, suggesting that both MBR-RO 

and MBR-NF hybrid systems are promising for the treatment of real wastewater containing 

CP.

In continuation of the research efforts to address the removal efficiencies of micro-PEPs, Al-

Rifai et al. [112] evaluated a range of micro-PEPs at different processing conditions in a 

wastewater recycling plant. The removal efficiencies of eleven PhACs and two EDCs were 

examined using MF and RO processes to find that salicylic acid was abundant in WWTP 

effluent (11–38 μg/L), followed by BPA (6 to 23 μg/L). Further, the concentration of all 

PEPs decreased drastically from primary to secondary treatment. Significant retention 

efficiencies in recycled water was > 97%, resulting in product water concentrations of < 0.1 

μg/L for most PEPs (apart from BPA (0.5 μg/L)). Even though > 0.5 μg/L was measured in 

product water for BPA, but its presence is a serious concern. In a parallel study, AOP was 

combined with RO as an alternative approach to remove PhACs from the organic matter 

effluent and other inorganic constituents. In efforts to address this problem, Abdelmelek et 

al. [113] examined the removal of PhACs using RO and the retentates were further treated 

by AOP. Here, degradation was monitored by excitation-emission matrix spectroscopy, 

where the *OH radical associated with proteins in RO retentate suggested efficient removal 

of PhACs. The results from AOP treatment also revealed that MBSP could efficiently 

remove the PPCPs from the effluent even in the presence of both organic and inorganic 

constituents.

A new class of PEPs known as β-blockers was identified that can cause severe risks to 

human health. Among these, some are the commonly used drugs, such as metoprolol and 

propranolol, classified as potentially toxic to aquatic organisms. Benner et al. [114] studied 

the effect of ozonation for the mitigation of β-blockers. The ozonation of RO brine effluents 
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was sufficient to eliminate the β-blockers. However, tests on chlorinated and non-chlorinated 

WWTP effluent showed increased ozone stability, giving a decrease in *OH radical 

exposure, proving the effectiveness of RO for the removal of β-blockers.

The treatment of sewage wastewater has been a challenging task using the conventional 

methods. However, realizing that oxidation processes can reject the organics from the 

contaminated streams, James et al. [115] developed a hybrid advanced oxidation reverse 

osmosis (AOP-RO) method to treat PEPs from the secondary municipal wastewaters. Using 

this method, > 99% of PEPs and endocrine disrupting chemicals (EDCs) were removed 

successfully in a pilot-scale experiment. Interestingly, for the EDC removal such as N-

nitrosodimethylamine (NDMA), the H2O2 dose was crucial. Further, Alonso et al. [116] 

used a pilot scale commercial spiral wound membrane to remove the antibiotic 

(ciprofloxacin) from wastewater with a high ionic strength using RO, which could remove 

ciprofloxacin up to > 90%. From the forgoing, it is realized that RO method can not only be 

useful as an effective technique for water desalination, but also quite useful for the treatment 

of various effluents.

Forward osmosis (FO)

In recent years, forward osmosis (FO) is becoming more popular among other MBSPs used 

for wastewater treatment as well as desalination. The method utilizes osmotic gradients 

artificially created by the high concentration draw solution across the membrane. In contrast 

to other MBSPs, FO is less vulnerable to fouling and hence, the method finds wider 

applications in wastewater treatment, food industry, to concentrate biomacromolecules, 

recover valuable metals, remove toxic metals, etc. [117]. FO operates at zero hydrostatic 

pressure, providing a sustainable water treatment, but the method has not yet reached the 

commercial success except for seawater desalination, probably because of lack of suitable 

FO membranes. The essential components required for efficient FO process include: (i) 

membranes that are less prone to susceptibility to internal concentration, (ii) efficient draw 

solutions and (iii) effective draw solution recovery process.

Quite interestingly, aquaporins that are the naturally occurring water channels in proteins are 

used as semi-permeable water pathways in FO [118]. Aquaporins embedding vesicles in 

TFC (< 200 nm) membranes can be deposited onto a porous polysulfone flat sheet support 

[119] to act as FO channels. These membranes made of aquaporin have shown > 90% 

rejection of urea with a pure water permeation rate of 10 L/m2 h against 2 M NaCl as the 

dissolved salt. Innumerable studies have been performed utilizing FO for the separation of 

PEPs from wastewater sources. Here, we will discuss only the representative data collected 

from various sources and more details can be found from the literature. For instance, a study 

by Hancock et al. [120] investigated the rejection of PEPs using FO and compared its 

efficiency with a hybrid FO-RO system both at the laboratory and pilot scales as shown in 

Fig. 6. Using both the systems, more than thirty PEPs of different kinds, including non-

ionic, hydrophobic, negatively and positively charged species have been analysed and found 

that rejection of non-ionic compounds increased with increasing molecular weight of PEPs. 

The RO showed better rejection rate than the FO for BPA, but FO has shown better rejection 
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rate up to > 99% for methylparaben, oxybenzone, amitriptyline, and triclosan pesticides 

compared to RO.

The above findings prompted several researchers to focus on the separation of PEPs of 

different kinds. In one such a study, Linares et al. [122] investigated the differences in the 

rejection of thirteen different PEPs found in wastewater sources containing five hydrophilic 

nonionic, three hydrophobic nonionic and four hydrophilic ionic micro-compounds. The 

secondary wastewater effluent (SWWE) was used as the feed and the resulting effluent was 

desalinated at a low pressure with the RO membrane. In standalone FO mode, the rejection 

of hydrophilic neutral compounds varied between 49% and 85%, while for hydrophobic 

neutrals, the rejections ranged from 40% to 88%. For ionic PEPs, rejections ranged between 

93% and 97%. This type of tendency suggests different types of interacting modes of PEPs 

with the membrane material.

In a continuing study to utilize hybrid technologies, Alturki et al. [123] tested different 

commercial cellulose acetate (CA)-based membranes for FO, pressure retarded osmosis 

(PRO) and RO processes. Compared to other NF membranes of similar MWCO, such as the 

commercial cellulose triacetate (CTA) membrane, CA membranes showed a higher water 

flux with better PEPs retention. In the RO mode, electrostatic interactions played a 

significant role in the retention of electro-active PEPs. In FO and PRO modes, the retention 

of active PEPs was governed by the electrostatic interactions between the membrane matrix 

and the solute, while the rejection of neutral compounds was dominated by the size 

exclusion in which retention was higher for PEPs with high MW. In all the cases, retention 

of neutral PEPs was higher in FO compared to RO.

Haloacetic acids (HAAs) are the well-known disinfection by-products (DBPs) present with 

highest concentrations in chlorinated or chloraminated sewage treatment plant effluents. 

Trichloroacetic acid (TCAA) concentration can be as high as 471 μg/L in chlorinated 

wastewater effluent as analysed by ultra-performance liquid chromatography-electrospray 

ionization tandem mass spectrometry (UPLC-MS/ MS) [124]. FO was employed by Kong et 

al. [125] to study the rejection of HAAs by performing reverse draw solute permeation 

experiments. The retention ratio for each HAA increased with an increased draw solute (DS) 

concentration for the active layer facing the feed water (ALFW) orientation. The rejection 

rates for all the HAAs were more than 95% for AL-FW orientation, but ranged from 74% to 

89% for the active layer facing the draw solution (AL-DS) orientation in 1 M NaCl draw 

solution, while reverse draw solute flux of AL-FW orientation was lower compared to AL-

DS orientation.

The processing of industrial effluents containing organic PEPs such as phenols, aniline, and 

nitrobenzene [126] is somewhat difficult because these may penetrate into the barriers of the 

existing treatment techniques, making them ineffective [127]. The eight commercially 

available activated carbons were studied for removing organic micro-PEPs to test their 

removal efficiencies. Among other MBSPs, RO was preferred for the removal of organic 

micro-PEPs, but high operating pressure in RO was expensive and membranes usually had 

fouling problems [128]. In efforts to address this issue, Cui et al. [129] compared the 

efficiency of FO in (i) lab-scale FO membranes under both FO and RO modes and (ii) 
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commercially available RO membranes to remove the organic PEPs. The lab-scale fabricated 

FO membranes having a thin-film polyamide layer onto the ultra-porous support provided 

rejections in the range of 72–90%. In FO and pressure retarded osmosis (PRO), effects of pH 

and membrane orientation on the permeate flux and PEP retention for carbamazepine and 

sulfamethoxazole were investigated [130] to find that permeate flux was lower in FO than in 

PRO mode. The retention of neutral carbamazepine was pH independent of both the 

operation modes, but its retention was lower in PRO mode than in FO. Authors suggested a 

steric barrier as the probable cause for such separation patterns for neutral carbamazepine in 

FO.

Direct contact membrane distillation (DCMD) and FO were studied [131] for the removal of 

estrone and 17β-estradiol. The DCMD showed > 99% for the hormone, > 99.9% for urea, 

and > 99% for ammonia rejections at a constant flux. On the other hand, FO removed 

estrone and estradiol equally, but hormone rejection was affected by the initial feed 

concentrations. The quantity of olive mill wastewater generated from olive oil industries is 

typically ∼5 m3/ton, leaving a high COD (220 g/L) in wastewater, but the presence of 

antibacterial phenolic compounds made it quite difficult to treat [132]. In this case, FO was 

also a useful technique to remove olive mill wastewater discharged from oil extraction 

industries. Another study by Gebreyohannes et al. [133] used a single step FO plant to purify 

olive mill wastewater against 3.7 M MgCl2 draw solution up to the extent of > 98% rejection 

that included biophenols. On the other hand, MBR-based pre-treatment before FO could 

reduce up to 92%, resulting in 30% flux enhancement and the recovery rate was 95% pure 

water permeability with cellulose triacetate (CTA) membranes.

Han et al. [134] developed a hybrid process of FO–coagulation/flocculation (CF) for treating 

textile dye wastewater. FO was used for the spontaneous recovery of water from wastewater 

via FO-CF, which exhibited unique advantages of high-water flux and recovery rate with an 

initial water flux of 36.0 L/m2 h and a dye rejection of 99.9% against 2 M NaCl as the draw 

solution. At high flux rates of around 12.0 L/m2 h, 90% water recovery was achieved from 

the wastewater. The formidable issue regarding the trace containing PhACs from the 

wastewater using FO concentrate remained an unsolved issue. To address this problem, Liu 

et al. [135] designed an integrated FO system with an electrochemical oxidation (ECO) 

referred to as FO with ECO method. A synergistic effect was observed in this hybrid method 

wherein, antibiotic rejections by the FO were increased due to the degradation of antibiotics, 

while ECO was improved by this method (see Fig. 7). Results demonstrate that hybrid 

method has excellent rejection of antibiotics up to 98% by degrading > 99% of PhACs after 

3 h of operation.

Both bench scale and pilot scale applications for landfill leachate treatment containing a 

range of PEPs has been investigated [136] by the FO process by a novel method combining 

activated sludge in hybrid combination with the FO for wastewater treatment and this 

approach has many advantages over other methods. A high rejection rate was achieved from 

FO method by retaining a small amount of PEPs in a biological reactor, thus significantly 

enhancing their retention time in the reactor. However, the recent report on short-term bench 

scale studies [137] indicated that OMBR may be a better alternative for the well-designed 

treatment solution to produce high-quality water.
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Hybrid technologies

Membrane bioreactors (MBRs)

Except for membrane modules and aeration steps, MBR treatment is quite similar to the 

conventional activated sludge (CAS) treatment techniques in which biodegradation and 

separation takes place simultaneously. Radmanovic et al. [138] used both MBR and CAS 

methods to assess the removal efficiency of PhACs at different operating conditions. Among 

them, MBR showed higher PhAC-PEPs removal (∼80%) than the CAS technique. The 

membrane part of MBR typically comprises MF regime (0.4 μm) pores, since the size of 

organic flocs to be separated from wastewater are around 10–100 μm. Even in some cases, 

low MWCO membranes have been used to improve the efficiency of MBRs [139], but the 

use of low, tight membranes increased the energy consumption since their permeability was 

lower than the loose MF membranes that requires high operating pressures. Petrovic et al. 

[140] studied the removal of PhACs using flat sheet (0.4 μm pore size) as well as hollow 

fiber (0.05 μm pore size) membrane modules. The PEPs removal in flat sheet was better than 

hollow fiber membrane module due to higher surface area and lower MWCO of UF offered 

by the hollow fiber module.

MBR units in paper mills have shown exceptional PEPs removal efficiencies when 

combined with MF. Also, dimensions of tubular membranes had an influence on the quality 

of permeate in which 8-mm tubular PVDF membrane installed outside the bioreactor 

drastically reduced the COD [141]. The MBR-treated effluent was re-circulated with no 

detrimental effect on product quality, which saved fresh intake of water from a paper mill for 

bleaching process by 80% and discharge by 50% [141]. In a pilot scale hybrid combination 

of MBR with NF, Li et al. [142] treated textile wastewater containing COD, organic PEPs, 

color, and turbidity to achieve > 90% removal efficiency with a simultaneous water recovery. 

The NF membrane showed considerable fouling due to the presence of protein-like 

substances and a small amount of humic acid (650–6,000 Da). In another study, performance 

of a commercial side stream membrane bioreactor (SSMBR) and submerged membrane 

bioreactor (SMBR) was studied for the treatment of textile wastewater [143]. The SSMBR 

showed COD removal up to > 90%, with a color rejection of 20–90%.

A two-stage MBR system was used [144] under extended sludge age condition to enrich the 

nitrifying bacteria. During the MBR operation, organic removal efficiencies exceeded 90%, 

while the phenolic PEPs such as BPA and 4-methyl-2,6-di-tert-butyl phenol (BHT) were 

removed to the extent of 65% and 75%, respectively. Furthermore, BPA and BHT were 

biodegraded to the extent of 88% and 75%, respectively by the enriched nitrifying sludge. A 

recent review by Besha et al. [145] addressed the PEP separation by a activated sludge and 

MBR processes. The author discussed RO, FO and MBRs methods along with their 

advantages for wastewater treatment. The review also provided an overview of PEPs on the 

microbial activities.

The sludge retention time (SRT) and liquid flux rate control the MBR process. Komesli et al. 

[146] investigated the removal efficiencies of five EDCs (diltiazem, acetaminophen, 

progesterone, estrogen, and carbamazepine) using one full scale and one pilot scale MBR 

plant considering the effect of SRT. Diltiazem was completely removed to the extent of > 
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85%. The carbamazepine was not removed in both the plants, while the removal of 

progesterone and estrogen remained identical in both the plants. The difference in 

performance of full scale MBR and pilot MBR is attributed to the occurrence of vibrations 

on membrane surfaces in full scale applications, which helped to remove the surface 

foulants.

Raghavan et al. [147] studied the removal of 12 antibiotics belonging to 5 different classes in 

an osmotic membrane bioreactor (OMBR). The FO showed > 75% rejection for all the 

antibiotics, but some antibiotics like ciprofloxacin and roxithromycin showed 

biodegradation as a significant removal pathway, while ofloxacin and roxithromycin showed 

the highest biosorption onto activated sludge. Over all, OMBR was effective for treating 

antibiotics from the wastewater. Park et al. [148] studied the effect of addition of two 

coagulants viz., polyaluminium chloride (PACl) and chitosan into MBR system for the 

removal of pharmaceuticals and PPCPs. By adding coagulants, membrane permeability 

increased remarkably 2.3 and 2.8 times for PACl and chitosan, respectively. Chitosan 

showed little effect as a coagulant in PPCPs removal, but PACl showed increased membrane 

efficiency up to 17–23%. Overall, the combination of MBR with coagulation could reduce 

membrane fouling and increase operation time.

On the whole, it appears that MBRs in conjunction with MBSPs are the efficient 

combination for removing PEPs. Among the different membrane processes, FO would be an 

ideal choice as it consumes lesser energy than other MBSPs such as RO and NF. It may be 

concluded that the main processes for biodegradation of emerging PEPs in the MBR system 

is the biodegradation catalyzed by enzymes. In terms of operation conditions, high solid 

retention time, low pH, higher nitrogen loadings and anaerobic conditions seem to favor 

biodegradation. However, longer retention time and unavailability of proper mechanism for 

degradation are some of the shortcomings of this process.

Photocatalytic membranes/reactors (PMs/PMRs)

Photocatalytic membranes (PMs) and photocatalytic membrane reactors (PMRs) have been 

of recent trends to provide greater synergistic advantages for PEPs removal, but these 

methods can be more effective when combined with MBSPs. In such a configuration, 

suspended photocatalysts can mineralize the organics to minimize fouling and enhance the 

membrane efficiency [149]. PMRs comprise of (i) TiO2 powder suspended in the reactors 

and (ii) reactors with the immobilized TiO2 onto the substrate material (e.g., glass, quartz, 

mesoporous materials, stainless steel or polymers) [150]. In the latter, location of where the 

photocatalyst is impregnated onto the support has some drawbacks. These drawbacks restrict 

the mass transfer and block the active surface, resulting in lesser access to irradiation and 

reaction mixture as well as the possibility of catalyst deactivation.

Among the various types of membrane reactors described in this review, PMRs are 

particularly interesting because it combines the advantages of classical photoreactors and 

membrane processes. Some of the main advantages of PMRs include simplification of 

cleaning/purification, no sludge production, and saving of chemicals as well as energy that 

make their utilization in the treatment of PEPs more attractive. Investigations have been 

made on both the configurations of PMRs, depending on the type of membrane modules. 
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Among these, the submerged membrane photoreactors have been successfully used for 

obtaining high-quality water, as depicted in Fig. 8 [151].

The design of self-cleaning membranes for eco-friendly separation have met with a limited 

success. The PMRs that simultaneously separate and mineralize the organic PEPs in the feed 

stream have the better potential as self-cleaning membranes. Thus, TiO2-based PMs have 

shown advantages such as anti-fouling ability due to photocatalytic degradation of foulants 

and confining PEPs within the photocatalytic chamber. Photocatalysts also could offer high 

flexibility to suit to various membrane modules for industrial applications. Moosemiller et 

al. [152] performed concurrent membrane separation and TiO2-based photocatalytic 

oxidation processes simultaneously using γ-Al2O3 and TiO2 supported ceramic membranes 

and found them to be more stable [153].

Compared to other semiconducting metal oxides, TiO2 received the greater attention due to 

its excellent characteristics to photodegrade organic PEPs present in contaminated water in 

the presence of UV light irradiation. The TiO2/polymer composite photocatalytic 

membranes have multi-functional properties such as ability to photocatalytically remove the 

fouling of PEPs on membrane surface, the ability of high disinfection to produce clean water 

from wastewater at a high membrane-flux with a low fouling potential. Such composite 

membranes have excellent aqueous stability for efficient and large-scale water-treatment 

applications. For instance, TiO2 nanostructures (0D to 3D) functionalized with various 

polymeric membranes via different strategies were investigated to understand the removal 

efficiency of various PEPs under different light sources (see Table 4). The higher removal 

efficiency of photocatalytic composite membrane was attributed to a synergistic effect 

between the polymeric membrane and nano-TiO2, well-designed morphological structures, 

excellent stability of composite membrane, high catalytic activity and recyclability.

Ceramics are a special class of membrane materials that are prepared by electrospinning, 

coating, hot-pressing, sol–gel, hydrothermal synthesis-filtration, grafting, electrochemical 

deposition, as well as by various other methods followed by etching and anodizing TiO2 film 

onto suitable supports [154]. The photocatalytic efficiency of TiO2-PMs can be improved via 

doping with WO3 such as silicon (Si). Doping TiO2 with Si is an efficient way to enhance 

photocatalytic capability, thermal and mechanical stability, quantum-size effect and surface 

wettability of the photocatalyst [155]. Further, Ag-doped TiO2 has been able to exhibit 

improved photocatalytic efficiency and bactericidal capability [156]. On the other hand, 

TiO2 doped with tungsten showed enhanced visible light absorption by narrowing the energy 

band gap, thereby increasing the possibility for solar photocatalysis [157]. Thus, doping with 

tungsten or combining with WO3 could impart better band gap reduction, leading to better 

photochemical degradation. Several PhACs and their active metabolites have been treated 

efficiently by both PMRs and PMs. Molinari et al. [158] utilized the combined 

polycrystalline TiO2 and NF processes with different membranes for photocatalytic 

degradation of PhACs like furosemide, ranitidine (hydrochloride), ofloxacine, phenazone, 

naproxen, carbamazepine and clofibric acid in a PMR process. However, the rejection values 

of any of these PEPs did not exceed 30%, suggesting that the method used is not effective 

for the separation.
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In the past, PMs have been studied for removing humic acids [154], textile dyes [159], and 

bacterial disinfection [160], but some limited studies are available on the remediation of 

PhACs. One of the most relevant studies on the removal of PhACs by PMs was reported 

[161], wherein TiO2 nanofibers integrated with stainless-steel filters were used for the 

complete removal of PEPs such as antihistamine and cimetidine drugs through a 

photocatalytic process. Electrospun TiO2 nanofibers were integrated into the stainless-steel 

filter through hot pressing with a PVDF nanofiber as an interlayer or a binder with > 99% 

removal of PEPs. Here, the presence of suitable binding layer has reduced the contact 

between PhACs and TiO2 layer, thereby giving increased flux. Such composite membranes 

are highly suitable for photocatalytic degradation of organic PEPs [162,163] due to the rapid 

charge separation in electron-transfer processes. Different metal oxides and carbon materials 

have been coupled with polymer membrane supports by numerous researchers and they 

studied the photocatalytic composite membranes for the removal of various environmental 

pollutants and the results are presented in Table 4.

Concluding remarks and future trends

Innumerable studies in recent years have witnessed the presence of aggressive PEPs in water 

sources and this has created adverse effects on human health, hygiene and ecology. This 

situation has created continued pressure on researchers to develop newer water treatment 

technologies since natural attenuation and conventional treatment processes are not suitable 

to remove all the emerging PEPs. An overview of the state-of-the-art technologies based on 

MBSPs that are available to remove the toxic PEPs from wastewater sources at an affordable 

price is need of the present scenario. The PEPs are originated in many different groups such 

as synthetic chemicals, pharmaceutically active compounds, naturally occurring constituents 

and biological species such as microorganisms, etc. Therefore, their treatment technologies 

vary widely depending on the nature of the effluent.

Among the many conventional methods, MBSPs, predominantly NF and RO techniques, 

have proven to be suitable for removing many PEPs. In some situations, a hybrid technology 

may be more relevant. The recently developed hybrid MBR and FO techniques in 

combination with methods such as AOPs and PMs/PMRs have become quite popular in the 

present scenario. It is realized that despite several inherent limitations, the MBSPs are quite 

effective to achieve the removal efficiencies compared to other conventional water treatment 

technologies. The main trends in this field are highlighted along with the recommendations 

for further improvements/developments in the current status along with knowledge gaps and 

future directions.

Thousands of pharmaceuticals are produced every year of which only < 5% are detected for 

treatment. These include preservatives, antioxidants and flavorants used in cosmetics are the 

lesser studied PEPs in WWTPs. Therefore, more efforts are needed on treatment approaches 

including their toxicities, detection, separation and degradation. FO is another promising 

technology that has not yet been widely explored. The energy consumption in FO is much 

lesser than RO and NF being used for this purpose. Hence, future work should focus on 

improving the efficiency by developing newer membranes and integrating along with it some 

novel hybrid technologies such as AOP and other techniques.
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Conducting a comparative study on the treatment of emerging wastes from the wastewater 

sources, though is a formidable task, yet more efforts are needed to develop different 

filtration technologies that can provide reliable data at a lesser cost. Another issue is that 

majority of the reported studies have been conducted in the laboratories, and mostly these 

are limited to a single component pollution approach in aqueous media. Therefore, problem 

still exists to direct use such data on a commercial scale. Majority of studies have performed 

experiments using synthetic wastes, but more research efforts are needed using the real 

wastewater or other complex real case scenarios to address the problem for their better 

commercial exploitation. We also realize that no single MBSPs is efficient in the removal of 

complex PEPs, but MBSPs coupled with AOPs, carbon adsorption, MBRs, etc., could 

complement each other to achieve maximum separation. In any case, it is important to 

involve multi-disciplinary scientists, technical cooperation, policymakers and stakeholders to 

strengthen the emerging PEPs detection, separation and degradation at the global level.
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Abbreviations:

PEO poly(ethylene oxide)

MB methylene blue

PVDF polyvinylidene difluoride (PVDF)

PSF polysulfone

PVDF-TrFE poly[(vinylidenefluoride-cotrifluoroethylene]

PVC polyvinyl chloride

AT-POME aerobically treated palm oil mill effluent

PAN-PDA polyacrylonitrile-polydopamine

PI polyimide

PVDFTrFE poly(vinylidenefluoride-trifluoroethylene)

BPA bisphenol A

PEI poly(ether imide)

PES poly(ether sulfone)

PVA polyvinylalcohol
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PM photocatalytic membranes

PMRs photocatalytic membrane reactors

AO 7 acid orange 74

O-CP orthochlorophenol

M-NP M-Nitrophenol

MO methyl orange

CA-PU cellulose acetate-polyurethane

RR 11 reactive red

RO 84 reactive orange

DR 28 direct red

DY 4 direct yellow

DB 4 direct blue

GO graphene oxide

BSA bovine serum albumin

s-PBC sulfonated pentablock copolymer

PDA polydopamine

GQDs graphene quantum dots

g-C3N4 graphitic carbon nitride

NOx nitrogen oxides

WWTP waste water treatment plants

PCBs polychlorinated biphenyls

PAHs polyaromatic hydrocarbons

PAN poly(acrylonitrile)

PSA poly(sulfone amide)

PES poly(ether sulfone)

PVDF poly(vinylidene fluoride)

BPA bisphenol A

CA cellulose acetate

PTFE poly(tetrafluoroethylene)
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TTIP titanium tetra-isopropoxide

SDS sodium dodecyl sulphate

CTAB cetyltrimethylammonium bromide

ECO electrochemical oxidation

NOR norfloxacin

OFL ofloxacin

ROX roxithromycin

APIs active pharmaceutical ingredients

IPU diisopropylurea

PFOS perfluro octane sulfonates

THM trihalomethanes

MTBE methyl tertiary butyl ether

PFOS perfluro octane sulfonates

DA dopamine

PEM polyelectrolyte multilayer

PAH poly(allylamine hydrochloride)

PAA poly(acrylic acid)

NDMA N-nitrosodimethylamine

SPE solid phase extraction

CP cyclophosphamide

AOP-RO advanced oxidation reverse osmosis

EDCs endocrine disrupting chemicals

NDMA N-nitrosodimethylamine

HAAs haloacetic acids

CAS conventional activated sludge

MBR membrane bioreactors

SSMBR side stream membrane bioreactor

SMBR submerged membrane bioreactor

OMBR osmotic membrane bioreactor
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PACl polyaluminium chloride
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Fig. 1. 
Typical sources of PEPs. Reprinted with permission from Ref. [8], copyright (2016) 

Elsevier.
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Fig. 2. 
The yearly production indicators of PEPs with environmental impact (million tons) 

assessment [re-drawn from http://ec.europa.eu.
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Fig. 3. 
MBSP spectrum including process name, size range and potential solute rejected over the 

prescribed range of pores. Reprinted with permission from Ref. [27], copyright (2016) Royal 

Society of Chemistry
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Fig. 4. 
Summary of micro-PEPs removal during (a) UF and (b) RO treatment. Reprinted with 

permission from Ref. [70], copyright (2013) Elsevier.
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Fig. 5. 
Hybrid NF combined with adsorption/AOP used for wastewater treatment. Redrawn with 

permission from Ref. [89], copyright (2014) Elsevier.
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Fig. 6. 
Schematics of FO-RO hybrid system. Reprinted with permission from Ref. [121], copyright 

(2014) Elsevier.
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Fig. 7. 
Schematics of FOwEO process showing enhanced rejection and elimination of antibiotics 

simultaneously. Reprinted with permission from Ref. [135], copyright (2015) Elsevier.
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Fig. 8. 
Submerged membrane photocatalytic reactor. Reprinted with permission from Ref. [151], 

copyright (2006) Elsevier.
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Table 1

Concentration of various PEPs in effluents and their removal by wastewater treatment plants (WWTP). (data 

compiled from Ref. [2])

Types of PEPs Chemical name Concentration (μg/L) in effluent % Removal rate by WWTP*

Phthalates Diethyl phthalate 19.64 96.5

Dibutyl phthalate 12.44 95.8

Benzyl butyl phthalate 9.17 92.4

Di-(-2-ethyl hexyl) phthalate 39.68 90.2

Di methyl phthalate 2.07 71

Psyco-stimulants Caffeine 56.63 96.9

Paraxanthin 2.07 71

Desinfectants Triclosan 0.85 76.8

Cosmetics Galaxolide 4.28 76.2

Tonalide 0.87 76.2

Diuretics Furosemide 0.41 59.8

Hydrochloro thiazide 2.51 53.2

Diatrioate 3.3 0.2

β-Blockers Metoprolol 1.53 55.8

Propanolol 0.19 48.5

Sotalol 1.66 52.6

Analgesics and anti-inflammateries Ibuprofen Ketoprofen 13.4 0.48 74.2 31.1

Ketorolac 0.41 44

Clofibric acid 0.21 39.1

Antiepileptics Antipyrin 0.04 32.5

Codein 2.86 32.5

Diclofenac 1.04 34.6

Antibiotics Doxycyclin 0.65 35.4

Norfloxacin 0.11 54.3

Sulfamethoxazole 0.32 17.5

Trimethoprim 0.43 1.4

*
WWTP/STP =Waste Water Treatment Plants.
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Table 2

Qualitative rejection values for various PEPs. Reprinted with permission from Ref. [98], copyright (2007) 

Elsevier.

PEPs Molar mass (g/mol) Rejection (%)

Hormones 17 β-Estradiol 272 85–100

17 α-Ethinylestradiol 296 n.a.

Estrone 270 60–90

Progesterone 314 90–100

Testosterone 288 80

Industrial chemicals Bisphenol A 228 70

p-Dimethyl phthalate 194 65–80

p-Diethyl phthalate 222 65–80

Nonyl phenol 220 70–90

MTBE 88 89.6

PFOS 152 97

Pesticides Atrazine 216 68–98

Simazine 202 75–93

Chloropyrifos 350 > 99

Pharmaceuticals Primidone 218 72–87

Carbamazepin 236 93

Ibuprofen 206 30–95
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Table 3

TiO2-based hybrid photocatalytic membranes used for the removal of various PEPs.

Target pollutant Membrane type Light source % Removal Ref.

Alkaline MB PEO Xe-mercury - [164]

MB PAN-PDA 150 W Vis. Light 90.00 [169]

MB PVDF/ZnO (300 W Xenon) Vis. Light 80.00 [171]

MB PVDF-TrFE UV light 100.00 [183]

MB PVA/bentonite No light 94.00 [179]

Tetrazine PVDF-TrFE Sun light 77.77 [165]

Acidic Acid orange 7 Quartz fiber UV light [173]

Acid orange 7 PEI UV light 90.40 [174]

Acid orange 7 PVA/bentonite No light 85.00 [179]

Phenolic Phenol PSF 50 W 74.00 [180]

BPA PVDF Halogen UV light 85.00 [172]

BPA PSF Vis. Light 92.30 [176]

2,4-dichlorophenol PES Vis. Light 63.74 [175]

Azo compound Congo-red PVC UV light 95.00 [166]

Fluorescent Eosin yellow PSF Vis. Light 92.00 [167]

Miscellaneous AT-POME PVDF UV light 67.30 [168]

Toluene PI UV light 74.96 [170]

Oil-water separation PVA UV light 99.00 oil rejection [177]

Cr (VI) Chitosan Vis. Light 54.00 at pH 4 [178]

CO2 reduction PVDF UV light 19.80 μmol/ [181]

Bromate Bromate UV light Gcatalyst/hour > 90.00 [182]
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Table 4

Metal oxides and nanocarbons-based composite photocatalytic membranes used for the removal of PEPs.

Membrane type Target PEPs Light source Removal (%) Ref.

ZnO/PAN MO UV light 99 [184]

ZnO/CA-PU RR 11 UV light 98 [185]

RO 84 90

ZnO/PES MB UV light 70 [186]

Halloysite/PVDF DR 28 Vis. Light 86.5 85 [187]

DY 4 93.7

DB 4

WO3/membrane-coated stainless meshes MB UV light 99.9 [188]

H4SiW12O40/CA Tetracycline 300 W 63.8 [189]

MB mercury lamp 94.6

Ag3PO4/PAN MB 200 W 98 [190]

mercury light

CuMn2O4/ceramic membrane Benzophenone-3 UV light 81.1 [191]

SiO2on SiC substrate MB UV light 72 [192]

GO-TiO2/PVDF BSA UV light 92.5 [193]

GO/s-PBC MB MO UV light 88 70 [194]

rGO-g-C3N4/CA-PDA MB Vis. Light 99.8 [195]

GO/Triethanolamine- TiO2 Congo Red UV light 68 [196]

g-C3N4/Carbon fabric NOx Vis. Light 64 [197]

Bi2O2CO3-MoS2/Carbon fabric NO Vis. Light 68 [198]

g-C3N4-CNTs/Al2O3 membrane Phenol Vis. Light 94 [199]
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