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Abstract Using computer simulations, we generate cell-specific 3D chromosomal structures and

compare them to recently published chromatin structures obtained through microscopy. We

demonstrate using machine learning and polymer physics simulations that epigenetic information

can be used to predict the structural ensembles of multiple human cell lines. Theory predicts that

chromosome structures are fluid and can only be described by an ensemble, which is consistent

with the observation that chromosomes exhibit no unique fold. Nevertheless, our analysis of both

structures from simulation and microscopy reveals that short segments of chromatin make two-

state transitions between closed conformations and open dumbbell conformations. Finally, we

study the conformational changes associated with the switching of genomic compartments

observed in human cell lines. The formation of genomic compartments resembles hydrophobic

collapse in protein folding, with the aggregation of denser and predominantly inactive chromatin

driving the positioning of active chromatin toward the surface of individual chromosomal

territories.

Introduction
The 3D spatial organization of the chromosomes in the nucleus of eukaryotic cells appears to be

cell-type-specific (Rao et al., 2014; Dixon et al., 2012; Dixon et al., 2015; Rowley et al., 2017;

Dekker and Heard, 2015; Yu and Ren, 2017; Tang et al., 2015). What determines this cell- type-

specific organization and how that organization relates to patterns of gene expression remain crucial

questions in structural genomics.

DNA–DNA ligation experiments have revealed spatial compartmentalization, generally termed A/

B compartmentalization (Lieberman-Aiden et al., 2009), and CTCF-mediated loop domains. It was

observed that the A compartment chromatin contains a larger amount of the expressed genes while

the B compartment chromatin is less transcriptionally active. Similar A/B compartmentalization has

been observed across human cell lines (Rao et al., 2014; Dixon et al., 2012; Dixon et al., 2015) as

well as in other species (Dixon et al., 2012; Rowley et al., 2017; Dudchenko and Shamim, 2018;

Sexton et al., 2012; Eagen et al., 2015; Zhang et al., 2012), suggesting that compartmentalization

is a conserved feature of genome organization across evolution. While single-cell structures can be

interrogated using proximity ligation assays (Nagano et al., 2013; Stevens et al., 2017; Tan et al.,

2018), high resolution has so far only been achieved through ligation methods when the
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experiments are performed over a large population of cells, thus averaging over the respective indi-

vidual 3D structures.

Recent microscopy approaches have begun to reveal the 3D structures of segments of chromatin

longer than a megabase at a spatial resolution on the nanometer scale (Bintu et al., 2018;

Boettiger et al., 2016; Nir et al., 2018; Beliveau et al., 2015). These approaches not only allow for

the quantification of pairwise and higher-order interactions between loci, but also allow some quan-

tification of the structural variability in a population of cells. One consistent observation from the

imaging approaches, as well as from single-cell DNA–DNA ligation experiments (Nagano et al.,

2013; Stevens et al., 2017; Tan et al., 2018; Finn et al., 2019), has been the high degree of struc-

tural variability seen within an apparently homogeneous population of synchronized cells of a single-

cell type. Despite this variability, well-defined cell-type-specific DNA–DNA ligation maps for the

ensemble emerge after population averaging the single-cell results.

The high degree of structural variability observed for chromatin necessitates structural models

that go beyond a single energetic basin; without the existence of a native structure, Elastic Network

Models (Atilgan et al., 2001) are likely not appropriate. Polymer models (Barbieri et al., 2012;

Jost et al., 2014; Gürsoy et al., 2017; Brackley et al., 2016; Tjong et al., 2012; Nuebler et al.,

2018; Zhang and Wolynes, 2015; Di Pierro et al., 2016; Wong et al., 2012; MacPherson et al.,

2018) that describe the process of chromosome organization have been proposed. In particular, the

Minimal Chromatin Model (MiChroM) has been shown to accurately predict the population-averaged

DNA–DNA ligation maps (Di Pierro et al., 2016; Di Pierro et al., 2017; Di Pierro et al., 2018;

Contessoto et al., 2019). Chromosomes are described as polymers subject to interactions which

depend on the chromatin biochemical composition and on the genomic distance separating any two

loci (Di Pierro et al., 2016). Genomic distance-dependent interactions recapitulate the effect of

motors acting along the DNA polymer and result in lengthwise compaction of chromatin. Interac-

tions depending on chromatin biochemical composition recapitulate transient binding among chro-

mosomal loci and result in the emergence of compartmentalization through a process of phase

separation, in which chromatin of the same biochemical type preferentially co-localizes. The propen-

sity toward phase separation for chromosomes of human lymphoblastoid cells can be reliably pre-

dicted using epigenetic marking data (Di Pierro et al., 2017), suggesting that the information

contained within the 1D epigenetic marking patterns decorating the chromatin polymer is sufficient

to predict the ensemble of 3D chromosome structures. A neural network called

MEGABASE (Di Pierro et al., 2017) was trained to quantify the statistical relationship between the

experimental sub-compartment annotations and the histone methylation and acetylation markings

tracks, as assayed using chromatin immunoprecipitation data. Once trained, MEGABASE can be

used to predict the compartmentalization patterns of a chromosome using a set of epigenetic ChIP-

Seq tracks as the sole input. Combining MEGABASE and MiChroM, we are able to simulate the

structural dynamics of chromosomes.

We first use the MEGABASE+MiChroM computational pipeline (Di Pierro et al., 2017) to predict

the 3D ensemble of chromosomal structures for several well-studied cell types: HMEC, HUVEC,

IMR90, K562, HeLa-S3, and H1-hESC. To test these simulated 3D ensembles, we then generate

ensemble averaged simulated ligation maps that are compared directly to population-averaged

DNA–DNA ligation maps (Rao et al., 2014; Dixon et al., 2012). For the cell lines IMR90 and K562,

we also use energy landscape tools to analyze the structures obtained through diffraction-limited

microscopy by Bintu et al., 2018 for short ~2 Mb segments of chromatin and compare the experi-

mental structural ensembles directly with the corresponding regions of the simulated chromosome

21 for IMR90 and K562. This comparison shows that not only the population averages but also the

structural heterogeneity that is observed in human chromosomes in the interphase are consistent

with our energy landscape model. Chromosomes do not adopt a single structure in the interphase,

but rather, exhibit a high structural variability characteristic of a phase-separated liquid. We provide

a detailed characterization of this structural heterogeneity for the experimentally imaged and simu-

lated segments of chromatin using a collective variable commonly used to quantify structural similar-

ity in protein folding theory. For a gene-rich chromatin segment, we uncover two dominant clusters

of structures in both the experimental and simulated structural ensembles: closed structures and

open dumbbell-like structures. The transition from a closed structure to an open dumbbell appears

to be governed by a two-state process with an apparent free energy cost of about four times the

effective information theoretic temperature. For a gene inactive segment, structural analysis reveals
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highly disordered structures that lack domain boundaries. Additionally, we further examine the struc-

tural differences between whole chromosomes belonging to different cell types. The simulations

show that inactive segments of chromatin move to the interior of the chromosome, while gene active

chromatin moves to the chromosome surface. This effect appears to be driven by the favorable

effective interactions between loci belonging to the B compartment, which forms a stable interior

core; a phenomenon reminiscent of the hydrophobic collapse much studied in protein folding.

Results and discussion

A polymer model of chromatin based on epigenetic features captures
chromosome organization across different cell types
We previously developed a computational pipeline that can predict the 3D ensemble of chromo-

some structures by using chromatin immunoprecipitation tracks for histone modifications as input

(Di Pierro et al., 2017). This approach was successfully used to predict the 3D chromosome struc-

tures for human lymphoblastoid cells (GM12878) using the experimental ChIP-Seq tracks for 11 his-

tone modifications (Di Pierro et al., 2017), that is H2AFZ, H3K27ac, H3K27me3, H3K36me3,

H3K4me1, H3K4me2, H3K4me3, H3k79me2, H3K9ac, H3K9me3, and H4K20me1. Predicted chromo-

some structures for human lymphoblastoid cells (GM12878) were found to be consistent with both

DNA–DNA ligation and fluorescence in situ hybridization (FISH) experiments (Rao et al., 2014).

Here we generate predictions beyond GM12878 to other well- studied cell lines for which we have

found sufficient epigenetic marking data.

Using the MEGABASE neural network, which was previously trained using data from GM12878,

and sourcing from the Encyclopedia of DNA Elements (ENCODE) database the ChIP-Seq tracks for

the same 11 histone modifications previously used, sub-compartment annotations for all the auto-

somes of cell lines were generated that had never been used in the training phase of the neural net-

work. These sequences of sub-compartment annotations, or chromatin types, then serve as input for

molecular dynamics simulations using the Minimal Chromatin Model (MiChroM) (Di Pierro et al.,

2016). Using this combined approach, the chromosomal structural ensembles for six additional cell

lines were generated: human fetal lung cells (IMR-90), human umbilical vein endothelial cells

(HUVEC), immortalized myelogenous leukemia cells (K562), human mammary epithelial cells (HMEC),

human embryonic stem cells (H1-hESC), and HeLa-S3 cells.

For each cell type, averaging the simulated ensemble generates in silico DNA–DNA ligation

maps, which are consistent with those determined experimentally. Figure 1 shows the comparison

between simulated and experimental maps for IMR90 (Figure 1A), HUVEC (Figure 1B) and K562

(Figure 1C), demonstrating quantitative agreement. Corresponding comparisons of the compart-

mentalization patterns are also provided in Figure 1—figure supplements 1–3 for additional cell

types HMEC, H1-hESC, and HeLa-S3, as well as for GM12878 in Di Pierro et al., 2017. In particular,

the Pearson’s R between the simulated and experimental maps of matching cell type as a function of

genomic distance shows that the long-range patterns of compartmentalization are captured over

tens of mega-bases. To establish a term of comparison we calculated the Pearson’s R between the

experimental DNA–DNA ligation maps of mismatching cell types. While the experimental observa-

tions on different cell lines do correlate with each other, computational modeling delineates the dif-

ference between cell type and appears to best match the experimental map when the cell types of

simulation and experiment are matched up. This last result demonstrates that the present theoretical

model discriminates well between different cell lines. Further, the Pearson’s R as a function of geno-

mic distance demonstrates high quantitative agreement for matching cell types, comparable to the

agreement between two biological replicates for the GM12878 ligation maps (Rao et al., 2014).

Additional comparisons between the experimental and simulated maps are shown in Figure 1—

figure supplement 5. In particular, the scaling of the contact probability with genomic distance (Fig-

ure 1—figure supplement 5) appear to suggest that the chromosomes are denser in experiment

than in the simulations for the cell lines HUVEC and H1-hESC. It is important to note that the simula-

tions are not re-trained for the different cell line predictions; rather, all of the simulations are per-

formed with a chromatin volume fraction of 0.1 (See Materials and methods for more details).

While we have focused so far on the spatial organization of entire chromosomes on the microme-

ter length scale, for a better comparison with the structures of chromosome 21 of IMR90 and K562
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Figure 1. Prediction of chromosome structures for differentiated cell lines and for immortalized leukemia cells. The 3D ensemble of chromosome

structures was predicted for the cell types (A) IMR90, (B) HUVEC, and (C) K562 using the ChIP-Seq histone modification tracks for the respective cell

lines found on ENCODE—shown are the structural predictions for chromosome 2. As validation, the chromosome structures were compared with the

DNA–DNA ligation experiments of Rao et al., 2014, where the simulated map is shown on the bottom left triangle and the experimental map is shown

on the top right triangle. The datasets are visualized using Juicebox (Durand et al., 2016). The MEGABASE chromatin type annotation is shown as a

color vector under the contact probability map, followed by the A/B compartment annotation (Rao et al., 2014) for the simulated map (red) and the

experimental map (black), respectively. The Pearson’s R between the simulated and experimental contact maps for fixed genomic distances are plotted

for the cell types IMR90, HUVEC, and K562, respectively, in thick lines. The Pearson’s R between the experimental maps of mismatching cell types are

also shown with thin lines—See Legend. The shaded region highlights that at relatively short genomic distances (<10 Mb), excluding CTCF-mediated

loops from the simulation results in disagreement between the simulated and experimental maps. When loops are included in the simulations, the

agreement between the simulation and experiment is recovered at the short genomic distances. (D) Pearson’s R as a function of genomic distance is

plotted between the experimental map for chromosome 21 (IMR90) and MiChroM simulation with loops (thick red line) and without loops (thin red line).

(E) A matrix of Pearson’s R between the AB annotation of the experimental ligation map and the simulated contact maps for different cell types,

respectively. The high Pearson’s R signifies the consistency between the simulated maps and the experimental DNA–DNA ligation maps. Additional

comparisons between simulated and experimental DNA–DNA ligation maps are shown for cell lines HMEC, H1-hESC, and HeLa-S3 in Figure 1—figure

supplements 1–3, respectively. A matrix of Pearson’s R between the AB annotation of the experimental ligation maps for different cell types is shown

in Figure 1—figure supplement 4.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Prediction of chromosome structures for HMEC.

Figure supplement 2. Prediction of chromosome structures for H1-hESC.

Figure supplement 3. Prediction of chromosome structures for HeLa-S3.

Figure 1 continued on next page
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obtained from microscopy (Bintu et al., 2018), we have also incorporated in the polymer physics

simulation the loops mediated by the activity of the protein CTCF.

Figure 1D shows that the inclusion of CTCF-loops, which are easily be incorporated into the

model, improves the quality of the results for the short range features of chromosome organization

within 10 Mb in genomic distance; at larger length scales the model appears to be completely insen-

sitive of CTCF-mediated loops. To date, we have only examined the effect of the absence or pres-

ence of loops on the chromosome structural ensemble. A more detailed treatment of the short

ranged chromatin contacts, particularly of many-body chromatin interactions (Perez-Rathke et al.,

2020), has been shown to be important in recapitulating the organization of short segments of chro-

matin between 500 KB and 1.9MB in length.

Figure 1E shows the Pearson’s R between the AB annotation vectors derived directly from the

DNA–DNA ligation maps and those obtained from MiChroM simulations for different cell types. The

diagonal of Figure 1E corresponds to the Pearson’s R between AB annotations derived from experi-

ment and simulation of matching cell types. The simulated and experimental annotations for the

same cell types agree well with each other. Figure 1—figure supplement 4 shows the Pearson’s R

between AB annotations derived from experiment alone for the different cell types. Notably, the

high degree of correlation between the myelogenous leukemia cell line K562 and human lympho-

blastoids (GM12878) maps observed in Figure 1E is apparent from DNA–DNA ligation maps alone

(Figure 1—figure supplement 4). The agreement between the simulated and experimental A/B

annotations is the highest quality (Pearson’s r ~ 0.9) for the DNA–DNA ligation maps of GM12878,

which is not surprising since the GM12878 has an order of magnitude more reads than any other

map and consequently has the highest resolution.

Taken together, these results demonstrate that long-range compartmentalization observed in the

DNA–DNA ligation maps is well captured by the simulated structural ensembles for these well-stud-

ied cell lines using only information about the epigenetic marking patterns as input.

Chromatin structural ensembles from DNA-tracing reveal coexistence
of open and closed structures
Recent developments in DNA-tracing have allowed the direct experimental determination of three-

dimensional structures using diffraction-limited and super-resolution microscopy (Bintu et al., 2018;

Boettiger et al., 2016; Nir et al., 2018; Beliveau et al., 2015). DNA-tracing is a technique that

labels consecutive stretches of DNA with optical probes, which can be used to spatially resolve the

positions of those probes using microscopy. It has become increasingly clear that unlike the situation

for folded globular proteins, which typically can be reasonably well approximated for many purposes

by a single native structure corresponding to the average conformation, chromatin appears to be

highly dynamical and cannot be characterized by any single conformation. The heterogeneity of the

chromosomal structural ensembles was first suggested by the analysis of the free energy landscape

of chromosomes (Zhang and Wolynes, 2015; Di Pierro et al., 2016) and has been indirectly

observed through single-cell DNA–DNA ligation experiments (Nagano et al., 2013; Stevens et al.,

2017; Tan et al., 2018; Finn et al., 2019). The heterogeneity has now been confirmed by direct

imaging of individual chromosomal structures (Bintu et al., 2018; Boettiger et al., 2016; Nir et al.,

2018). As a consequence of this conformational plasticity, statistical ensembles (Zhang and

Wolynes, 2015; Di Pierro et al., 2016; Di Pierro et al., 2017; Di Pierro et al., 2018; Zhang and

Wolynes, 2016; Di Pierro, 2019; Goundaroulis et al., 2020; Bascom et al., 2019; Dekker et al.,

2013; Kalhor et al., 2012) must be used in order to describe chromosomal structures in vivo.

In order to improve our understanding of the genomic structural ensembles, we characterize the

structural heterogeneity of chromatin that was imaged using microscopy. We focus on the traced

structures of Bintu et al., 2018, who obtained hundreds of images structures for short ~2 Mb seg-

ments of chromatin belonging to chromosome 21. These regions are 29.37–31.32 Mb (referred to

here as Segment 1) of IMR90 and K562 cell types and 20.0–21.9 Mb (referred to as Segment 2) of

Figure 1 continued

Figure supplement 4. A matrix of Pearson’s R between the AB annotation of the experimental ligation maps for different cell types.

Figure supplement 5. Comparison of the experimental and simulated DNA–DNA ligation maps: power law scaling and scatter plot.
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IMR90. Only structures where the positions of over 90% of the loci were resolved are used in the

present analysis. There are then 692 usable structures for IMR90 Segment 1, 244 usable structures of

K562 Segment 1, and 752 usable structures of IMR90 Segment 2.

As previously reported (Bintu et al., 2018; Boettiger et al., 2016; Nir et al., 2018), the traced

structures can be used to generate a population-averaged contact maps, which turn out to be con-

sistent with DNA–DNA ligation maps. Shown in Figure 2—figure supplement 1 are the averaged

contact maps for the chromatin Segments 1 (IMR90 and K562) and Segment 2 (IMR90), respectively.

Nevertheless, information is lost when converting from a 3D structural ensemble to a 2D contact

map.

Focusing on the structural details that cannot be found in a contact map, we make a close exami-

nation of the types of structures observed in the tracing dataset using a collective variable commonly

used in studying protein folding landscapes, Q, which quantifies the structural similarity between

two structures a and b (Eastwood and Wolynes, 2001):

Qab ¼
1

N i<j

X

exp �
r
ðaÞ
ij � r

ðbÞ
ij

� �2

2d2

0

B

@

1

C

A

0

B

@

1

C

A
(1)

where r
að Þ
ij and r

ðbÞ
ij are the distances between chromatin loci i and j in structures a and b:, respec-

tively, N is the number of pairs of loci included in the summation, and d¼ 0:165�m is the resolution

length scale for which deviations in the distances between structures a and b are treated as being

similar. The Q between any two structures ranges from 0 (dissimilar) to 1 (identical) over the entire

set of pairwise distances between loci. The parameter Q is not solely based on contacts; a pair of

chromatin loci can contribute to Q even if they are not spatially proximate if they are separated in

both structures by a similar distance as set by d. In this way, Q measures structure more stringently

than a simple contact map does.

Using 1� Q to define the distance between any two structures, hierarchical clustering of the

traced structures for Segment 1 was applied to identify clusters having distinct structural features.

These cluster sub-ensembles can be considered distinct conformational states. To see whether the

Segment 1 structures for IMR90 and K562 exhibit a high degree of structural similarity, we combined

their datasets before clustering.

When applied to the 936 combined experimental structures for Segment 1, the clustering algo-

rithm yields three distinct clusters. These correspond to a closed dumbbell (Cluster 1), an open

dumbbell (Cluster 2), and a highly dense chromatin state (Cluster 3) shown in Figure 2. The closed

dumbbell, where the head and tail globular domains are in contact with one another, is the domi-

nant state observed for Segment 1 in both IMR90 and K562, accounting for 97.4% of the imaged

structures (Nclosed ¼ 912). Cluster 1 can further be sub-divided into subgroups 1a, 1b, 1 c, and 1d

(Figure 2), which account for 75.5% of the structures in Cluster 1. The subgroups appear to capture

various stages of the process of opening. The structures in subgroup 1b are fully collapsed, while

structures in 1a, 1c, and 1d capture the progressive opening of the closed dumbbell. The distribu-

tion of the radius of gyration for structures belonging to sub-clusters 1a-1d is shown in Figure 2—

figure supplement 2. The open dumbbell structures where the head and tail domains have dissoci-

ated from one another, account for approximately 1.8% of the imaged data (Nopen ¼ 17 ). Addition-

ally, seven dense, highly compact structures were identified from clustering. Representative

structures from the three clustered structural groups are shown in Figure 2 and the corresponding

population-averaged contact maps are shown in Figure 2B and C for the closed and open struc-

tures, respectively.

The high density chromatin, cluster 3, which was found when imaging both Segment 1 and Seg-

ment 2 (Bintu et al., 2018), is characterized by an extraordinarily high density of DNA

~ 2� 10
3mg=ml , as estimated for naked dsDNA. For comparison, the density of heterochromatin

that is estimated using microscopy data is ~ 200mg=ml (Imai et al., 2017); for this reason, we believe

that these chromatin conformations are likely artifacts of the experimental protocol. We therefore

have excluded Cluster three from further analysis.

Assuming that the opening of the chromatin Segment 1 is in an effective thermodynamic equilib-

rium would imply a relative stability of log Nclosed=Nopen

� �

¼ Eopen � Eclosed ~ 4kBT, where Eopen � Eclosed is
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Figure 2. Hierarchical clustering and the detailed structural analysis of traced Segment 1. (A) The dendrogram representation of the hierarchical

clustering of Segment 1 (chr21 29.37–31.32 Mb for IMR90 and K562 of Bintu et al., 2018), where 1� Q is used as the distance between two structures.

The clustering reveals three main clusters: closed dumbbell, open dumbbell, and highly dense structures. Further analysis of Cluster 1 reveals the

presence of sub-clusters labeled 1a–1d that represent the gradual opening of the closed dumbbell. Representative traced structures are shown for each

of the clusters and sub-clusters. The population-averaged contact maps for the closed and open structure clusters are shown respectively in (B) and (C),

Figure 2 continued on next page
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an apparent free energy difference between the closed and open states and T is an information the-

oretic temperature characterizing the ensemble (Zhang and Wolynes, 2017). Interestingly, the rela-

tive number of open and closed structures found in the simulations (discussed in the next section) is

in remarkable agreement with this experimental finding.

We then used the radius of gyration , Rg, as an additional order parameter for the structural

ensembles of Segment 1 belonging to IMR90 and K562 (Figure 2D). A corresponding potential of

mean force can be extracted from the distribution of Rg as PMF ¼ �kBTlogP Rg

� �

, which also shows

the free energy difference of ~ 4kBT between the closed (Cluster 1) and open (Cluster 2) structural

sub-ensembles. The distributions of Rg are also shown for Clusters 1 and 2 in Figure 2D. The open

conformations (Cluster 2) possibly belong to a free energy minima in the PMF located between

between Rg ~ 0:6� 0:8�m, although additional statistics would be necessary to firmly establish the

presence of this additional conformational mode. Interestingly, the vast majority of genes appear to

be positioned along the linker region connecting the two globular domains (Figure 2E).

Unlike Segment 1, Segment 2 of IMR90 completely lacks loop domains and, consequently, the

averaged contact maps for Segment 2 exhibit no additional features beyond the decay in contact

probability as a function of genomic distance (Figure 2—figure supplement 1). Structural analysis

reveals that, without the presence of loop domains, Segment 2 is highly disordered; while clustering

reveals open and closed structures, the lack of loop domains and domain boundaries results in the

loss of dumbbell-like structures (Figure 2—figure supplement 3). It should be noted that unlike

Segment 1, Segment 2 has an absence of genes (Figure 2—figure supplement 4).

The chromosomal structures obtained from physical modeling are
consistent with those observed with microscopy
We compare the chromosome structures sampled in the simulations to the diffraction-limited micros-

copy structures of Bintu et al., 2018, finding that the conformational states observed using micros-

copy are also found in the simulated structural ensemble without any calibration or fine tuning of

parameters. While MEGABASE+MiChroM, provides us with structures of entire chromosomes, we

focus specifically on the same ~2 Mb chromatin segment within chromosome 21 for our direct

comparison.

It is important to note that the simulated model, and the structural variability that it captures, was

derived from the energy landscape learned from population-averaged DNA–DNA ligation data using

the principle of maximum entropy (Di Pierro et al., 2016). MiChroM has been shown to be consis-

tent with experimental ligation maps (Figure 1 and Di Pierro et al., 2016; Di Pierro et al., 2017;

Contessoto et al., 2019), as well as the distribution of distances between Fluorescence in situ

hybridization (FISH) probes (Di Pierro et al., 2017) and several observations regarding chromatin

dynamics (Di Pierro et al., 2018).

Using the 1� Q as the distance between all simulated structures for Segment 1, we now per-

formed hierarchical clustering of the simulated structures. The dendrogram of this clustering is

shown in Figure 3A, which uncovers two main clusters in the structural ensemble: a closed dumbbell

(Cluster 1) and an open dumbbell (Cluster 2). The closed and open structures are consistent with

those observed in the Bintu et al., 2018 datasets. The representative structures of the closed and

Figure 2 continued

where 330 nm is used to define a contact between two 30 kb loci. (D) The distribution of the radius of gyration (top), the corresponding potential of

mean force (center), and the distributions of radius of gyration for Cluster 1 and Cluster 2 (bottom) are shown for the traced structures of Segment 1 of

IMR90 and K562. The distribution exhibits a heavy tail to the right of the average value, indicating the existence of open, elongated structures. (E) The

UCSC Genes track is plotted along the genomic positions of Segment 1 using the Genome Browser (Kent et al., 2002). Figure 2—figure supplement

1 shows the contact maps for the experimentally traced segments of chromatin. Figure 2—figure supplement 2 shows the distributions of the

radius of gyration for the sub-clusters of closed dumbbell structures obtained experimentally using tracing. Figure 2—figure supplement 3 shows the

hierarchical clustering and detailed structural analysis of the experimentally traced Segment 2.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Contact maps for the experimentally traced segments of chromatin.

Figure supplement 2. Distribution of radius of gyration for sub-clusters of closed dumbbell structures obtained experimentally using tracing.

Figure supplement 3. Hierarchical Clustering and the detailed structural analysis of traced Segment 2.

Figure supplement 4. The positioning of genes along traced Segment 1 and Segment 2.
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Figure 3. Hierarchical Clustering and the detailed structural analysis of simulated chromatin segment. (A) The dendrogram representation of the

hierarchical clustering of simulated Segment 1 (chr21 29.37–31.32 Mb for IMR90 and K562) where 1� Q (Equation 1) is used as the distance between

two structures. The clustering reveals two main clusters: closed dumbbell (6275 out of 6400 structures) and open dumbbell (125 out of 6400 structures).

The closed dumbbell can be subdivided into sub-clusters labeled 1a�1d that represent the opening transition of the closed dumbbell. Representative

structures are shown for each of the clusters and sub-clusters. The population-averaged contact maps for the clusters are shown respectively in (B) and

(C), where 330 nm is used to define a contact between two 50 kb loci of the MiChroM model. The distribution of the radius of gyration is shown for

Segment 1 IMR90 (D) and K562 (E) traced structures in comparison with the experimental structures. (F) Distribution of the radius of gyration and the

corresponding potential of mean force is shown for both experiment and simulation for all of the structures of Segment 1. Figure 3—figure

Figure 3 continued on next page
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open conformations are shown in Figure 3, alongside the averaged contact maps for each of the

clusters (Figure 3B–C), which are consistent with those determined experimentally (Shown in

Figure 2B–C; Figure 3—figure supplement 3). The simulated Cluster 1 can again further be sub-

divided into subgroups; 1a, 1b, 1g, and 1d represent the four most populated sub-groups (Figure 3),

which comprise 66% of the simulated structures of Cluster 1. The subgroups appear to capture vari-

ous stages of the process of opening. The structures in subgroup 1a are fully collapsed, while struc-

tures in 1b, 1g, and 1d capture the progressive opening of the closed dumbbell. The

radius of gyration of sub-clusters 1a�1d are shown in Figure 3—figure supplement 1.

No highly dense structures exist in the simulations. Such structures would collapse the entire chro-

matin segment to the volume of a single monomer, an occurrence that is prohibited by the energy

function used to model the system. This is in harmony with our view that Cluster 3 seen in the experi-

ments are artifacts of some sort.

For Segment 1, we performed our analysis on a set of 6400 structures, a representative subset of

the simulated trajectories by taking every 125,000th structure from simulations. Both closed

(Nclosed ¼ 6275) and open structures (Nopen ¼ 125) were identified by the clustering algorithm. Since

MiChroM assumes an effective equilibrium thermodynamics representation of chromosome struc-

tures and dynamics, we can quickly calculate the relative stability between closed and open struc-

tures in the simulated ensemble as log Nclosed=Nopen

� �

¼ Eopen � Eclosed ~ 4kBT, where Eopen � Eclosed is the

effective free energy difference between the closed and open states. This free energy difference is

remarkably consistent with the value estimated using only the experimentally traced structures in the

preceding section.

Finally, we calculated the distribution of the radius of gyration ,Rg, for the experimetal traced

structures of Bintu et al., 2018 and for the simulated MiChroM structures for Segment 1 belonging

to IMR90 and K562 (shown in Figure 3D and Figure 3E respectively). Using a length scale calibrated

previously (Di Pierro et al., 2017) from a single FISH experiment of 0.165 mm yields excellent quanti-

tative agreement between the experimentally observed structures and those predicted de novo

from simulation. It is particularly remarkable that any discrepancies between the experimental and

simulated datasets can in fact be captured within 5% error of our original length estimate (Figure 3—

figure supplement 2). Similarly, Figure 3F shows the direct comparison between the distribution of

Rg for Segment 1 as well as the corresponding potential of mean force. We see then that MiChroM

appears to reproduce the apparent free energy difference between open and closed structures

found using the experimentally traced structures.

Comparative analysis of the chromosomal structural ensembles of
different cell lines: connecting the epigenetic markings of loci with their
radial positioning within territories
The frequency of chromatin type annotations predicted by MEGABASE over different cell types is

shown in Figure 4A as a stacked bar chart that represents the distribution of chromatin type annota-

tions predicted for each locus of chromosome 2 over all of the cell types. It is evident that certain

loci have similar epigenetic markings patterns in all the cell types that we examined, either by being

generally transcriptionally active loci, thus likely belonging to the A compartment, or by being tran-

scriptionally inactive B compartment loci. On the other hand, several segments of chromatin switch

compartments between different cell types.

Figure 3 continued

supplement 1 shows the distributions of radius of gyration for the sub-clusters of closed dumbbell structures obtained from simulation. Figure 3—

figure supplement 2 shows how minor deviations in the unit of length estimate can account for the differences in the experimental and simulated

distributions of radius of gyration .

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distribution of radius of gyration for sub-clusters of closed dumbbell structures obtained from simulation.

Figure supplement 2. Deviations in the unit of length estimate can account for the differences in the experimental and simulated distributions of

radius of gyration .

Figure supplement 3. Comparison of the population-averaged contact maps from experimental tracing and simulation for Segment 1.
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Figure 4. Conservation of compartmentalization across cell types and the radial dependence of marked chromatin. (A) A stacked bar chart is used to

represent the distribution of chromatin type annotations predicted by MEGABASE as a function of the genomic position along chromosome 2 (hg19).

The colors correspond the chromatin types given in the Figure Legend. For a given genomic position, the relative height of a particular color indicates

the fraction of that particular chromatin type predicted at that locus. (B) The MEGABASE prediction of the chromatin type is shown for the chromatin

segment 39.9–40.6 Mb of chromosome 2 for HMEC, HUVEC, and IMR90. A black arrow in (A) highlights the location of this segment. (C) The chromatin

segment 39.9–40.6 Mb of chromosome 2 is shown in a representative structure for each of the cell types, where the color of the segment denotes its

MEGABASE annotation. For HMEC and IMR90, the segment of chromatin tends toward the chromosome surface, whereas the segment tends toward

the interior for HUVEC. (D) The radial density as a function of the normalized radial distance is plotted for A compartment loci, B compartment loci, and

all loci for simulations of chromosomes for the HMEC cell type. (E) The probability density functions of the radial distance are shown for the center of

mass of the segment 39.9–40.6 Mb of chromosome 2 for HMEC, HUVEC, and IMR90, respectively. (F) A stacked bar chart is used to represent the

distribution of chromatin type annotations predicted by MEGABASE as a function of the genomic position along chromosome 21 (hg19). The arrows

indicate the locations of the traced segments of Bintu et al., 2018: Segment 1 (29.37–31.32 Mb) and Segment 2 (20.0–21.9 Mb). (G) The MEGABASE

annotation of the traced chromatin segments are given for IMR90 and K562. (H) The distribution of radial distances of the center of mass of each traced

segment is shown.
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Using the structural ensemble from the simulations based on the predicted compartments we

then quantified the conformational differences between different cell types. On the chromosomal

scale, structural differences emerge primarily from changes in the phase separation of epigenetically

marked segments of chromatin. An example is illustrated in Figure 4B, which focuses on the region

39.9–40.6 Mb of chromosome 2 for HMEC, HUVEC, and IMR90. The MEGABASE classification

(Figure 4B) identifies the segment in HMEC and IMR90 as belonging to the A compartment,

whereas the segment for HUVEC should belong to the B compartment. Representative 3D structures

for this segment for each of the respective cell types are shown in Figure 4C.

A plot of the radial density of A compartment loci and B compartment loci is shown in

Figure 4D. These radial densities are consistent with previously reported simulations (Di Pierro

et al., 2016). Taking a look at the radial distance of the center of mass of the segment of chromatin

in each of the cell types, one finds that the A compartment loci tend to localize toward the surface

of the chromosome, while the B compartment loci of the HUVEC cell type tend to localize in the

interior (Figure 4E). A similar positioning of transcriptionally active chromatin toward the periphery

of chromosomal territories was also observed by Nagano et al., 2013 in mouse cells using Hi-C

experiments.

We additionally use simulations to predict and examine the spatial positioning of the segments of

chromatin examined by Bintu et al in the context of the entire chromosome 21. The experimental

traced structures could not be used to ascertain the spatial positioning of those chromatin segments

within chromosome 21 since only short segments were imaged rather than the entire chromosome.

Figure 4F shows a stacked bar chart that represents the distribution of chromatin types predicted

by MEGABASE for each genomic position of chromosome 21. Figure 4G shows the MEGABASE

predictions for the traced segments, showing that IMR90 Segment 1 (29.37–31.32 Mb) is composed

of A-type chromatin while IMR90 Segment 2 (20.0–21.9 Mb) primarily is composed of B compart-

ment chromatin types. K562 Segment 1 (29.37–31.32 Mb) appears to contain both A and B chroma-

tin types. Figure 4H shows the radial distance distribution of the center of mass of these segments

of chromatin, showing that IMR90 Segment 2 tends to be in the interior, IMR90 Segment 1 tends to

lie near the chromosome surface, and K562 Segment 1 occupies an intermediate region.

The finding that there exists a radial ordering associated with the spatial compartmentalization is

consistent with the fact that according to the MiChroM potential (Di Pierro et al., 2016), contact

interactions between B loci exhibit the most favorable energetic stabilization of all chromatin interac-

tions. On the other hand, A to B or A to A-type interactions are comparably strong to each other,

but are significantly weaker than the B to B interaction (See Supplementary file 1). In other words,

according to the MiChroM energetic parameters (which were originally learned from Hi-C maps), B

loci drive the phase separation of the chromosomes. Much like a hydrophobic-polar model from pro-

tein folding, the B compartmentalization forms the stable core of the simulated chromosome and

the weaker interactions between A compartment loci with A or B loci tends toward the surface, to

minimize the free energy of the molecular assembly. Our theoretical model thus corroborates recent

experiments (Falk et al., 2019; Strom et al., 2017) that suggests heterochromatin phase separation

is a major driving force behind genome organization, further highlighting the important role of

phase separation in biological organization (Di Pierro et al., 2016; Hnisz et al., 2017;

Brangwynne et al., 2015; Banani et al., 2016; Shin and Brangwynne, 2017).

Discussion
DNA-tracing combined with diffraction-limited or super-resolution microscopy is beginning to shed

light on the high degree of variability that is characteristic of chromosomal structures in the

interphase (Bintu et al., 2018; Boettiger et al., 2016; Nir et al., 2018; Beliveau et al., 2015). These

studies add to the growing body of evidence that a unique chromosomal fold simply does not exist

in the interphase. Chromosome structures in the nucleus appear to be highly dynamical, owing to

the many non-equilibrium processes in the cell, such as the activity of motor proteins.

The advances in genome imaging and the molecular simulation of chromosomes allows the devel-

opment of parameters able to quantify the structural similarities between different chromosome

structures, and the degree of heterogeneity in the ensemble of structures. Our results demonstrate

that the collective variable Q, commonly used in protein folding studies and structural biophysics, is

suitable for characterizing the structural ensemble of a segment of chromatin. Despite the high
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degree of conformational plasticity, it appears that for segments of chromatin as short as the ones

imaged by Bintu et al., 2018 (~2 Mb in length), there do exist distinct clusters of chromatin struc-

tures that can be distinguished using Q. The dominant structures found for chromatin Segment 1

(chr21 29.37–31.32 Mb) examined using data from microscopy as well as from simulation can be

described as being a closed dumbbell and an open dumbbell, where the ends of the dumbbell are

the globular domains at the head and tail of the chromatin segment.

It is known that CTCF proteins bound along the genome act as gene insulators, probably through

their suppressing activity toward loop extrusion (Sanborn et al., 2015; Fudenberg et al., 2016;

Vian et al., 2018). Interestingly, a survey of the positioning of genes along Segment 1 reveals that

the vast majority of genes appear clustered in the linker region of the chromatin segment

(Figure 2E), sandwiched between the head and tail loop domains. On the other hand, there is an

absence of genes located on Segment 2 (chr21 20.0–21.9 Mb) (Figure 2—figure supplement 4),

which contains no loop domains. Classification of the experimentally imaged structures of Segment

2 lack the domain boundaries that segregate the head and the tail of the chromatin segment into

globular domains, although still exhibiting open and closed conformations. These findings suggest a

possible role in transcriptional regulation for the opening and closing of organized dumbbell struc-

tures. How open and closed structures would achieve such regulation of the transcriptional activity

remains to be investigated. It is however clear that understanding the structure-function relationship

in the genome is a crucial question that can only be answered using an accurate statistical characteri-

zation of the conformational ensembles.

Finally, our work refines the classical view of the spatial compartmentalization of chromatin. We

find a striking dependence between radial positioning of chromatin and epigenetic marking pat-

terns. Our theoretical model, MiChroM, predicts that transcriptionally active loci, typically belonging

to the A compartment, move toward the surface of the chromosomal territory, while B compartment

loci, typically inactive, move to the interior (Di Pierro et al., 2016). Since interactions among B-B loci

result in the greatest energetic stabilization, aggregation of these loci seems to be driving force

behind both the phase separation of epigenetically similar chromatin into compartments and the

expulsion of the active chromatin toward the periphery of chromosomal territories. In other words,

according to the present energy landscape model, when the epigenetic marking patterns of a locus

are rewritten from A to B, the locus moves toward the interior of the chromosome, perhaps affecting

the transcriptional activity of the associated genes.

Materials and methods
We simulate the structural ensembles of chromosomes belonging to select human cell types using a

previously introduced computational pipeline referred to as MEGABASE+MiChroM (Di Pierro et al.,

2017). This pipeline takes chromatin immunoprecipitation tracks as input and computationally gen-

erates an ensemble of 3D structures of individual chromosomes at a resolution of 50 kb per mono-

meric unit. While this approach was initially trained and validated for chromosomes belonging to

human lymphoblastoid cells (GM12878), we demonstrate that this approach can be readily applied

to chromosomes belonging to any cell type given epigenetic histone modification data.

Megabase
Maximum Entropy Genomic Annotations from Biomarkers Associated to Structural Ensembles

(MEGABASE) (Di Pierro et al., 2017) was trained to quantify the correlations between chromosome

structural annotations (i.e., compartment annotations A1, A2, B1, B2, B3) with chromatin immuno-

precipitation (ChIP-Seq) signals. This allowed for the inference of the chromatin types (compartment

labels) for each 50 kb locus of chromatin, given information about the histone modifications present

at that locus.

Discretization of ChIP-Seq data tracks
Chromatin Immunoprecipitatin (ChIP-seq) data was downloaded from ENCODE (Dunham and Kun-

daje, 2012) for the cell lines explored in this manuscript: IMR90, HUVEC, K562, HMEC, H1-hESC,

and HeLa-S3. We focused on 11 histone modification tracks: H2AFZ, H3K27ac, H3K27me3,

H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3k79me2, H3K9ac, H3K9me3, and H4K20me1. These
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11 tracks were previously shown to contain sufficient information to predict the chromosome struc-

tural ensembles for GM12878 (Di Pierro et al., 2017).

For each chromosome, the ChIP-Seq signal is re-casted into the data tracks at 50 kb resolution.

This is performed by summing the ChIP-Seq signal contained within each 50 kb locus respective of

each experiment.

The integrated ChIP-seq signal for each 50 kb locus is assigned a discrete state ranging from 1

(low signal) to 20 (high signal). This is performed by creating a histogram for each experiment of the

integrated signal for all of the 50 kb loci in the chromosomes of each cell type. All loci belonging to

the top 5% of the distribution with the highest signal are assigned the highest signal state, that is

20. The remaining 19 signal states are defined by partitioning the remainder of the distribution line-

arly with respect to the signal strength; loci are assigned to those states according to their inte-

grated signal.

Prediction of chromatin structural types from ChIP-Seq data using
MEGABASE
The inferred probabilistic model (Di Pierro et al., 2017) can be marginalized to predict the chroma-

tin type for a given locus l when given the experimental ChIP-Seq measurements at loci l-2, l-1, l, l

+1, and l+2:

CST lð Þ ¼ argmaxP CST jExp1;:::;L l� 2; l� 1; l; lþ 1; lþ 2ð Þ
� �

(2)

where L = 11 is the number of epigenetic histone modifications used in this study and Exp is a vector

of discretized ChIP-Seq signals for loci l-2, l-1, l, l+1, and l+2. This allows for the prediction of the

chromatin type (CST) for a given chromatin locus, given the ChIP-Seq signals for the 11 histone mod-

ifications at that locus. For additional details on the MEGABASE model, refer to Di Pierro et al.,

2017. The predicted sequences of chromatin types can readily be obtained from our server (https://

ndb.rice.edu/MEGABASE) (Contessoto et al., 2019) for different cell types and tissues with avail-

able ChIP-Seq histone modification tracks from ENCODE. The user can also supply ChIP-Seq tracks

to generate sequences of chromatin type annotations for chromosomes of an unspecified cell type.

Minimal chromatin model (MiChroM)
The sequence of inferred chromatin types for each chromosome serves as input for our coarse-

grained simulations of individual chromosomes using the Minimal Chromatin Model

(MiChroM) (Di Pierro et al., 2016). MiChroM is a coarse-grained representation of individual chro-

mosomes with the following potential energy:

UMiChroM r
!

� �

¼UHP r
!

� �

þUtype�type r
!

� �

þUloops r
!

� �

þUideal r
!

� �

(3)

where

Utype�type r
!

� �

¼ k� l

k; l 2Types

X

akl i2 LociofTypekf g
j2 LociofTypelf g

X

f rij
� �

Uloops r
!

� �

¼ � �
i;jð Þ2 LoopsSitesf g

X

f rij
� �

Uideal r
!

� �

¼
X

500

d¼3

g dð Þ
i

X

f ri; iþd

� �

and the probability of crosslinking between chromatin loci i and j is modeled as

f rij
� �

¼
1

2
1þ tanh � rc � rij

� �� �� �

: (4)

The first term UHP is a homo-polymer potential that describes the connectivity (bonds and angles)

between monomers—the monomers here represent a 50 kb span of DNA. The second term Utype�type
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describes the sequence-dependent interactions between pairs of monomers; this term captures the

phase separation of chromatin loci into spatial compartments. The parameters akl describe the ener-

getic stabilization when two loci of chromatin type k and l are spatially proximal. The third term

Uloops describes the interaction between loop anchors that stabilize a CTCF-mediated loop. The final

term Uideal referred to as the Ideal Chromosome (Zhang and Wolynes, 2015; Di Pierro et al., 2016;

Zhang and Wolynes, 2016) describes the translationally invariant local ordering in chromatin; a pair

of chromatin loci in close proximity are stabilized by an energy g dð Þ that depends on the genomic

distance between the loci pair, d¼ ji� jj. Although the ideal chromosome accounts for the loop-

length dependent entropic effects as well as motor-driven processes acting along the chromatin

polymer, the term remains agnostic regarding the precise mechanisms responsible for local

ordering.

The parameters � ¼ 3:22 and rc ¼ 1:78 were adjusted for the contact maps of GM12878 B-lym-

phoblastoid cells in dataset GSE63525 (Rao et al., 2014). The parameters a, �, and g were itera-

tively trained (Di Pierro et al., 2016) to be consistent with the DNA–DNA ligation map of

chromosome 10 of human lymphoblastoid cells (GM12878)(Rao et al., 2014). The resulting polymer

model is confined in a hard wall sphere to approximately preserve the volume fraction of chromatin

in the interphase of 0.1 (Rosa and Everaers, 2008). Here, we model individual chromosomes con-

fined within a hard sphere that represents a chromosome territory rather than the nuclear envelope.

It has been shown that the physical tethering of chromatin to the nuclear envelope via the nuclear

lamina may play an important role during differentiation and development (Solovei et al., 2013).

Further, the role of the nuclear lamina in genome organization has been computationally modeled

(Laghmach et al., 2020; Lee et al., 2017; MacPherson et al., 2020). While we do not currently use

an explicit representation of the lamina, it should be noted that the MiChroM model was trained on

DNA–DNA ligation data and its energetic terms would implicitly account for the effect of the lamina

on the intra-chromosomal organization of chromatin loci.

MiChroM considers five chromatin types A1, A2, B1, B2, B3 plus a non-specific type NA, which is

used to label the centromere. The a parameters, which govern the type-to-type interactions, are

given in the Supplementary file 1. MiChroM makes no assumptions about the physical nature of the

interactions that lead to compartmentalization. While the mechanistic details behind the chromatin

type interactions are not fully understood, recent work (MacPherson et al., 2018) has shown that

the binding of HP1 to chromatin can lead to compartmentalization via the oligomerization of HP1 to

bridge the nucleosomes.

The parameter � governing the loop interactions is equal to �1.612990.

The ideal chromosome potential is given by:

g dð Þ ¼
g1

log dð Þ
þ
g2

d
þ
g3

d2

with parameters g1 ¼�0:030, g2 ¼�0:351, g3 ¼�3:727.

The reduced MiChroM energy function used in this manuscript omits CTCF-mediated loops

unless stated otherwise:

UMiChroM r
!

� �

¼UHP r
!

� �

þ k� l

k; l 2Types

X

akl i2 LociofTypekf g

j2 LociofTypelf g

X

f rij
� �

þ
X

500

d¼3

g dð Þ
i

X

f ri; iþd

� �

(5)

For comparison with the DNA-tracing structures of Bintu et al., 2018, simulations of chromosome

21 for cell types IMR90 and K562 with CTCF-mediated loops were generated using the full energy

function of MiChroM.

Langevin simulations
Langevin simulations of individual chromosomes at a resolution of 50 kb per monomeric unit were

performed using the GROMACS (Abraham et al., 2015) molecular dynamics package. Initial struc-

tures were generated from linear chain at a starting temperature of 3:0"=kB and linearly cooled to a

temperature of 1:0"=kB over 5 � 106 steps with a time step of 0.002t, where t and e are the units of

time and energy for our model, respectively. Following equilibration, simulations were run at a con-

stant temperature of 1:0"=kB for 20 � 106 steps with a time step of 0.001t. All simulations were run
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using a dampening coefficient of 1.0t. A total of 40 replicate simulations were run for each chromo-

some simulation. The resultant simulation trajectories are available for download at the Nucleome

Data Bank (https://ndb.rice.edu/Data).

Simulated DNA–DNA ligation maps
The simulated contact probability pij between chromatin loci i and j is calculated by taking the

expectation value of the probability of crosslinking (Equation 4) over the ensemble of chromosome

structures obtained from simulation (Di Pierro et al., 2016):

pij ¼ f rij
� �
 �

¼

Z

d r
!
f rij
� �

exp �bU r
!

� �� �

=

Z

d r
!
exp �bU r

!
� �� �

: (6)

Here, pij is a matrix element of the simulated DNA–DNA ligation map.

Notes
Unless explicitly stated otherwise, all genomic positions are reported using the positions of the hg19

assembly. All of the simulated chromosome structures discussed in this manuscript were deposited

in the Nucleome Data Bank (NDB) (Contessoto et al., 2019) found at https://ndb.rice.edu.
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Data availability
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Cheng RR, Contes-
soto VG, Aiden EL,
Wolynes PG, Pierro
MD, Onuchic JN
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Cheng_etal_K562Loops_
eLife_2020/NDB_3Dge-
nome_Cheng_etal_
K562Loops_eLife_2020.
dat

Nucleome Data Bank,
K562_Loops
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Cheng RR, Contes-
soto VG, Aiden EL,
Wolynes PG, Pierro
MD, Onuchic JN

2020 Cheng_etal_IMR90Loops_2020 https://ndb.rice.edu/sta-
tic/structures/download/
Cheng_etal_IM-
R90Loops_eLife_2020/
NDB_3Dgenome_
Cheng_etal_IM-
R90Loops_eLife_2020.
dat

Nucleome Data Bank,
IMR90_Loops

Cheng RR, Contes-
soto VG, Aiden EL,
Wolynes PG, Pierro
MD, Onuchic JN

2020 Cheng_etal_H1-hESC_2020 https://ndb.rice.edu/sta-
tic/structures/download/
Cheng_etal_H1-hESC_
eLife_2020/NDB_3Dge-
nome_Cheng_etal_H1-
hESC_eLife_2020.dat

Nucleome Data Bank,
Cheng_etal_H1-
hESC_2020

Cheng RR, Contes-
soto VG, Aiden EL,
Wolynes PG, Pierro
MD, Onuchic JN

2020 Cheng_etal_HUVEC_2020 https://ndb.rice.edu/sta-
tic/structures/download/
Cheng_etal_HUVEC_
eLife_2020/NDB_3Dge-
nome_Cheng_etal_HU-
VEC_eLife_2020.dat

Nucleome Data Bank,
Cheng_etal_HUVEC_
2020

Cheng RR, Contes-
soto VG, Aiden EL,
Wolynes PG, Pierro
MD, Onuchic JN

2020 Cheng_etal_HMEC_2020 https://ndb.rice.edu/sta-
tic/structures/download/
Cheng_etal_HMEC_
eLife_2020/NDB_3Dge-
nome_Cheng_etal_
HMEC_eLife_2020.dat

Nucleome Data Bank,
Cheng_etal_HMEC_
2020

Cheng RR, Contes-
soto VG, Aiden EL,
Wolynes PG, Pierro
MD, Onuchic JN

2020 Cheng_etal_Hela-S3_2020 https://ndb.rice.edu/sta-
tic/structures/download/
Cheng_etal_Hela-S3_
eLife_2020/NDB_3Dge-
nome_Cheng_etal_Hela-
S3_eLife_2020.dat

Nucleome Data Bank,
Cheng_etal_Hela-S3_
2020

Cheng RR, Contes-
soto VG, Aiden EL,
Wolynes PG, Pierro
MD, Onuchic JN

2020 Cheng_etal_IMR90_2020 https://ndb.rice.edu/sta-
tic/structures/download/
Cheng_etal_IMR90_
eLife_2020/NDB_3Dge-
nome_Cheng_etal_
IMR90_eLife_2020.dat

Nucleome Data Bank,
Cheng_etal_IMR90_
2020

Cheng RR, Contes-
soto VG, Aiden EL,
Wolynes PG, Pierro
MD, Onuchic JN

2020 Cheng_etal_K562_2020 https://ndb.rice.edu/sta-
tic/structures/download/
Cheng_etal_K562_eLife_
2020/NDB_3Dgenome_
Cheng_etal_K562_eLife_
2020.dat

Nucleome Data Bank,
Cheng_etal_K562_20
20

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Bintu B, Mateo LJ,
Su J, Sinnott-Arm-
strong NA, Parker
M, Kinrot S, Ya-
maya K, Boettiger
AN, Zhuang X

2018 IMR90_chr21-18-20Mb.csv https://github.com/Bog-
danBintu/ChromatinIma-
ging/tree/master/Data/
IMR90_chr21-18-20Mb.
csv

GitHub, IMR90_chr21-
18-20Mb.csv

Bintu B, Mateo LJ,
Su J, Sinnott-Arm-
strong NA, Parker
M, Kinrot S, Ya-
maya K, Boettiger
AN, Zhuang X

2018 IMR90_chr21-28-30Mb.csv https://github.com/Bog-
danBintu/ChromatinIma-
ging/tree/master/Data/
IMR90_chr21-28-30Mb.
csv

GitHub, IMR90_chr21-
28-30Mb.csv

Bintu B, Mateo LJ,
Su J, Sinnott-Arm-
strong NA, Parker
M, Kinrot S, Ya-
maya K, Boettiger
AN, Zhuang X

2018 K562_chr21-28-30Mb.csv https://github.com/Bog-
danBintu/ChromatinIma-
ging/tree/master/Data/
K562_chr21-28-30Mb.csv

GitHub, K562_chr21-
28-30Mb.csv
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Pombo A, Mundlos S, Nicodemi M. 2018. Polymer physics predicts the effects of structural variants on
chromatin architecture. Nature Genetics 50:662–667. DOI: https://doi.org/10.1038/s41588-018-0098-8,
PMID: 29662163

Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M, Kinrot S, Yamaya K, Boettiger AN, Zhuang X. 2018.
Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:
eaau1783. DOI: https://doi.org/10.1126/science.aau1783, PMID: 30361340

Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu CT, Zhuang X.
2016. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:
418–422. DOI: https://doi.org/10.1038/nature16496, PMID: 26760202

Brackley CA, Johnson J, Kelly S, Cook PR, Marenduzzo D. 2016. Simulated binding of transcription factors to
active and inactive regions folds human chromosomes into loops, rosettes and topological domains. Nucleic
Acids Research 44:3503–3512. DOI: https://doi.org/10.1093/nar/gkw135, PMID: 27060145

Brangwynne CP, Tompa P, Pappu RV. 2015. Polymer physics of intracellular phase transitions. Nature Physics 11:
899–904. DOI: https://doi.org/10.1038/nphys3532

Contessoto VG, Cheng RR, Hajitaheri A, Dodero-Rojas E, Mello MF, Lieberman-Aiden E, Wolynes PG, Di Pierro
M, Onuchic JN. 2019. The nucleome data bank: web-based resources to simulate and analyze the three-
dimensional genome. Nucleic Acids Research:gkaa818. DOI: https://doi.org/10.1093/nar/gkaa818

Dekker J, Marti-Renom MA, Mirny LA. 2013. Exploring the three-dimensional organization of genomes:
interpreting chromatin interaction data. Nature Reviews Genetics 14:390–403. DOI: https://doi.org/10.1038/
nrg3454, PMID: 23657480

Dekker J, Heard E. 2015. Structural and functional diversity of topologically associating domains. FEBS Letters
589:2877–2884. DOI: https://doi.org/10.1016/j.febslet.2015.08.044, PMID: 26348399

Di Pierro M, Zhang B, Aiden EL, Wolynes PG, Onuchic JN. 2016. Transferable model for chromosome
architecture. PNAS 113:12168–12173. DOI: https://doi.org/10.1073/pnas.1613607113, PMID: 27688758

Di Pierro M, Cheng RR, Lieberman Aiden E, Wolynes PG, Onuchic JN. 2017. De novo prediction of human
chromosome structures: epigenetic marking patterns encode genome architecture. PNAS 114:12126–12131.
DOI: https://doi.org/10.1073/pnas.1714980114, PMID: 29087948

Di Pierro M, Potoyan DA, Wolynes PG, Onuchic JN. 2018. Anomalous diffusion, spatial coherence, and
viscoelasticity from the energy landscape of human chromosomes. PNAS 115:7753–7758. DOI: https://doi.org/
10.1073/pnas.1806297115, PMID: 29987017

Di Pierro M. 2019. Inner workings of gene folding. PNAS 116:4774–4775. DOI: https://doi.org/10.1073/pnas.
1900875116, PMID: 30796189

Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. 2012. Topological domains in mammalian
genomes identified by analysis of chromatin interactions. Nature 485:376–380. DOI: https://doi.org/10.1038/
nature11082, PMID: 22495300

Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y,
Liang J, Zhao H, Lobanenkov VV, Ecker JR, Thomson JA, Ren B. 2015. Chromatin architecture reorganization
during stem cell differentiation. Nature 518:331–336. DOI: https://doi.org/10.1038/nature14222, PMID: 256
93564

Dudchenko O, Shamim MS. 2018. The juicebox assembly tools module facilitates de novo assembly of
mammalian genomes with chromosome-length scaffolds for under $1000. bioRxiv. DOI: https://doi.org/10.
1101/254797

Dunham I, Kundaje A. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:
57–74. DOI: https://doi.org/10.1038/nature11247

Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL. 2016. Juicebox provides a
visualization system for Hi-C contact maps with unlimited zoom. Cell Systems 3:99–101. DOI: https://doi.org/
10.1016/j.cels.2015.07.012, PMID: 27467250

Cheng et al. eLife 2020;9:e60312. DOI: https://doi.org/10.7554/eLife.60312 19 of 21

Research article Chromosomes and Gene Expression

https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/S0006-3495(01)76033-X
https://doi.org/10.1016/S0006-3495(01)76033-X
http://www.ncbi.nlm.nih.gov/pubmed/11159421
https://doi.org/10.1016/j.cell.2016.06.010
http://www.ncbi.nlm.nih.gov/pubmed/27374333
https://doi.org/10.1073/pnas.1204799109
https://doi.org/10.1073/pnas.1204799109
http://www.ncbi.nlm.nih.gov/pubmed/22988072
https://doi.org/10.1073/pnas.1816424116
http://www.ncbi.nlm.nih.gov/pubmed/30718394
https://doi.org/10.1038/ncomms8147
http://www.ncbi.nlm.nih.gov/pubmed/25962338
https://doi.org/10.1038/s41588-018-0098-8
http://www.ncbi.nlm.nih.gov/pubmed/29662163
https://doi.org/10.1126/science.aau1783
http://www.ncbi.nlm.nih.gov/pubmed/30361340
https://doi.org/10.1038/nature16496
http://www.ncbi.nlm.nih.gov/pubmed/26760202
https://doi.org/10.1093/nar/gkw135
http://www.ncbi.nlm.nih.gov/pubmed/27060145
https://doi.org/10.1038/nphys3532
https://doi.org/10.1093/nar/gkaa818
https://doi.org/10.1038/nrg3454
https://doi.org/10.1038/nrg3454
http://www.ncbi.nlm.nih.gov/pubmed/23657480
https://doi.org/10.1016/j.febslet.2015.08.044
http://www.ncbi.nlm.nih.gov/pubmed/26348399
https://doi.org/10.1073/pnas.1613607113
http://www.ncbi.nlm.nih.gov/pubmed/27688758
https://doi.org/10.1073/pnas.1714980114
http://www.ncbi.nlm.nih.gov/pubmed/29087948
https://doi.org/10.1073/pnas.1806297115
https://doi.org/10.1073/pnas.1806297115
http://www.ncbi.nlm.nih.gov/pubmed/29987017
https://doi.org/10.1073/pnas.1900875116
https://doi.org/10.1073/pnas.1900875116
http://www.ncbi.nlm.nih.gov/pubmed/30796189
https://doi.org/10.1038/nature11082
https://doi.org/10.1038/nature11082
http://www.ncbi.nlm.nih.gov/pubmed/22495300
https://doi.org/10.1038/nature14222
http://www.ncbi.nlm.nih.gov/pubmed/25693564
http://www.ncbi.nlm.nih.gov/pubmed/25693564
https://doi.org/10.1101/254797
https://doi.org/10.1101/254797
https://doi.org/10.1038/nature11247
https://doi.org/10.1016/j.cels.2015.07.012
https://doi.org/10.1016/j.cels.2015.07.012
http://www.ncbi.nlm.nih.gov/pubmed/27467250
https://doi.org/10.7554/eLife.60312


Eagen KP, Hartl TA, Kornberg RD. 2015. Stable chromosome condensation revealed by chromosome
conformation capture. Cell 163:934–946. DOI: https://doi.org/10.1016/j.cell.2015.10.026, PMID: 26544940

Eastwood MP, Wolynes PG. 2001. Role of explicitly cooperative interactions in protein folding funnels: a
simulation study. The Journal of Chemical Physics 114:4702–4716. DOI: https://doi.org/10.1063/1.1315994

Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H, Joffe B, Dekker J, Fudenberg G, Solovei
I, Mirny LA. 2019. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature
570:395–399. DOI: https://doi.org/10.1038/s41586-019-1275-3, PMID: 31168090

Finn EH, Pegoraro G, Brandão HB, Valton AL, Oomen ME, Dekker J, Mirny L, Misteli T. 2019. Extensive
heterogeneity and intrinsic variation in spatial genome organization. Cell 176:1502–1515. DOI: https://doi.org/
10.1016/j.cell.2019.01.020, PMID: 30799036

Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. 2016. Formation of chromosomal
domains by loop extrusion. Cell Reports 15:2038–2049. DOI: https://doi.org/10.1016/j.celrep.2016.04.085

Goundaroulis D, Lieberman Aiden E, Stasiak A. 2020. Chromatin is frequently unknotted at the megabase scale.
Biophysical Journal 118:2268–2279. DOI: https://doi.org/10.1016/j.bpj.2019.11.002, PMID: 31818464

Gürsoy G, Xu Y, Liang J. 2017. Spatial organization of the budding yeast genome in the cell nucleus and
identification of specific chromatin interactions from multi-chromosome constrained chromatin model. PLOS
Computational Biology 13:e1005658. DOI: https://doi.org/10.1371/journal.pcbi.1005658, PMID: 28704374

Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. A phase separation model for transcriptional
control. Cell 169:13–23. DOI: https://doi.org/10.1016/j.cell.2017.02.007, PMID: 28340338

Imai R, Nozaki T, Tani T, Kaizu K, Hibino K, Ide S, Tamura S, Takahashi K, Shribak M, Maeshima K. 2017. Density
imaging of heterochromatin in live cells using orientation-independent-DIC microscopy. Molecular Biology of
the Cell 28:3349–3359. DOI: https://doi.org/10.1091/mbc.E17-06-0359, PMID: 28835378

Jost D, Carrivain P, Cavalli G, Vaillant C. 2014. Modeling epigenome folding: formation and dynamics of
topologically associated chromatin domains. Nucleic Acids Research 42:9553–9561. DOI: https://doi.org/10.
1093/nar/gku698, PMID: 25092923

Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. 2012. Genome architectures revealed by tethered
chromosome conformation capture and population-based modeling. Nature Biotechnology 30:90–98.
DOI: https://doi.org/10.1038/nbt.2057

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. 2002. The human genome
browser at UCSC. Genome Research 12:996–1006. DOI: https://doi.org/10.1101/gr.229102, PMID: 12045153

Laghmach R, Di Pierro M, Potoyan DA. 2020. Mesoscale liquid model of chromatin recapitulates nuclear order of
eukaryotes. Biophysical Journal 118:2130–2140. DOI: https://doi.org/10.1016/j.bpj.2019.09.013, PMID: 31623
887

Lee SS, Tashiro S, Awazu A, Kobayashi R. 2017. A new application of the phase-field method for understanding
the mechanisms of nuclear architecture reorganization. Journal of Mathematical Biology 74:333–354.
DOI: https://doi.org/10.1007/s00285-016-1031-3, PMID: 27241726

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ,
Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny
LA, Lander ES, Dekker J. 2009. Comprehensive mapping of long-range interactions reveals folding principles of
the human genome. Science 326:289–293. DOI: https://doi.org/10.1126/science.1181369, PMID: 19815776

MacPherson Q, Beltran B, Spakowitz AJ. 2018. Bottom-up modeling of chromatin segregation due to epigenetic
modifications. PNAS 115:12739–12744. DOI: https://doi.org/10.1073/pnas.1812268115, PMID: 30478042

MacPherson Q, Beltran B, Spakowitz AJ. 2020. Chromatin compaction leads to a preference for Peripheral
Heterochromatin. Biophysical Journal 118:1479–1488. DOI: https://doi.org/10.1016/j.bpj.2020.01.034,
PMID: 32097622

Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P. 2013. Single-cell
Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64. DOI: https://doi.org/10.1038/
nature12593, PMID: 24067610
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