Skip to main content
. 2020 Sep 30;10(20):11488–11506. doi: 10.1002/ece3.6786

Table 1.

Overview of the hyperparameters that can be tuned per statistical method and underlying package

Method R package Hyperparameters Default value
ANN nnet Size of hidden layer
(Venables & Ripley, 2002) Weight decay 0
Initial random weights 0.7
Number of iterations 100
BRT gbm Number of trees 100
(Greenwell, Boehmke, & Cunningham, 2019) Interaction depth 1
Shrinkage 0.1
Bag fraction 0.5
ME dismo Feature class combinations lqph a
(Hijmans, Phillips, Leathwick, & Elith, 2017) Regularization multiplier 1
Number of iterations 500
maxnet Feature class combinations lqph
(Phillips, 2017b) Regularization multiplier 1
RF randomForest Number of randomly sampled variables floor(sqrt(#variables))
(Liaw & Wiener, 2002) Number of trees 500
Minimum size of terminal nodes 1

The meaning of each hyperparameter can be found in the respective package documentation and default values, when available, are provided in the last column.

a

(l) linear, (q) quadratic, (p) product, and (h) hinge.