Skip to main content
. 2020 Sep 30;10(20):11488–11506. doi: 10.1002/ece3.6786

Table A5.

Hyperparameter values used during the hyperparameter tuning experiment with h: number of tested hyperparameter combinations, FC: feature class combinations with linear (l), quadratic (q), product (p) and hinge (h) feature classes, reg: regularization multiplier and iter: number of iterations

h FC reg iter
75 c(“lq”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.2, 3, 0.2) 500
150 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.2, 5, 0.2) 500
300 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.1, 5, 0.1) 500
600 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.1, 5, 0.1) c (500, 700)
1200 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.1, 5, 0.1) seq (300, 900, 200)

The values are provided using the R code to generate them. In the optimizeModel function, in order to have consistent results, we set the seed argument to 186,546 (a randomly generated number).