Skip to main content
. 2020 Jul 8;162(12):3093–3105. doi: 10.1007/s00701-020-04484-6

Table 3.

Discrimination obtained after sixfold cross-validation on the training set (n = 296)

Algorithm No. of variables included AUC Sensitivity Specificity PPV Accuracy ϕ
GL 12 0.81 (±0.09) 0.72 (±0.2) 0.82 (±0.1) 0.50 (±0.3) 0.82 (±0.1) 0.52 (±0.1)
DRF 21 0.85 (± 0.06) 0.78 (± 0.2) 0.84 (± 0.1) 0.50 (± 0.2) 0.84 (± 0.1) 0.53 (± 0.2)
GBM 28 0.74 (± 0.1) 0.68 (± 0.2) 0.86 (± 0.1) 0.58 (± 0.4) 0.83 (± 0.1) 0.51 (± 0.2)
DL 32 0.84 (± 0.07) 0.70 (± 0.2) 0.87 (± 0.1) 0.60 (± 0.3) 0.85 (± 0.1) 0.54 (± 0.1)

GL, generalized linear modeling; DRF, distributed random forest; GBM, gradient boosting machine; DL, deep learning; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value