Table 3.
Discrimination obtained after sixfold cross-validation on the training set (n = 296)
Algorithm | No. of variables included | AUC | Sensitivity | Specificity | PPV | Accuracy | ϕ |
---|---|---|---|---|---|---|---|
GL | 12 | 0.81 (±0.09) | 0.72 (±0.2) | 0.82 (±0.1) | 0.50 (±0.3) | 0.82 (±0.1) | 0.52 (±0.1) |
DRF | 21 | 0.85 (± 0.06) | 0.78 (± 0.2) | 0.84 (± 0.1) | 0.50 (± 0.2) | 0.84 (± 0.1) | 0.53 (± 0.2) |
GBM | 28 | 0.74 (± 0.1) | 0.68 (± 0.2) | 0.86 (± 0.1) | 0.58 (± 0.4) | 0.83 (± 0.1) | 0.51 (± 0.2) |
DL | 32 | 0.84 (± 0.07) | 0.70 (± 0.2) | 0.87 (± 0.1) | 0.60 (± 0.3) | 0.85 (± 0.1) | 0.54 (± 0.1) |
GL, generalized linear modeling; DRF, distributed random forest; GBM, gradient boosting machine; DL, deep learning; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value