
Finding Related Tables in Data Lakes for Interactive Data 
Science

Yi Zhang,
University of Pennsylvania, Philadelphia, PA

Zachary G. Ives
University of Pennsylvania, Philadelphia, PA

Abstract

Many modern data science applications build on data lakes, schema-agnostic repositories of data 

files and data products that offer limited organization and management capabilities. There is a 

need to build data lake search capabilities into data science environments, so scientists and 

analysts can find tables, schemas, workflows, and datasets useful to their task at hand. We develop 

search and management solutions for the Jupyter Notebook data science platform, to enable 

scientists to augment training data, find potential features to extract, clean data, and find joinable 

or linkable tables. Our core methods also generalize to other settings where computational tasks 

involve execution of programs or scripts.
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1 INTRODUCTION

The data lake has emerged as a schema-agnostic repository for data sources and analysis 

results (“data products”), providing centralized access to data. Typically, the data lake is an 

abstraction over a distributed file system or an object store. Data lakes offer strong data 
access benefits, but they generally do little to help a user find the most relevant data, 

understand relationships among data products, or integrate heterogeneous data sources or 

products.

Data lakes are used in many settings across the enterprise and within data science. We 

believe data lake management [32] becomes especially necessary in collaborative data 
science settings, as well as those in which data processing methodologies are changing. A 

folder/file hierarchy is inadequate for tracking data that is updated across versions, 

processed across (often similar) computational stages in a workflow, used to train machine 

learning classifiers, and analyzed by users. Data lakes were developed to promote reuse of 
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data (and associated workflows) — but if users are unaware of what is available, or unable to 

trust what they find, they end up reinventing their own schemas, import processes, and 

cleaning processes. This not only leads to inefficiencies and redundant work, but also 

inconsistency in data processing, irregularity in data representation, and challenges in 

maintainability.

Just as good software engineering promotes modular, maintainable, and reusable software 

components, we need ways of promoting reusable units of data and processing. Towards this 

over-arching goal, we seek to help users find semantically related datasets to facilitate 

common data analytics tasks. Our work addresses interactive, “human-in-the-loop” settings 

in which data scientists are undertaking data discovery, wrangling, cleaning, and analysis 

tasks. We develop a general framework for supporting multiple measures of table 

relatedness, and build upon prior techniques developed for looking at data-value and data-

domain overlap to find unionable [33] and joinable [9, 13, 45] tables, to find mappings to 

common schemas [19] and to profile data to find joinable tables [9, 13]. JUNEAU additionally 

considers the context and intent of the user — by searching over the provenance of data 

resources, and by allowing a user to specify what type of task they are performing.

We focus in this paper on tabular and “shallow” hierarchical data that can be imported into 

(possibly non-first-normal-form) relations: CSVs, structured files, external web resources, 

and R and Pandas dataframes. We hypothesize that during interactive data science tasks, 

users often want to search the data lake, not only by keyword, but using a table, to find other 

related tables. Our implemented query-by-table framework incorporates specialized 

relevance-ranking criteria to support data wrangling and training tasks.

We enable searching over the inputs and outputs of data science workflows, each comprised 

of discrete computational steps or modules. JUNEAU assumes workflows are specified as 

sequences of cells within computational notebooks, hosted for multiple users on the cloud, 

such as Jupyter Notebook/JupyterLab, Apache Zeppelin, or RStudio. (Our work generalizes 

to shell scripts or computational workflow systems [18, 31, 34], and it builds upon a recent 

demo [44] to focus on effective ranking.) We further assume that the output of each module 

should be stored in a data lake we manage, alongside its provenance [8]. As the user works 

with data, JUNEAU helps them find additional resources:

Augmenting training/validation data.

Often, data from the same or related sources is captured in multiple sessions (perhaps by 

multiple users). Given a table from one such session, a data scientist may wish to augment 
his or her data, to form a bigger training or validation set for machine learning.

Linking data.

Records in one database may have identifiers referencing entries in another database. Joining 

on these links brings in additional fields that may be useful to the user or to a machine 

learning algorithm. It can be helpful for users to know about such links that are implicit in 

the data.
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Extracting machine learning features.

Data scientists often seek additional/alternative features for a given data instance. In a 

collaborative setting, one data scientist may perform specific feature engineering on a data 

set, while another may do it in a different way. It can be helpful for each scientist to see 

alternative feature engineering possibilities.

Data cleaning.

Given a widely used table, a data scientist may want to see examples of how the table is 

loaded or cleaned. This involves finding alternative tables derived from the same inputs, but 

perhaps with missing values filled in.

For the above scenarios, searching for tables by keywords [5, 38] or row values [47, 48] is 

inadequate: we need a broader notion of relatedness that may consider schema similarity, 

record-level overlap, description of data and workflows and similarity in the workflows that 

create or use specific tables. Tasks may involve more than searching for unionable [33] or 

joinable [9, 45] tables. Given the complexity of each of our target tasks, we develop a 

general framework for composing multiple measures of similarity, choose a tractable subset 

of features, and explore how to combine these to support new classes of search. We make the 

following contributions:

• A framework for combining measures of table relatedness, which uses top-k, 

pruning, and approximation strategies to return the most related tables.

• A basic set of measures of table relatedness that consider both row and column 

overlap, provenance, and approximate matching, for multiple use cases.

• An implementation in JUNEAU, which extends Jupyter Notebook with table search 

capabilities.

• Experimental validation of our methods’ accuracy and scalability, via objective 

measures.

Section 2 defines the table search problem and explains our approach. Section 3 proposes 

measures for table similarity and relatedness. Section 4 then develops algorithms for these 

measures and for querying for similar tables. In Section 5 we describe JUNEAU, which 

implements the query schemes proposed in this paper. We then experimentally evaluate the 

JUNEAU implementation in Section 6, before describing related work in Section 7 and 

concluding in Section 8.

2 FINDING RELATED TABLES

As data scientists conduct their tasks, if they could easily find related tables (or have these 

recommended to them as “auto-completions”) rather than re-creating new ones, this would 

help foster many of the benefits we associate with good software engineering. Dataset and 

schema reuse would ultimately make different data analysis processes more regularized, and 

it would also provide natural ways of leveraging common work on cleaning, curation, and 

standardization. In this section, we formalize our problem, first by providing more detail on 
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the types of workflows and environments we target, then by outlining the objectives of table 

search.

2.1 Workflows, Notebooks, and Data

While most of our techniques apply to any general corpus of tables, we target a richer data 

lake environment, in which we can observe tasks, provenance, and updates across time. 

JUNEAU supports computational notebook software, such as Jupyter Notebook [36] and its 

successor JupyterLab, Apache Zeppelin, and RStudio. Within this environment, users are 

performing multiple computational steps over data; we consider the overall sequence of 

operations to be a (sometimes one-off and ad hoc) computational workflow. Computational 

notebook platforms directly capture workflows and data exploration by interleaving source 

code cells (code modules in a workflow, executed in an external interpreter or query system) 

with their outputs (in the form of rendered visualizations or tabular output). Such cells 

typically are appended to the notebook sequentially, preserving a type of history. 

Additionally, cells in the computational notebook often produce side effects by modifying 

state (variables whose values are set, and readable by the next cell to execute) or producing 

tables or files (which may be read by a future cell execution that may even occur in another 

notebook).

Computational notebooks are typically stored as semi-structured files, with limited data 

management. Notebook files do not fully preserve either the history of cell versions and 

outputs, nor the order in which cells were executed — which may result in non-reproducible 

notebooks. However, recent projects have introduced reproducible notebooks [7, 28, 37]. 

JUNEAU adopts a similar approach: it replaces the notebook software’s storage layer with a 

data lake storage subsystem, and replaces the notebook document with a broader object 

model. Our storage layer facilitates notebook storage and retrieval. Internally it also tracks 

versioning of the code cells, dependencies between cells that occur due to state sharing, and 

interactions between notebooks and the shell or terminal via files. Figure 1 shows the 

internal data model (right) of an example notebook (left). JUNEAU converts every notebook Ni 

into a workflow graph. We formalize this workflow graph WFi as a directed bipartite graph, 

in which certain data object nodes Di = {D1, …, Dm} are input to computational modules (in 

Jupyter, code cells), Mi = {M1, …,Mn}, via labeled directed edges.

Each module in Mi produces output data objects (set Di), which can be inputs to other 

computational stages. In JUNEAU our focus is on data objects that can be represented in 

(possibly non-1NF) tables. This includes input files read by the notebook, formatted text 

(Markdown) cells, and outputs (files, text, images). Edges between data objects and 

computational modules are labeled with the names of the program variables associated with 

those objects.

2.2 Searching the Lake

The problem of finding related tables in a data lake has multiple dimensions. First, there are 

a variety of different “signals” for table relatedness. For instance, in some settings, we may 

have shared values or keys; in others, the data may be complementary and thus have no 
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value-overlap at all. Second, there are multiple kinds of tasks, each with different criteria for 

what makes a table useful:

Augmenting training or validation data: we seek tables with similar schemata, 

descriptive metadata and provenance, and compatible values and datatypes — such that the 

table can be mapped as input into the machine learning algorithm being used. Tables that 

bring many new rows are preferred.

Linking data: we seek data that joins with the existing table, meaning we need to find a 

small number of common schema elements with high data overlap. Tables that bring new 

fields are preferred.

Extracting machine learning features: machine learning features are generally 

acquired by running code over the contents of a table — the result resembles that of a join, 

in that it adds columns to each row. There are two major differences from the linking-data 

use-case: (1) the feature-extracted table will generally derive from a table with different 

provenance from the search table, (2) the feature-extracted table should typically have a 

superset of the columns (and the majority of rows) of the search table.

Data cleaning: high-ranking tables should match the schema of the search table, and share 

most rows (as identified by key) and values. The cleaned table should derive from one with 

similar provenance to the search table, and generally will have fewer null values and unique 

values per column.

2.3 JUNEAU Functionality

To support the search types described above, JUNEAU must leverage multiple measures for 

each search type, and it should easily extend if new measures are proposed by future 

researchers or domain experts. Our system is given a search table S, a search type τ and 

relatedness function Relτ that combines multiple measures (defined in Section 3), and an 

indexed set of tables in a data lake. It seeks the k most related tables. Section 4 develops (1) 

scalable algorithms for computing our measures, (2) a top-k engine to combine them. We 

prioritize inexpensive, highly-selective measures to prune candidate tables; then compute 

additional measures as needed.

Of course, any search method that must compare the contents of the search table against a 

large number of existing tables will not scale. We not only use data sketching and profiling 

techniques as in prior work [9, 13, 45], but in Section 5 we develop techniques for 

incorporating profiling algorithms that can identify the semantics of certain columns by their 

value ranges and data patterns (e.g., countries, first names). We generalize this idea to profile 
tables that contain certain combinations of fields, e.g., a table of people and their IDs. We 

create an index from the profile tables to matching fields in other tables; if a search table 

matches against the profile table, it can also be transitively matched to these tables.
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3 MEASURES OF TABLE RELATEDNESS

The previous section gave an overview on how different search classes are supported by 

combining multiple measures. In this section, we propose basic measures of relatedness or 

utility sim(S, T) between a given target table T and our current search table S. We defer 

implementation to the next section. Note that the set of potential measures for table 

relatedness is nearly unbounded, because many domain-and data modality-specific measures 

might be defined for different use cases. Thus, we provide a basic set of measures for 

common use cases, and the extensible JUNEAU framework can incorporate additional 

measures. We divide our basic metrics into measures of table overlap (at the row and column 

level), useful for finding tables with schemas that augment or join with our existing data; 

measures of new information (rows or columns) that favor tables that bring more 

information; and measures of provenance similarity that indicate semantic relatedness 

between datasets. Finally, while data cleaning is a vast field that often employs domain-

specific techniques, we develop simple measures to detect the kinds of data cleaning often 

employed in Jupyter notebooks, which involve filling in missing values.

3.1 Matching Rows and Columns

Our starting point is a measure of similarity or overlap between tables that are similar, but 

not necessarily identical, by finding matches among sub-components (namely, rows and 

columns). Intuitively, the overlap between tables may be broken down into row- and 

column-level overlap. Row overlap captures overlapping data items (or in machine learning 

parlance, instances); column overlap seeks to capture commonality of schema elements. 

Both notions must be tolerant of small changes to schema and values.

To characterize row-level and column-level similarity between a pair of tables S and T, we 

introduce a relation mapping μ consisting of a key mapping and a schema mapping. 

Intuitively, when the pairs of attributes kS, kT in the key mapping are equal, we have a value-

based match between the rows. Conversely, the schema mapping attributes mS, mT capture 

pairs of attributes that semantically correspond (not as part of the key). Inspired by schema 

matching literature [39], we distinguish between value-based and domain-based (in the sense 

of semantic types) techniques for finding relation mappings and computing table overlap.

3.1.1 Value-based Overlap.—We start with a measure the commonality between rows 

in the tables, which is obtained by finding shared values in a corresponding key mapping.

Overlap with Exact Matches.: For the problem of table row overlap, we start with a strong 

assumption of exact matching, which we will ultimately relax. Given two tables S, T, we 

seek a mapping μ that relates tuples s ∈ S, t ∈ T.

Definition 1 (Key Mapping).: If S and T overlap, we expect that there is at least one 
candidate key kS for relation S and kT for relation T, each containing n attributes, such that if 
θkS, kT = kS1 = kT1 ∧ … ∧ kSn = kTn , then we have functional dependency 

kS S ⨝θkS, kT T  and kT S ⨝θkS, kT T .
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We say θkS, kT  establishes a bijective key mapping K between pairs kSi and kTi, for 1 ≤ i ≤ n.

Often, attributes that are not part of a candidate key are in fact mappable between pairs of 

relations S and T, so the mapping key attributes do not fully define the relationship between 

pairs of tuples. Moreover, even if the keys exactly match, the remaining attribute values may 

not. We thus consider more general methods of mapping columns that do not directly 

overlap in value.

3.1.2 Domain-based Overlap.—Domain-based overlap captures the columns that are 

drawn from the same domain, even if they do not have overlapping values. The simplest 

form of domain-based overlap is to leverage similarity of labels and compatibility of 

domains [39]. Another method is to use ontologies with known instances [33]. However, 

ontologies often have limited coverage, and may not capture common patterns in the data. 

Therefore, we propose a more general solution that we term data profiles.

Definition 2 (Data Profile).: Suppose we are given a particular domain d (where a domain 
might be, e.g., a name, a birthday). Given a column c, we denote the data profile of c with 
respect to d as Ψ(c, d), where Ψ(c, d) = {ψi(c, d)}i. Each ψi represents a set of features 
indicating column c’s values belong to domaind. Given c, d and a group of weights ω = 

{ωi}, for each ψi, there exists a function gi, such that gi ψi(c, d) predicts the likelihood that 
column c has domain d. Denote M(c, d) as the function that predicts column c is of domain 
d, M(c, d) = ∑iωigi ψi(c, d) .

We can then define the domain-based mapping as follows.

Definition 3 (Domain-based Mapping).: Let D = {dj} be a set of domains. Given table S, 

we define a domain mapping Γsj, dj, where sj is in the schema of S, dj ∈ D, and we say sj 

belongs to domain dj, if M(sj, dj) > τ, where τ is a threshold.

Our implementation (Section 4.2.2) relies on user-defined data profile-detection functions 

called registered matchers, as well as basic value-range and uniqueness checkers, as 

predictors for whether given columns map to domains.

Leveraging the domain-based mapping, we introduce schema mapping between two tables. 

If we assume that the probabilities are independent and that we are looking for a single 

common domain between columns, then we can further define a measure of similarity 

between columns c and c′ as:

MS c, c′ = argmaxdM(c, d) ⋅ M c′, d

We can now find correspondences between pairs of attributes (sj, tj): we assume one-to-one 

correspondences between attributes [39], and select pairs sj, tj in decreasing order of 

similarity MS(sj, tj), only selecting each column at most once. This yields a schema 

mapping:
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Definition 4 (Schema Mapping).: A schema mapping ΓmS, mT  , where |mS ⊆ S| = |mT ⊆ T| 

= k, is a bijective mapping between pairs of attributes sj ∈ mS, tj ∈ mT, 1 ≤ j ≤ k. Initially we 
assume that the domains of mapped attributes sj, tj are the same, which we term direct 

schema mappings.

3.1.3 Relation Mapping.—We then define the relation mapping, which will be a 

parameter to a lot of our similarity measures.

Definition 5 (Relation Mapping).: A relation mapping between relations S and T, μ(S, T) is 
a four-tuple (mS, mT, kS, kT) such that |mS ⊆ S| = |mT ⊆ T|, |kS ⊆ mS| = |kT ⊆ mT|, ΓmS, mT  is 

a schema mapping between S, T, and kS, kT form a one-to-one key mapping K.

The culmination of these definitions yields a measure that can estimate the similarity 

between two tables:

Definition 6 (Overlap with Relation Mapping).: Given two tables S, T and a relation 

mapping μ = (mS, mT, kS, kT) between the tables, we define two components: row similarity, 

simrow
μ (S, T ), and column similarity, simcol

μ (S, T ). As with [5, 13], we use Jaccard similarity 

for each component. First, we consider row overlap; given that kS → mS and kT → mT :

simrow
μ (S, T ) =

πkS(S) ∩ πkT(T )
πkS(S) ∪ πkT(T ) (1)

For column similarity, we consider the overlap between the schemata of S and T, denoted by 

vectors S, T .

simcol
μ (S, T ) = mS

S + T − mS
(2)

3.1.4 Relaxed Overlap Conditions.—In real world datasets that are not controlled by 

a DBMS, key constraints are occasionally violated due to errors, data consistency issues, and 

joint datasets that have not been fully de-duplicated. Thus, exact value overlap may be too 

strong a constraint to find key fields and thus identify common rows. We thus relax our 

constraints to incorporate approximate key constraints, and extend the similarity metric.

Value-based Overlap with Approximate Matches.: Approximate functional dependencies 

have been heavily studied in the database literature, with a focus on practical algorithms for 

their discovery [6, 12, 22, 24, 42]. We leverage this work to define a similarity measure (the 

algorithm used to detect the approximate dependencies is orthogonal to our work).

If a dependency kS → S holds, then all tuples in S with a given value of kS must be 

identical. However, in an approximate setting some tuples may not satisfy kS → S. We can 

collect this portion of S into a subset Sn, where for each s ∈ Sn[kS], there exist multiple 
tuples in Sn.
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Definition 7 (Approximate Key Constraints).: Given a candidate approximate key, kS ⊆ S, 

we define a factor γkS(S) to measure how well kS serves as a key of S. Adapting a metric 

proposed in Wang et al. [42], we measure the expected number of tuples in the table 

associated with each value of the approximate key, πkS(S). Note that the factor is equal to 1 

if an exact functional dependency holds. Formally, γkS(S) is defined as follows:

∑
v ∈ πks(S)

σks = v(S)
πks(S) = S

πks(S) (3)

Thus, if kS ⊆ S, and γkS(S) ≈ 1, then we say kS is an approximate key of S.

Domain-based Overlap with Approximate Matches.—Just as we may consider 

approximate matches for values, it is also possible to have a relaxed notion of domain 

overlap: namely, in a hierarchy or lattice of different domains, column sj may map to domain 

d1, column tj may map to domain d2, and the two domains may relate to each other.

Definition 8 (Compound Domain Mapping).: A compound domain mapping ΓmS, md
d , 

where mS ⊆ S, md ⊆ D, ms md , is a mapping between attributes sj ∈ ms and domains dj ∈ 

md. If ∀j, Γsj, dj
d  holds, we say mS belongs to a compound domain md. We can associate a 

domain precision precis(ms, md) to capture how precisely md describes the domain of ms; 

the precision of the most specific domain will be 1.0, and super-classes of this domain will 

have successively lower scores.

Definition 9 (Approximate Relation Mapping).: We define an approximate relation 

mapping to be a relation mapping μ(S, T) = (kS, kT, mS, mT), with an approximation factor, 
γ(S, T), based on how closely or precisely the mapped portions of the relations 
(approximately) satisfy kS → mS and kT → mT . Formally, γμ(S, T) is:

πmS(S) + πmT(T )
πkS(S) ∪ πkT(T ) (4)

We then compute the overlap defined in Definition 6, using the approximate relation 

mapping.

3.2 Augmenting with New Information

Table similarity measures commonality between tables, but in a variety of cases we also 

want to find tables that bring in a substantial amount of new data instances (rows). 

Therefore, we propose two metrics to measure information gain.
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Definition 10 (New Row Rate).

Given table S, candidate table T, and their approximate relation mapping μ(S, T) = (mS, mT, 

kS, kT), we define the new row rate of T as nr rS
μ(T ):

nr rS
μ(T ) = πkT(T ) − πkS(S) / πkT(T ) (5)

Definition 11 (New Column Rate).

Given table S, candidate table T, and their approximate relation mapping μ(S, T) = (mS, mT, 

kS, kT), we define the new column rate of T as ncrS
μ(T ):

ncrS
μ(T ) = T − mT / T (6)

A complementary direction explored by Kumar et al. [29] is whether joining a table to bring 

in additional features notably improves a classifier’s accuracy. As future work, we are 

interested in exploring whether their notion (which considers schema constraints and VC-

dimension) can be adapted to our setting in a low-overhead way.

3.3 Measures for Shared Provenance

The above similarity measures focus on matching table content, i.e., instances and schema. 

However, tables may also have similarity of purpose or role: i.e., they may be produced by 

an identical or similar workflow (sequence of notebook cells). We begin with a variable 
dependency graph (as is used in source code dependency analysis), which captures the 

dependencies among variables in the computational notebook. We extract a subgraph for 

each variable as its provenance graph, and define similarity based on the edit distance 

between provenance graphs.

Definition 12 (Variable Dependency Graph).

A variable dependency graph of a notebook is a directed acyclic graph with labels on edges 

denoted as G = (V, E, F). V represents the vertices consisting of all variables detected in the 

notebook. F represents operations (functions) that are used on the input variables to generate 

the output variables. E(G) represents the labeled directed edges, and for any triple ⟨u, v, l⟩ ∈ 
E(G), where u, v ∈ V (G), and l ∈ F(G), it means that variable u depends on variable v via 

operator l. Note that, table dependency graph is generated by extracting the assignment 

relationships, variables and functions from the source code of the computational notebook. 

To extract all of the information, we parse the source code to an abstract syntax tree (AST).

Listing 1: Example 3.1

inFp= “train.csv”

df_train=pd.read_csv (inFp)

var= “ SalePrice “

data =pd.concat ([df_train[“GrLivArea”],df_train[var]])
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EXAMPLE 3.1.: See Listing 1 and Figure 2. The nodes represent the variables detected in 
the source code, including inFp, df_train, var, and data. The operators used here are 
functions such as pd.read_csv and pd.concat. The edges consist of all assignments in the 
source code. For example, data is output by running pd.concat on df_train and var. 
Therefore, it is connected by two edges with the same label from var, df_train respectively.

A variable dependency graph depicts how a variable depends on and affects other variables. 

Building upon this, we introduce a variable provenance graph for each variable.

Definition 13 (Variable Provenance Graph).—Given a variable dependency graph G = 

(V, E, F), a variable provenance graph PG(v) where v ∈ V is a subgraph of G, which 

describes all variables that affect v and their relationships.

Definition 14 (Variable Provenance Similarity).—The provenance similarity between 

two variables is defined via graph isomorphism. Given G = (V, E, F) and G′ = (V′, E′, F′), 

a graph isomorphism from G to G′ is a bijective function f : E → E′, s.t. ∀(u, v, l) ∈ E, ∃(u

′, v′, l′) ∈ E′, s.t. u′ = f (u), v′ = f (v) and l = l′. Meanwhile, ∀(u′, v′, l′) ∈ E′, ∃(u, v, l) ∈ 
E, s.t. u = f −1(u′), v = f −1(v′) and l′ = l.

Provenance similarity between two variables va and vb, where va ∈ V and vb ∈ V′, is the 

graph edit distance [43], the most common measure of graph similarity, between PG(va) and 

PG(vb), denoted as edt(PG(va), PG(vb)). It is the number of edit operations in the optimal 

alignment that makes PG(va) reach PG(vb). The edit operation on a graph G is an insertion 

or deletion of a vertex/edge or relabeling of an edge. The costs of different edit operations 

are assumed to be equal in this paper.

Provenance similarity between S and T, simp(S, T), is thus:

simp(S, T ) = 1
edt(PG(S), PG(T)) + 1 (7)

We show an algorithm for computing provenance similarity in Section 4. Note that we only 

consider provenance for all definitions within the current notebook, and do not extend to 

imported packages or other files. As future work we will consider code analysis across 

source files.

3.4 Other Measures

3.4.1 Description Similarity.—The information of why and how a table was derived is 

also important when considering table similarity, especially when tables have limited row 

overlap. We consider the any descriptive information (metadata) about the source data, as 

well as the workflow used to produce the data, as a part of our similarity metrics, and we 

assume that they are all stored in a key-value form.

Examples of descriptive metadata are sketched in a recent vision paper [17], and may 

include the problem type, e.g., classification, regression, clustering; the domain of the source 

data, such as health care, finance, insurance; study conditions; text about workflow; etc.
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We denote the description space of table S as Θ(S). Θ(S) = {(θi, vi, fi)|1 ≤ i ≤ N }, where θi 

represents a specific type of description, vi is the corresponding value of θi. Given another 

table T with its configuration space Θ(T), fi measures the similarity between vi and vi′, where 

(θi, vi, fi) ∈ Θ(S) and θi, vi′, fi ∈ Θ(T).

Given table S, T and a description space, the description similarity simΘ(S, T) is defined as 

follows:

∑
i = 1

N
wi ∗ fi vi, vi′ (8)

where wi is the weight for a specific feature, such that ∑i = 1
N wi = 1, and (θi, vi, fi) ∈ Θ(S) 

and θi, vi′, fi ∈ Θ(T).

3.4.2 Null Value Reduction.—The number of null values in a column is an important 

signal when looking for data cleaning tasks, as a common cleaning operation is to fill in or 

impute missing values. We define the measure as follows:

Definition 15 (Null Value Decrement).: Given two tables S, T, and the relation mapping 

μ(S, T) = (mS, mT, kS, kT), the null value decrement Δ0
μ(S, T ) is:

Δ0
μ(S, T ) = max 0, Null πmS(S) − Null πmT(T ) (9)

where Null(S) and Null(T) represent the number of null value entries in S and T respectively.

3.5 Composing Measures for Search

Section 2 described four typical classes of search. We now describe how our primitive 

measures from above can facilitate ranking for each search class.

3.5.1 Augmenting Training Data.—Tables with similar schema and provenance to the 

search table are likely to be useful as additional training data. Therefore, for this search 

class, given μ, we need a table T ∈ Σ with high simcol
μ (S, T ) and high simp(S, T ). Meanwhile, 

we prefer tables that add new rows; therefore, the table should also have a high nrrS
μ(T ). 

Thus, given μ(S, T), Rel1(S, T) is defined as follows:

ω1simcol
μ (S, T ) + ω2simp(S, T ) + ω3nrrS

μ(T ) (10)

3.5.2 Linking Data.—Rather than looking for tables that have high column overlap, a 

data scientist often needs to find tables that augment or link to the current result. This is 

requires a joinable table, where we expect one-to-many (or in rare cases many-to-many) 

links between tuples.
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Again, we assume the presence of a relation mapping μ(S, T) = (mS, mT, kS, kT). Here, 

however, we expect that either kS → S or kT → T, i.e., we can think of kS and kT as 

members of a key/foreign-key join. Therefore, in the first case, there will be a high row 

overlap between T and S ⨝kS, kT T , which means simrow
μ (T , S ⨝kS, kT T) will be high. In 

the second case, the high overlap will exist between S and S ⨝kS, kT T , which means 

simrow
μ (S, S ⨝kS, kT T) is high. Formally, given tables S, T and a relation mapping μ(S, T) = 

(mS, mT, kS, kT), Rel2(S, T) is:

max(simrow
μ (S, S ⨝θkS, kT T), simrow

μ (T , S ⨝θkS, kT T)) (11)

3.5.3 Extracting Machine Learning Features.—Feature extraction will typically 

produce tables that preserve their inputs’ keys and other columns, but add more columns. We 

look for tables with high simrow
μ (S, T ) and high ncrS

μ(T ) or high simrow
μ (S, T ), but with low 

simp(S, T). Formally, Rel3(S, T) is:

ω1simrow
μ (S, T ) + ω2ncrS

μ(T ) + ω3simp(S, T ) (12)

3.5.4 Data Cleaning.—Compared with the search table, the output of data cleaning 

usually matches the schema and shares most rows, but has some data-level differences. The 

most typical “signal” is a reduction in null values. Therefore, we require the table has high 

simrow
μ (S, T ), high simcol

μ (S, T ) and high Δ0
μ(S, T ). Since data cleaning is usually combined 

with other steps, we also require the alternative data cleaning steps should share common 

provenance, which means it also require a high simp(S, T). Formally, given μ(S, T), Rel4(S, 

T) can be defined as follows:

ω1simrow
μ (S, T ) + ω2simcol

μ (S, T ) + ω3Δ0
μ(S, T ) + ω4simp(S, T ) (13)

Summary of similarity measures.: We summarize our measures and their relative 

importance to each search class in Table 1. Note that we always add simΘ(S, T), the 

description similarity, to each measure: we consider it a strong indicator if tables were 

created by the same organization, belong to the same domain, or serve the same project.

4 QUERYING FOR RELATED TABLES

Leveraging the similarity metrics and search classes of the previous section, we now develop 

algorithms for finding related tables. We must identify the best relation mapping between the 

source table S and the candidate table T (Section 4.2) and compute components of the table 

relatedness score (Section 4.3). Once we have relatedness scores, we must compute the top-k 
results using effective pruning and indexing strategies (Section 4.4). We start with an 

overview of how ranked query processing (top-k search) works.
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4.1 Overview of Top-k Search

The top-k query processing problem involves computing as few results as possible to return 

the highest-scoring results. This longstanding problem in query processing typically sets a 

threshold on remaining answers and returns values scoring above this [10, 23]. The 

challenge lies in using the measures with the highest selectivity/cost trade-off to “drive” the 

computation and prune many potential matches; then evaluating the remaining measures to 

refine our ranking.

We divide our basic measures in Table 1 into two categories, based on whether they depend 

on finding the relation mapping μ. Typically, detecting relation mapping is more time-

consuming than other measures, i.e., simp(S, T) and simΘ(S, T), since the provenance graph 

of a table and the metadata of the notebook or the dataset are proportionally small. 

Therefore, the relation mapping is the bottleneck when doing top−k search. Based on this 

observation, we leverage a threshold algorithmic framework to do top−k table search, whose 

idea is to leverage computationally efficient measures to prune the candidate tables, 

minimizing computation of the time-consuming parts (e.g., the relation mapping).

Ultimately, we must find a relation mapping between tables. To speed this up, we create 

indices to help quickly detect a mapping for part of a table’s schema, and then if necessary, 

we incrementally refine the full relation mapping detection. Since the partial relation 

mapping is efficient to compute, we can also fit this staged relation mapping strategy into 

our threshold based algorithmic framework.

4.2 Detecting Relation Mappings

Most of our similarity measures require the relation mapping as input. This requires us to 

detect a schema mapping at the domain-level ΓmS, mT , and subsequently derive a set of key 

mappings θkS, kT  by looking at values within the mapped columns. In turn, finding the 

schema mapping involves estimating value-based overlap, then matching columns against 

data profiles to detect their domains.

4.2.1 Computing Value-based Overlap.—We use Jaccard similarity between pairs of 

columns, to determine their overlap score, MS(i, j):

MS(i, j) = πSi(S) ∩ πtj(T ) / πSi(S) ∪ πtj(T ) (14)

where si ∈ S (S is the schema for table S) and tj ∈ T . Alternatively, we could estimate 

similarity using sketches or LSH based approximation [14, 46] for scalability.

4.2.2 Computing Domain-based Overlap.—Value-based overlap is a strong signal 

that columns share the same domain, but sometimes different tables contain disjoint data 

values. As described previously, ontologies [33] are one method of determining common 

domains, but they are often unavailable or under-populated. To handle such cases, we 

propose two methods to identify columns’ domains.
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Registered Matchers.: Leveraging an idea from schema matching [39], we pre-define a 

series of matching functions that can test if the column belongs to a specific domain. A 

typical example is to validate email address by regular expression. In JUNEAU, we also allow 

users to register their own matchers to match columns to specific domains. Our 

implementation, described in Section 6, supports matchers that check columns’ data types, 

unique values, value ranges, and common patterns. This is generally through a combination 

of value-range checking (e.g., for zip codes), pattern detection (e.g., for phone numbers or 

street addresses), and cross-checking across a dictionary (e.g., for common names).

Data Profiles.: More generally, we can develop algorithms that do data profiling to predict 

whether a column belongs to a domain, e.g., by testing for features as defined in Section 3: 

example features include columns’ data types, unique values, value ranges, and common 

patterns. Additionally, the outputs of the registered matchers above form additional features.

In our initial implementation of JUNEAU, we use Boolean-valued features, and then compute 

Jaccard similarity between the sets of features reflected in two sets of columns. This could 

be easily generalized to real-valued features.

We also generalize to look at co-occurring columns within the same schema; e.g., we may be 

more confident that we have a “last name” field if there is also a “first name” field. Here, we 

use a Naïve Bayes model to score the probability of c matching a column c′, and the 

characteristics in this case is ψi(c) = {c*}, where {c*} is the set of columns in the same 

table as column c. The score is computed as follows:

p c |ψi c′ ∝ p ψi c′ | c
p ψi c′ = ∏c* ∈ ψ c′ p c* |c

∏c* ∈ ψi c′ p c* (15)

where p c* |c = n c, c*
n(c) , and p c* = n(c)

N , where n(c, c*) is the number of tables that contain 

both c and c*, and n(c) refers to the number of tables that contain c.

4.2.3 Relation Mapping.—Given matching scores between pairs of columns, we need 

to find the schema mapping ΓmS, mT  between S and T. We find this schema mapping using 

integer linear programming [26], much as in prior work [16]. Formally, we denote xij as the 

binary variable indicating if si ∈ S is matched to tj ∈ T , according to some attribute 

similarity function that may take schema or data into account [27, 39]. That is:

xij =
1, if ΓmS, mT si = tj
0, otherwise

Here, we assume that each attribute in S can be matched to at most one attribute in T  and 

vice versa. Thus, the objective is to find a mapping ΓmS, mT  satisfying the constraints that can 

maximize the matching score as follows:
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argmaxΓ∑
i, j

xij MS(i, j)

s.t. xij ∈ {0, 1}, ∀i, ∑
j

xij ≤ 1, ∀j, ∑
i

xij ≤ 1 (16)

Finally, we use a greedy algorithm proposed by Papadimitriou [35] to get the best schema 

mapping.

4.2.4 Detecting keys and dependencies.—For a given schema mapping, the choice 

of key mappings determines which rows are mapped together, and thus it affects the relation 

mapping. Our goal is to find a key mapping K = (kS,kT ) with equijoin predicate θkS, kT , 

which maximizes the table overlap.

Since table overlap includes both row and column overlap, we denote the table overlap as:

simβ
μ(S, T ) = βsimrow

μ (S, T ) + (1 − β)simcol
μ (S, T ) (17)

where parameter β allows us to adjust the weight on row and column terms.

Next, we maximize simβ
μ(S, T ) (for some given parameter β and schema mapping ΓmS, mT) to 

find the key mapping K between S and T. Formally,

simβ
μ(S, T ) = argmaxθkS, kT

* simβ
μ(S, T ) (18)

Unfortunately, choosing the subset of a schema mapping as a key mapping to maximize the 

similarity is a variation of the classic, NP-hard subset-selection problem. Fortunately, the 

key mapping for two tables typically has a very small size, especially for linkable tables 

(key-foreign key joins seldom match on more than 2–3 keys). Therefore, we do not actually 

need to explore all subset combinations of attribute pairs from S and T, but limit the size of 

θkS, kT  to be a small integer denoted as ks. Thus, the key mapping we are looking for is:

K : argmax kS, kT s.t. kS , kT ≤ kssimβ
μ(S, T) (19)

This optimization problem is tractable. We combine the chosen ΓmS, mT  and K to form our 

relation mapping μ.

4.3 Estimating Provenance Similarity

Computing provenance similarity i.e., the graph edit distance between two variable 

provenance graphs (Section 3.3), is NP-hard [43]. In this section, we present an 

approximation algorithm to efficiently estimate the provenance similarity between two tables 

based on their variable provenance graphs. The basic idea of our estimation is to transform a 

graph structure to a multiset of star structures [43].
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Star Edit Distance.—To estimate the provenance similarity between S and T, we first 

derive the corresponding variable provenance graphs, PG(S) and PG(T), respectively. The 

key idea of estimating the graph edit distance between PG(S) and PG(T) is representing each 

graph to be a set of star structures whose graph edit distance can be easily obtained. Based 

on the edit distances between star structures of PG(S) and PG(T), we can estimate the lower 

and upper bound of their graph edit distance, a.k.a their provenance similarity. In the 

following part, we first introduce the star structure and then elaborate on how to compute the 

edit distance between two star structures.

Definition 16 (Star Structure).: A star structure s is a labeled single-level, rooted tree 

which can be represented by a 3-tuple sr = (r, L, f ), where r is the root vertex, L is the set of 

leaves. Note that edges only exist between r and any vertex in L, and no edge exists among 

vertices in L. f is the labeling function on edges.

Given PG(T) = (V, E, F), we can represent it with a set of star structures, denoted as PGs(T) 

= {sr |r ∈ V }, where sr = (r, L, f ) and L ⊂ E, f ⊂ F.

Definition 17 (Star Edit Distance).: Given two star structures s1 = (r1, L1, f1) and s2 = (r2, 

L2, f2), we denote their star edit distance as sdt(s1, s2). Formally,

sdt s1, s2 = | |f1 | − |f2 | | + M f1, f2 (20)

where M f1, f2 = max{|Ψf1|, |Ψf2|} − |Ψf1 ∩ Ψf2|, and Ψf represents the multiset of f.

Lower Bound of Edit Distance.—Based on the star representation of the variable 

provenance graph, we introduce a mapping distance between two star representations, and 

we leverage it to provide a lower bound on the graph edit distance between two variable 

provenance graphs.

Definition 18 (Mapping Distance).: Given two star representations PGs(S) and PGs(T ), 

assume that Υ is a bijective mapping between si ∈ PGs(S) and sj ∈ PGs(T ). The distance ζ 
between PGs(S) and PGs(T) is

ζ PGs(S), PGs(T ) = minϒ ∑
si ∈ PGs(S)

sdt si, ϒ si (21)

Detecting an Υ that can minimize the mapping distance is also a combinatorial optimization 

problem, which is the same as detecting the schema mapping described in 4.2.3. Therefore, 

we use the same greedy solution to find Υ, so that we can compute the mapping distance 

efficiently.

Proposition 1. Given the mapping distance between PGs(S) and PGs(T), the provenance 

similarity between S, T satisfies:

ζ PGs(S), PGs(T ) ≤ 4 ⋅ edt(PG(S), PG(T)) (22)
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Proof. Let P = (p1,p2, …,pl) be an alignment transformation from PG(S) to PG(T ), such that 

PG(S) = h0 → h1 → … → hl = PG(T), where hi−1 → hi indicates that hi is derived from 

hi−1 by executing cell pi. Following Definition 13, pi can be vertex or edge insertion or 

deletion, or edge relabeling. Let P consist of z1 edge insertions/deletions, z2 vertex 

insertions/deletions, and z3 edge relabelings; then the edit distance between PG(S) and 

PG(T ) is z = z1 + z2 + z3. Each edge insertion/deletion affects two vertices, increasing 

mapping distance by at most 2., every time it happens, only two vertices are affected, and for 

each vertex, it will at most increase a cost of 2 on mapping distance between star structures 

PGs(S) and PGs(T ). Therefore, the mapping distance between PG(S) and PG(T ) increases 

by at most 4z1. Given vertex insertions/deletions, the mapping distance remains the same. 

Given z3 edge relabelings, each of which affects two vertices, the mapping distance 

increases by at most 2z3. Thus:

ζ PGs(S), PGs(T ) ≤ 4 ⋅ z1 + 2 ⋅ z3
≤ 4 ⋅ edt(PG(S), PG(T)) (23)

In the following computation, we will use the lower bound of edt(PG(S), PG(T)) to estimate 

the provenance similarity between two given tables S and T.

4.4 Querying for Tables

Given a source table S and the techniques of this section, our table search algorithm seeks 

the top-k tables, which maximize the relatedness score for the user’s specific class of search. 

Without loss of generality, we assume that our goal is to find the k tables with highest table 

relatedness. Formally, given table S and the data lake Σ = T1, …, Tn , we seek top-k tables 

Rk = Ti |Ti ∈ Σ, ∀Tj ∉ Rk, Relτ S, Ti > Relτ S, Tj , Rk = k .

To return the top-k tables, a strawman solution is a form of exhaustive search: we take each 

table Ti ∈ Σ, find a relation mapping, then compute row and column overlap as well as the 

other relatedness components respectively, and ultimately rank our matches to return the top

−k tables. Note that in the use cases we discussed in this paper, the most expensive parts are 

detecting relation mappings among the computational components.

Of course, the strawman solution is not efficient, because (1) it repeatedly computes schema 

mappings and candidate key dependencies without reusing any mappings or keys already 

detected, even though we may notice during indexing tables that some of the columns 

probably coming from the same domains; (2) in practice, most tables in the data lake are not 

related to the search tables along all relatedness metrics. Therefore, it is unnecessary to 

compute all relatedness components, especially the more time-consuming ones, for each 

candidate table. We may be able to quickly prune some tables from consideration.

Top-k query processing is a well-studied problem [23, 25, 30], with Fagin’s Threshold 

Algorithm [10] forming a strong foundation. Building upon the insights of reusing relation 

mappings and the top-k query processing literature, we use several key ideas to prune the 

search space.
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4.4.1 Speeding up Relation Mapping.

As described in the last section, we create a data profile for each domain, which is either 

registered by the user, or detected when we store the table. In an index, we link all of the 

columns to their corresponding domains. Thereafter, we can leverage the data profiles as a 

means of finding tables with columns from the same domain. Moreover, we also have the 

workflows that generated the tables in the data lake, which we can also use to index tables.

Indexing via Data Profiles on Columns.—The data profile for each domain tests for 

features indicating that a column belongs to the domain; in turn, we can use the profile as an 

intermediary to other columns from this domain. We can thus directly use data profile 

information to accelerate schema mapping, without having to go through all columns from 

all tables. Specifically, given table S, we create data profile Ψ for each column s ∈ S, and 

match Ψ to the profiles of the domains already registered. Then, based on the matched pairs 

of profiles, the system will return the union of tables that are linked to the matched profiles, 

and we only consider valid relation mappings among those tables.

Indexing Sets of Columns via a Compositional Profile.—Considering that columns 

from particular domains often co-occur with certain other columns in the tables (e.g., 

address and postal code, full name and birth date) — if we can match one of them against a 

data profiles, the others are also very likely to be able to be matched with other columns in 

the table. Therefore, every time we search for related tables, we create an index entry 

mapping from a set of data profiles on columns to the matches within the current search 

table. As part of subsequent searches, we look for existing tables matched to the same set of 

columns’ data profiles — accelerating the problem of finding a relation mapping.

Indexing via Workflow Graph.—Another dimension by which we can index tables is 

through workflow steps. We encode each variable and each unique notebook cell as a graph 

node. The consecutive cells are linked and we further link each variable to the notebook cell 

it belongs to. Note that we only keep notebook cells with unique code, therefore the cells 

shared by different notebooks will become the nodes connecting different notebooks. Then, 

we can index all the tables that are derived by connected workflow steps. Indexing via the 

workflow graph can improve the detection of a relation mapping. We can trace through the 

workflow to find when two different tables actually originated from the same source; and 

from this, we can determine if columns match even if they are renamed! In future work we 

will explore alternative levels of granularity, using code analysis to break cells into smaller 

code blocks.

4.4.2 Staged Relation Mapping Detection.

As described above, we now have three indices to detect schema mapping: the data profile 

index on columns, the compositional profile index on co-occurring sets of columns, and the 

workflow graph index. In this section, we combine them using a staged relation mapping 

detection algorithm.

Stage 1: Matching by data profiles.—Specifically, given table S, we try to match each 

column si ∈ S against all registered data profiles. If one of the domains is matched, we 
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continue to match additional columns sj ∈ S, where i ≠ j to other domains, if these are 

connected via a compositional index. We return the union of tables linked by those matched 

domains, denoted as Σ*.

Stage 2: Matching by workflow index.—Then, for each candidate T ∈ Σ*, if T and S 
are linked via a workflow index, we further check if other columns can be matched. Lastly, 

if there are still columns of S and columns of candidate T that can not be matched, we will 

check if other columns can be matched through the technique of detecting value-based 

overlap proposed in Section 4.2.3.

4.4.3 Pruning.

Staged relation mapping can help us prune tables with minimal schema-level overlap, and 

reduce the times schema mapping (a cubic algorithm) must be invoked to detect value-based 

overlap. Additionally, since most tables are unrelated, they also have low scores along all 

relatedness metrics, which enables further pruning possibilities. Note that for each table T ∈ 
Σ*, if we have evidence that Rel(S, T) will be very low-scoring, we can short-circuit prior to 

searching for a full relation mapping or computing other time-consuming metrics.

Here, we leverage two strategies to develop our threshold based computational framework. 

First, if the relatedness computation needs detecting relation mapping, we will start with 

detecting mapping with indices. In this case, we can obtain a partial relation mapping, 

denoted as ∂μ(S, T ) = mS′ , mT′ , kS′ , kT′  for each possible candidate T ∈ Σ*. Leveraging partial 

relation mapping, we can first compute the column overlap based metrics, i.e., simrow
μ (S, T )

and nrrS
μ(T ), which we can do sorted access when doing top−k search. Then, we can derive 

upper bounds for other relation mapping related metrics based on the partial relation 

mapping, and do random access when doing top-k search in a threshold style algorithm. 

Specifically, the upper bounds of relation mapping related metrics are as follows:

simcol
μ ≤ min( S , T )/max( S , T ) (24)

ncrS
μ(T ) ≤ T − mT′ / T (25)

and,

Δ0
μ(S, T ) ≤ max 0, Null(S) − Null πmT′ (T ) (26)

Our second strategy is to use the related metrics that are inexpensive to compute, to prune 

the number of the tables for which we need to derive costly similarity metrics. Among the 

metrics we use in this paper, the least costly to compute are simp(S, T) and simΘ(S, T). 

Therefore, we can sequentially search over the top-scoring matches to those two metrics 

(“sorted access” in the Threshold Algorithm), and compute the expensive metrics on demand 

(“random access” in the Threshold Algorithm).
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Approximation.—Leveraging the threshold algorithm as a framework also allows us an 

opportunity to use approximation. We can trade off precision for speed, by adapting the 

approximate version of Fagin’s Threshold Algorithm [10]. Here, we use an early stop 
strategy by introducing a new parameter α, with some value α > 1 specifying the required 

level of approximation. The algorithm will then stop when the kth biggest similarity of the 

tables remembered is higher than 1
α  of the threshold, such that a table T′ not in the top−k set 

satisfies the condition that Relτ S, T ′ ≤ α ⋅ Relτ(S, T ) for every other table T inside the top-k 

set. This approximation relaxes the threshold test of our algorithm, making it possible to 

return approximate answers, which is much faster than our vanilla staged threshold 

algorithm.

5 SYSTEM IMPLEMENTATION

Our implementation of JUNEAU combines the measures of Section 4, within a middleware 

layer built between the Jupyter Notebook system and the PostgreSQL relational DBMS 

(10.9) and Neo4J (3.5.8) graph DBMS. The core of JUNEAU is comprised of approximately 

5,000 lines of new code. JUNEAU links into Jupyter Notebook’s ContentsManager interface 

with PostgreSQL as its storage back end to store data and necessary indices, and links into 

Neo4j to store the relationship of tables, cells and notebooks.

JUNEAU provides two main services. The first one is table addition and indexing, which 

happens whenever a new Jupyter cell is executed. The table indexer creates a profile for each 

column of the table, then runs all registered matchers and domain detection algorithms to 

decide if the columns belong to the registered domains. The table and the matched columns 

will be linked to corresponding domains; new table contents will be appended to the profile, 

and meanwhile, we will also link the domains matched together via the compositional index. 

If none of the domains are matched, we will register the column as a new domain and store 

its profiles. We keep the top−K (in our experiment, K = 100) most-matched domains. Then, 

the indexer will also parse the notebook to generate the provenance graph of the table, and 

update other provenance information in the Neo4j Graph database. Lastly, the indexer stores 

the dataframe into PostgresSQL backend.

The second stage of JUNEAU, which hooks into Jupyter’s client-side user interface, is 

searching for related tables. The user selects a cell output table as a query, then specifies 

what type of table to look for; and our table search component retrieves the top−k related 

tables, according to the specified need described in Section 2. As described in Section 4, we 

use the staged threshold algorithm to do top−k search, and take the advantage of the table 

registry and caching to speed up the search process.

Periodically, we adjust the weights of our different search metrics via a hyperparameter 

tuning module. Given a manually labeled set of queries, we run Bayesian Optimization [2], a 

popular method for machine learning hyperparameter selection. We choose hyperparameter 

values that maximize our scores over the sample workload.
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6 EXPERIMENTAL EVALUATION

In this section, we evaluate JUNEAU on real data science workflows with their source datasets, 

and compare it with several alternatives. We consider the following questions: (1) What is 

the execution-time speedup provided by our computational framework, including the 

threshold-based algorithm, data profiling and indexing? (2) How is the quality of the tables 

returned by our system in our proposed typical use cases, compared with those returned by 

alternatives such as keyword-based table search and LSH-based table search?

6.1 Experimental Setting and Overhead

We provide an overview of our experimental setup, including how we obtained the data, 

workloads and queries, and how we stored and indexed the tables derived from the 

workloads with other necessary information.

6.1.1 Data Sets and Workloads.—Our experiments use real data science workflows 

downloaded from kaggle.com. We collected 102 Jupyter Notebooks with their source data1, 

from 14 different Kaggle tasks and competitions. We divide these into three different 

categories: Machine Learning (ML), typically including workflow steps such as feature 
selection, feature transformation (construction) and cross-validation; Exploratory Data 
Analysis (EDA), typically including data cleaning, univariable study, multivariable study, 

hypothesis testing, etc.; Combined which includes both exploratory data analysis and 

validation of machine learning models. Table 2 describes some of the tasks and styles of data 

analysis.

We ran all of the notebooks in our repository, stored and indexed all variables output by each 

cell, if their type belonged to one of Pandas DataFrame, NumPy Array or List. In JUNEAU, 

tables and indices are stored in PostgreSQL, with provenance information captured in Neo4j. 

To index tables by profile, we created 10 matchers that used regular expression pattern 

matching and checking against dictionaries, and registered 59 domains as data profiles. 5 of 

the 10 matchers produced features relevant to our query workload: those for name, age, 

gender, country and sport; additional matchers were for last name, first name, email, 
address, ssn.

Storage and Indexing Overhead.: In total, our corpus includes over 5000 indexed tables, 

with 157k+ columns, whose size is just under 5GB. Data profiles and indices are updated 

when tables are indexed. The storage cost of data profiles is around 11.5MB and the 

provenance graph for tables is around 3.6MB. Indexing time per table was approximately 

0.7 sec to index each table, with multiple indexing threads running in parallel to support 

interactive-speed user interactions.

6.1.2 Queries and Performance Metrics.—We develop workloads to study query 

efficiency and quality.

1http://www.cis.upenn.edu/~zives/research/juneau.html
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Query answering efficiency.: We divide our tables into small and large groups, based on 

whether cardinality is less than 105. We randomly sample 10 tables from each group 

(denoted as Q4 and Q5) at each round, issue each query, and compare the average search 

time with different algorithms.

Answer quality.: For each use case considered in this paper, we choose a notebook from our 

repository and choose a table from it to issue the query. Rather than using subjective 

measures of quality, such as labels or rankings we provide by hand over others’ data – we 

demonstrate effectiveness of our search results on the task being performed in the notebook.

To test augmenting training data, we choose a notebook from Task 3, and query the data in 

the notebook to find more training data. The original notebook tests the precision of the 

sentiment prediction, which we leverage as a baseline to evaluate the quality of the returning 

tables. When the top−k tables are returned, we inject a new line of code, replacing the query 

data with the returned tables, within the original notebook. Then we complete execution of 

the notebook, and measure the new precision of the prediction it generates.

To evaluate alternative feature extraction and data cleaning, we choose two notebooks from 

Task 4 and Task 1 for each case, respectively. Again, we query using a table (generated 

during feature engineering or data cleaning) from the notebook. As with the previous task, 

the original notebooks evaluate the precision of the prediction of a trained classifier. To 

evaluate our search results, we inject them to the notebook and use them to train the 

classifier. We compare the new precision versus the original.

Finally, to test our detection of linkable tables, we choose a notebook from Task 2, an EDA 

pipeline. We search using a table S which was used in a join with some table T. To evaluate 

the whether it makes sense to use a returned table R in a join, we check elsewhere in the 

notebook to see if R (or a table derived from it) is joined with T.

To measure overall quality, we use the mean average precision @ k (MAP@k), considering 

the top−k search.

6.2 Performance of Searching Tables

6.2.1 Search Efficiency.—We compare the full JUNEAU (SJ), which includes our 

threshold-based algorithm with data profiles and indices, against (1) brute-force search with 

LSH ensembles [46] (the parameter num_perm = 64) (L64), (2) our threshold based 

algorithm without data profiles and indices (TA), (3) TA only with data profiles (TA+P). 

Table 3 shows the running times of these different approaches as we vary k and the query 

sets (Q4 vs Q5), for each of our 4 search classes described above. Brute-force search is too 

slow, therefore we do not include it as a baseline. If the average running time is too long 

(>2300 seconds), we leave it as NF. Due to limited space, we omit keyword search over 

tables, which has very fast, nearly constant times (10s of msec).

This experiment shows the incremental benefits of each of our techniques. The basic TA 

starts by finding, in decreasing order of the measure simp(S, T), tables, before computing the 

other measures. TA+P prunes this by favoring matches to data profiles. SJ further includes 
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workflow indices. Note that TA for detecting linkable data is the same as brute-force search, 

since we have to detect the relation mapping first. Across the search classes and query sets, 

Table 3 shows that neither the basic TA or the LSHE sketching techniques provide 

interactive-level response times. Data profiles (TA + P) provide orders-of-magnitude 

benefits, by efficiently detecting tables with partial mappings through the domains we 

detected during indexing. When JUNEAU can leverage workflow indices, this provides 

roughly another 1.5–6x speedup.

L64 uses LSH ensembles [46] to detect the matches between columns, or to detect a join 

domain and return the corresponding linkable tables. This uses fewer features than TA, so it 

is much faster, at the cost of quality, discussed in the next section. (Note that LSHE could 

also be combined with the other methods.)

In summary, data profiles and provenance indexing are critical to speeding up relation 

mapping, and complement our threshold based algorithmic framework.

6.2.2 Search Result Quality.—We compare JUNEAU (SJ) against the original notebook 

(NB), LSHE (L64, described above) and a keyword-based search baseline as might be 

provided by a search engine (KS). For the keyword-search baseline, we treat each table as a 

document, and each value as a word token. Each table is represented as a bag-of-words 

vector, and we use cosine similarity to compute relatedness. To incrementally evaluate the 

contributions of different measures to quality, we distinguish between “PS” (“partial 

JUNEAU”) which includes the row/column-similarity measures, and “full SJ” (also including 

notions of information gain and provenance similarity, as appropriate for the class of search). 

Figure 3 reports the impact of the returned tables on machine learning quality, for our 

different search classes. We discuss each class in sequence.

Augmenting Training Data.: To evaluate the value of search results as additional training 

data, we compare the original precision of the trained classifier in the notebook (NB), versus 

the new precision obtained when training over the table returned. We only show MAP@k 

values above 0.70 for visual clarity. Figure 3 (a), shows that precision with results from 

JUNEAU is significantly better than our original baseline, as well as the alternate strategies. 

Even compared to PSJ, which only looks at row and column similarity, we see that our 

additional metrics greatly boost quality. To further understand the contribution of 

provenance and new data rate on providing different tables, we add a comparison PS + P, 

which is PS plus provenance similarity. We can observe from the figure that including 

provenance similarity has already provided some benefit compared with PS only.

Feature Extraction.: Figure 3 (b) searches for tables with extracted features. Here, L64 

actually does poorly as we increase the value of k. Keyword search and PSJ show no 

improvement over the baseline. The full suite of JUNEAU measures provide slightly improved 

results, i.e., the additional features are beneficial to the machine learning classifier.

Data Cleaning.: Figure 3 (c) shows that data cleaning searches provide measurable but 

minor impacts on overall quality. Again the full JUNEAU metrics provide the best accuracy, 

even compared to PSJ’s overlap-based approach.
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Linkable Data.: Finally, Figure 3 (d) shows quality for searches for linkable data. Here, 

both KS and L64 return overlapping content, rather than content that matches on key-foreign 

key relationships and contains “complementary” data – so they return no joinable results in 

the top-k. JUNEAU, for k = 2 and above, provides meaningful tables to join.

7 RELATED WORK

Data management for computational notebooks is an emerging area, with Aurum [13] 

focused on indexing and keyword search, and multiple efforts [7, 28, 37] addressing 

versioning and provenance tracking. JUNEAU builds similar infrastructure but focuses on 

search for related tables.

Table search over the web has been extensively studied. WebTables [4, 5] developed 

techniques for parsing and extracting tables from HTML, determining schemas, and 

supporting keyword search. WWT [38] augments lists of items using tables from the web, a 

special case of unionable tables. Fan et al. [11] used crowdsourcing and knowledge bases 

and Venitis et al. [41] used class-instance information to find web table sources for specific 

columns. Google Dataset Search [3] addresses search over web tables via their metadata.

The problems of linking and querying data in situ were considered in dataspaces [15], the Q 

System [40] and Belhajjame et al [1]. Data Civilizer [9, 14] maintains profiles on database 

tables to to discover links. Constance [19] exploits semantic mappings to mediated schemas 

to enable query reformulation. Google’s Goods [20, 21] indexes tables, supports annotations 

to sources, and provides faceted and keyword search plus the ability to browse provenance 

links. It uses LSH techniques to discover (and link) similar datasets. Nargesian et al. [32] 

focus on discovering unionable or joinable tables in a data lake. Our efforts are inspired by 

that work, but focus on exploiting our knowledge of tables’ provenance, defining different 

query classes and notions of table relevance, and supporting top-k queries.

8 CONCLUSIONS AND FUTURE WORK

This paper studied the problems of searching for related tables, for four types of tasks. We 

developed an extensible framework for efficient search with multiple similarity measures, 

and proposed novel indices to improve top-k performance. We evaluated using real Jupyter 

notebooks, and showed good search result quality and efficient performance. As future 

work, we hope to extend our work to handle nested data, and other data types that are not 

strictly tabular.
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Figure 1: 
A computational notebook, data model, and workflow graph. Cells may be executed out of 

order, as encoded by blue lines in the data model. The workflow graph encodes cell dataflow 

dependencies.
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Figure 2: 
Variable dependency graph
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Figure 3: 
MAP@K of tables returned by different search classes
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Table 2:

Samples from experimental workload.

ID Task Category

1 Predicting Sales Price
kaggle.com/c/house-prices-advanced-regression-techniques EDA

2 Instacart Market Basket Analysis
kaggle.com/c/instacart-market-basket-analysis/data EDA

3 Sentiment Analysis on IMDB Movie Review
kaggle.com/renanmav/imdb-movie-review-dataset ML

4 Predicting Survival on Titanic kaggle.com/c/titanic Combined
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