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Summary:

In lifestyle intervention trials, where the goal is to change a participant’s weight or modify their 

eating behavior, self-reported diet is a longitudinal outcome variable that is subject to 

measurement error. We propose a statistical framework for correcting for measurement error in 

longitudinal self-reported dietary data by combining intervention data with auxiliary data from an 

external biomarker validation study where both self-reported and recovery biomarkers of dietary 

intake are available. In this setting, dietary intake measured without error in the intervention trial is 

missing data and multiple imputation is used to fill in the missing measurements. Since most 

validation studies are cross-sectional, they do not contain information on whether the nature of the 

measurement error changes over time or differs between treatment and control groups. We use 

sensitivity analyses to address the influence of these unverifiable assumptions involving the 

measurement error process and how they affect inferences regarding the effect of treatment. We 

apply our methods to self-reported sodium intake from the PREMIER study, a multi-component 

lifestyle intervention trial.
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1. Introduction

Lifestyle intervention studies—which aim to change a participant’s weight or eating 

behavior—often use self-reported measures of diet, but obtaining accurate measurement of 

diet and its change over time is a major challenge due to measurement error. Measurement 

error in intervention studies can result in biased estimates of the treatment effect as well as 

reduced power to detect treatment effects (Forster et al. 1990). Little attention has been paid 

to correcting for measurement error when an outcome is measured with error, partly due to 

the fact that when outcomes measured with error are unbiased, parameters for means can 

still be estimated without error, although with less power (Carroll et al. 2006). In this paper 

we focus on intervention studies where longitudinal trends in an outcome are of interest. In 

these settings—particularly in lifestyle interventions—outcomes measured with error are not 

unbiased and the process that gives rise to measurement error may change—resulting in 

more or less bias—as a function of time and as a result of the intervention.

Dietary intake in lifestyle interventions is often measured using a 24-hour dietary recall in 

which the previous day’s intake is reported. Estimates from 24-hour recalls are subject to 

measurement error, primarily due to memory limitations and poor quantification of portion 

sizes, as well as the fact that the selected days of intake may not be representative of a 

participant’s usual intake (Willet 2013, Chapter 4).

Longitudinal dietary intervention studies involve repeated dietary assessments over time and 

produce measurement error issues in addition to those encountered in descriptive studies. 

Participants may modify their reporting behavior to appear compliant with the dietary 

recommendations of the intervention (Espeland et al. 2001), or they may attempt to reduce 

reporting time and reporting difficulty by omitting items or by erroneously reporting foods 

that are easier to measure or describe (Buzzard et al. 1996). Alternatively, their accuracy 

may improve due to training in portion size assessment and a more general awareness of 

their dietary intake (Natarajan et al. 2010, Espeland et al. 2001).

Dietary validation studies measure—on the same set of participants—both self-reported diet 

as well as unbiased estimates of dietary intake using urinary biomarkers, which require a 

participant to collect their urine for 24 hours. Currently, urinary biomarkers exist for protein, 

potassium, and sodium intake.

With a validation study, one can model the relationship between the self-reported variable 

measured with error and true intake. Then, true intake in the intervention study can be 

imputed so that dietary intake estimands of interest can be based on measurement error-

corrected values. This approach of using external validation samples and treating variables 

measured without error as missing data has been used in a number of applications, see for 

example, Shardell et al. (2010), Schenker et al. (2010) and Guo et al. (2012).

In this paper, we extend missing data approaches for measurement error correction to 

intervention studies with longitudinal outcomes. External dietary validation studies are 

almost always cross-sectional, meaning that information on changes in measurement error 

over time and in response to treatment is not available. As a result, identification of 

parameters in our measurement error correction model requires parameter restrictions based 
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on unverifiable assumptions regarding the measurement error process and its change over 

time and in response to treatment. We describe the use of sensitivity analyses to address the 

influence of these unverifiable assumptions on inferences.

2. Scientific background and data sources

The PREMIER Study (Appel et al. 2003), a randomized trial designed to determine the 

effects of lifestyle interventions on blood pressure among free-living individuals, enrolled 

810 adults with above-optimal blood pressure who were not taking antihypertensive 

medications. Participants were randomly assigned to one of three intervention groups: 

Established, Established Plus DASH, and an Advice-Only comparison group. Participants in 

the Established group received instruction and counseling over 6 months to modify their diet

—including calorie and sodium consumption—and increase their physical activity. Those in 

the Established Plus DASH group had the same intervention as the Established group, and 

were also taught to follow a diet rich in fruits, vegetables, and low fat dairy products. 

Participants in both active intervention conditions received 18 face-to-face intervention 

contacts during the initial 6 months of the study and were counseled to reduce sodium intake 

to less than 2300 mg/day. Participants in the Advice-Only condition received lifestyle advice 

during two 30-minute individual sessions, one at baseline and one at 6-months.

Self-reported dietary intake in PREMIER—including sodium intake, our outcome of interest

—was measured using two unannounced, non-consecutive, 24-hour recalls conducted by 

telephone on one weekday and one weekend day at baseline and at 6- and 18-months. We 

combine the Established and the Established Plus DASH groups into a single treatment 

condition since changes in sodium intake were similar in the two groups (Appel et al. 2003). 

We compare this single treatment condition to the Advice-Only condition.

PREMIER was the rare lifestyle intervention that collected 24-hour urine samples on all 

participants at each time point. We will revisit these biomarker data in Section 7 when we 

compare the results of our measurement error correction methods to an analysis that uses 

PREMIER 24-hour urinary sodium. For now, we will ignore the PREMIER 24-hour urine 

samples and treat the PREMIER study as a “typical” lifestyle intervention where only self-

reported dietary data are collected.

To correct for measurement error in PREMIER self-reported sodium intake, we use data 

from the Observing Protein and Energy Nutrition (OPEN) validation study (Subar et al. 

2003). OPEN participants were 484 men and women aged 40-69 years. In addition to two 

24-hour recalls, participants were assessed for sodium, potassium, and nitrogen intake via 

two 24-hour urine collections. As only 86% of sodium intake appears in urine, urinary 

sodium values were divided by 0.86 to convert them to dietary sodium values (Willet 2013, 

Chapter 8).

Table 1 presents demographic characteristics and sodium intake in PREMIER at baseline 

and in OPEN. Participant ages in the two studies are similar, although PREMIER 

participants have higher BMI, slightly lower self-reported sodium intake, and a smaller 
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percentage of men. A small proportion of outliers were removed from both samples using 

criteria detailed in Web Appendix A.

We estimate the treatment effect in PREMIER by comparing the change in (log-

transformed) sodium intake from baseline to the end of the intervention phase (6-months) 

between the Treatment and Advice-Only conditions. Let Zj be the true value of the outcome 

we wish to measure at time j, j = 0, … , m where baseline is j = 0. Let Yj be Zj measured 

with error and D an indicator as to whether a participant has been randomized to the 

intervention group (D = 1) or the control group (D = 0). The treatment effect is,

ψ = {E(Z1 ∣ D = 1) − E(Z0 ∣ D = 1)} − {E(Z1 ∣ D = 0) − E(Z0 ∣ D = 0)} . (1)

When ψ < 0, reduction in mean log sodium intake is greater in the treatment group than the 

control group (or less commonly, increase in intake is less in the treatment group than the 

control group). Significance of the treatment effect is based on a two-sample t-test of the 

difference in change scores between treatment and control groups. We report the effect size: 

the estimate of the treatment effect in (1) divided by the pooled standard deviation of the 

change scores.

An analysis of the self-reported PREMIER data produced a significant treatment effect 

where the effect size at 6-months was −0.49 (p<.0001). Our goal is to estimate the treatment 

effect in (1) using measurement error corrected sodium intake.

3. Definitions

We define how measurement error correction models can change over time and with respect 

to treatment. Our measurement error correction models condition on the variable measured 

with error so we refer to them as calibration models to highlight connections with regression 

calibration (Carroll et al. 2006) in which a similar approach is used. Let X represent 

background covariates measured at baseline.

Definition 1: The calibration model is treatment invariant if f(Zj | Yj, X, D = 1) = f(Zj | Yj, 

X, D = 0), for j ⩾ 0. That is, the parameters of the calibration model do not change in 

response to treatment and are the same in both treatment and control groups. We assume 

calibration model invariance with respect to treatment holds at baseline (j = 0) because 

treatment has not started yet.

Definition 2: The calibration model is time invariant if f(Zj | Yj, X, D = d) = f(Zk | Yk, X, D 
= d), for all j ≠ k, where j and k are two different time points. Here, within a treatment 

condition, the parameters of the calibration model will be the same across all time points.

Definition 3: The calibration model is treatment and time invariant if f(Zj | Yj, X, D = 1) = 

f(Zk | Yk, X, D = 0), for all j, k.

Definition 4: If the parameters of the calibration model in the intervention data at time j for 

treatment group d are the same as the parameters of the calibration model using external 

validation data, then the parameters from the calibration model using external validation data 
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are transportable to the calibration model for that treatment-by-time combination. Let S 
denote whether a participant is in the lifestyle intervention (S = ℓ) or validation study (S = v). 

Under calibration model transportability, the following holds: f(Zj | Yj, X, D = d, S = ℓ) = 

f(Z0 | Y0, X, S = v).

Our definition of calibration model transportability assumes the external validation study is 

cross-sectional (corresponding to the baseline time point in the intervention study) and 

observational (no treatment conditions) and that transportability can apply at some 

treatment-by-time combinations but not others. When the calibration model is treatment and 

time invariant, transportability at any treatment-by-time combination implies transportability 

at all treatment-by-time combinations. In Web Appendix B, we show that our definition of 

calibration model transportability implies that selection into the trial or validation study does 

not depend on unobserved Z after conditioning on observed characteristics Y and X, which 

is a plausible selection mechanism our setting where study inclusion criteria are based on 

observed characteristics.

4. Methods

The top half of Table 2 represents data from PREMIER where the outcomes Y0 and Y1 

represent self-reported sodium intake via 24-hour recall measured at baseline and 6-months, 

respectively.

The bottom half of Table 2 represents data from OPEN which contains Y0, self-reported 

sodium, but also contains the variables W01 and W02 which are the two replicate urinary 

sodium samples taken at baseline in OPEN. The shaded cells in Table 2 represent values that 

are observed, the white cells are values that are missing. Urinary sodium is an unbiased 

measure of true sodium intake but is also subject to error. In Section 4.1 we describe use of 

W01 and W02 in OPEN to correct for measurement error in urinary sodium intake in order to 

obtain true sodium intake at baseline Z0. The column labeled X in Table 2 represents 

background covariates available on all participants in both studies. Here we condition on sex 

and (log) BMI in all our models as there is some evidence that these variables are associated 

with measurement error (Willet 2013, Chapter 4).

Since OPEN—like most external validation studies—is cross-sectional, we assume that its 

data correspond to baseline values Y0 and Z0 and that all OPEN participants belong to the 

control condition. Values of Z1 in Table 2 are completely unobserved for all participants, 

both those in the intervention study and those in the validation study. We thus have no 

information on the relationship between Y1 and Z1.

The joint distribution of Y and Z, conditional on X and D in PREMIER, can be written as 

f(Z1, Z0, Y1, Y0 | X, D, θ), where θ is a finite-dimensional parameter vector. While the focus 

of our inference is on Z, it is necessary to also model Y due to missing values in Y which we 

assume are ignorable.

The joint distribution can be further decomposed into observed and missing components. 

Suppressing D and the parameters θ we have:
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f(Z1, Y 1, Z0, Y 0 ∣ X) = f(Z1 ∣ Y 1, Z0, Y 0, X)f(Z0 ∣ Y 1, Y 0, X)f(Y 1, Y 0 ∣ X) . (2)

We assume multivariate normality on a log sodium scale. Most of the parameters in (2) are 

not identified due to the fact that Z1 is completely unobserved. To help identify the 

conditional distributions in (2), we make the first-order Markov assumption that f(Z1|Y1, Z0, 

Y0, X) = f(Z1 | Y1, Z0, X) such that the conditional distribution of Z at time 1 (6-months) 

depends only on its version measured with error and its previous (baseline) measurement. 

For f(Z0 | Y1, Y0, X) we make the similar assumption that f(Z0 | Y1, Y0, X) = f(Z0 | Y0, X). 

These conditional independence assumptions cannot be checked in our data. Equation (2) 

reduces to:

f(Z1, Z0, Y 1, Y 0 ∣ X) = f(Z1 ∣ Y 1, Z0, X)f(Z0 ∣ Y 0, X)f(Y 1, Y 0 ∣ X), (3)

where, under our multivariate normality assumption, the conditional distributions in (3) are a 

sequence of linear regression models. Only the parameters associated with f(Y1, Y0 | X) on 

the right-hand-side of (3) are identified. The parameters from the conditional distributions of 

Z1 and Z0 are not identified.

In the following subsections, we describe our strategies for identification of the unidentified 

parameters in f(Z1 | Y1, Z0, X) and f(Z0 | Y0, X) on the right-hand side of (3).

4.1 Identification of f(Z0 | Y0, X)

Identification of the conditional distribution of Z given Y and X at baseline in PREMIER is 

based on the transportability assumption that f(Z0 | Y0, X, S = ℓ) = f(Z0 | Y0, X, S = v). 

However, urinary sodium, while considered unbiased, is subject to classical measurement 

error (Prentice et al. 2002). Therefore, to estimate f(Z0|Y0, X, S = v) in OPEN, we must first 

correct for measurement error in urinary sodium intake in order to estimate the distribution 

of “true” sodium intake conditional on self-reported sodium intake. We do this using the 

replicate measures of urinary sodium in OPEN to partition the conditional variance of 

urinary sodium into its between-subject and within-subject components. The within-subject 

variance is considered measurement error and is removed (Willet 2013, chap. 12), resulting 

in error-corrected urinary sodium intake.

Let W0r, r = 1, 2 represent the two replicate values of urinary sodium that were obtained 

from OPEN participants around the time of the 24-hour recall (Y0). We assume W0r = Z0+er 

where the er are independent with mean 0 and common variance and independent of X and 

Y0. Then E(W0r | Y0, X) = E(Z0 | Y0, X) and Cov(W01, W02 | Y0, X) = Var(Z0 | Y0, X). We 

fit the following random-intercept regression model for OPEN participant i.

W 0ir = β0, Z0 ⋅ Y0X
(v) + β1, Z0 ⋅ Y0X

(v) Y 0i + β2, Z0 ⋅ Y0X
(v) Xi + b0i + εir (4)

where b0i ∼ N(0, σZ0 ⋅ Y0X
2(v) ) and εir ∼ N(0, σw2 ).

The distribution f(Z0 | Y0, X) in OPEN is
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Z0 ∣ Y 0, X, S = v ∼ N(β0, Z0 ⋅ Y0X
(v) + β1, Z0 ⋅ Y0X

(v) Y 0 + β2, Z0 ⋅ Y0X
(v) X, σZ0 ⋅ Y0X

2(v)

)
(5)

where the parameters in (5) are obtained from fitting model (4).

The distribution of f(Z0|Y0, X, S = ℓ) in the intervention study is specified as the following 

linear regression model:

Z0 ∣ Y 0, X, S = ℓ ∼ N(β0, Z0 ⋅ Y0X
(ℓ) + β1, Z0 ⋅ Y0X

(ℓ) Y 0 + β2, Z0 ⋅ Y0X
(ℓ) X, σZ0 ⋅ Y0X

2(ℓ)

) .
(6)

To identify the parameters in (6), we make the transportability assumption that the 

parameters in (6) are equal to those in (5). That is,

β0, Z0 ⋅ Y0X
(ℓ) = β0, Z0 ⋅ Y0X

(v) ; β1, Z0 ⋅ Y0X
(ℓ) = β1, Z0 ⋅ Y0X

(v) ; β2, Z0 ⋅ Y0X
(ℓ) = β2, Z0 ⋅ Y0X

(v) ;
σZ0 ⋅ Y0X

2(ℓ) = σZ0 ⋅ Y0X
2(v) .

(7)

In Section 4.2 we use the parameters in (7) to help identify the conditional distribution of Z1 

in (3). For the rest of this manuscript we omit the superscript ℓ on all parameters and assume 

they are associated with PREMIER.

4.2 Identification of f(Z1 | Y1, Z0, X)

Identification of the parameters in f(Z1 | Y1, Z0, X) is problematic because Z1 is completely 

unobserved in both PREMIER and OPEN. Thus, we need to make several assumptions 

regarding the joint relationship of Z1, Y1, and Z0 conditional on X. The first assumption is 

that the calibration model is time and treatment invariant (Definition 3), that is, f(Z1|Y1, X, S 
= ℓ) = f(Z0|Y0, X, S = ℓ). This assumption results in the following parameter restrictions:

β0, Z1 ⋅ Y1X = β0, Z0 ⋅ Y0X; β1, Z1 ⋅ Y1X = β1, Z0 ⋅ Y0X; β2, Z1 ⋅ Y1X = β2, Z0 ⋅ Y0X;
σZ1 ⋅ Y1X

2 = σZ0 ⋅ Y0X
2 . (8)

For f(Z1 | Y1, Z0, X); there are two sets of unidentified parameters: the partial correlation 

between Y1 and Z0 given X and the partial correlation between Z1 and Z0 given Y1 and X. 

Both of these parameters are unrestricted and independently range from −1 to 1 (Daniels and 

Pourahmadi 2009). To identify these parameters we make assumptions which we incorporate 

into our model using informative prior distributions. First, we assume 0 < corr(Y1, Z0 | X) < 

corr(Y0, Z0 | X) such that the partial correlation between self-reported sodium at time 1 and 

true sodium intake at baseline is positive and less than the partial correlation of these two 

variables at baseline. The correlation of Y0 and Z0 given X is given in Web Appendix C. 

Based on this assumption, a non-degenerate prior distribution for corr(Y1, Z0|X) is corr(Y1, 

Z0|X) ~ Uniform{0, corr(Y0, Z0 | X)}.
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The second unidentified parameter in f(Z1 | Y1, Z0, X) is the partial correlation of Z1 and Z0 

given Y1 and X. Positing this quantity directly is difficult, so we instead posit the partial 

correlation of Z1 and Z0 given X while taking into account that this correlation is bounded 

by ρZ1Y1 ⋅ XρZ0Y1 ⋅ X ± (1 − ρZ1Y1 ⋅ X
2 )(1 − ρZ0Y1 ⋅ X

2 ). We assume corr(Z1, Z0 | X) = corr(Y1, 

Y0 | X) + ΔZρ such that the partial correlation between two adjacent measurement error 

corrected variables is centered around the partial correlation between two adjacent self-

reported measurements. The parameter ΔZρ can be viewed as an error term and has the prior 

distribution ΔZρ ~ Uniform(−δ, δ).

Combining our assumption regarding the partial correlation of Z1 and Z0 with its boundary 

constraints gives the following prior for corr(Z1, Z0 | X):

ρZ1Z0 ⋅ X ∼ Uniform max ρY1Y0 ⋅ X − δ, ρZ1Y1 ⋅ XρZ0Y1 ⋅ X

− (1 − ρZ1Y1 ⋅ X
2 )(1 − ρZ0Y1 ⋅ X

2 ), 0 , min
ρY1Y0 ⋅ X + δ, ρZ1Y1 ⋅ XρZ0Y1 ⋅ X + (1 − ρZ1Y1 ⋅ X

2 )(1 − ρZ0Y1 ⋅ X
2 ), 1 .

(9)

and the partial correlation of Z1 and Z0 conditional on Y1 and X is

ρZ1Z0 ⋅ Y1X =
ρZ1Z0 ⋅ X − ρZ1Y1 ⋅ XρZ0Y1 ⋅ X

1 − ρZ1Y1 ⋅ X 1 − ρZ1Y1 ⋅ X
.

After obtaining corr(Y1, Z0 | X) and corr(Z1, Z0 | Y1, X), we obtain f(Z1 | Y1, Z0, X) using

f(Z1 ∣ Y1, Z0, X) =
f(Z1, Z0 ∣ Y1, X)

f(Z0 ∣ Y1, X) .

Parameter estimators for the regression of Z0 on Y1 and X are given in Web Appendix C. 

The regression of Z1 on Y1, Z0, and X can be written as

Z1 ∼ N(β0, Z1 ⋅ Y1Z0X + β1, Z1 ⋅ Y1Z0XY 1 + β2, Z1 ⋅ Y1Z0XZ0 + β3, Z1 ⋅ Y1Z0XX,
σZ1 ⋅ Y1Z0X

2 ) . (10)

Estimators for the parameters of this regression are also given in Web Appendix C.

4.3 Estimation

Parameter draws from the posterior distribution of f(Y1, Y0 | X)—as well as imputations of 

missing values of Y1 and Y0 were obtained using Markov Chain Monte Carlo (MCMC) via 

a Bayesian multivariate normal model implemented in the R package norm2 (Schafer 2016). 

We used an improper Jeffreys’ prior for the covariance matrix and the mean parameters.

Estimation of the model parameters in (4) also used MCMC based on the Bayesian linear 

mixed-effects approach implemented in the R package pan (Zhao and Schafer 2016). We 

used an improper uniform density for the regression coefficients β0, Z0 ⋅ Y0X
(v) , β1, Z0 ⋅ Y0X

(v)  and 
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β2, Z0 ⋅ Y0X
(v)  and gamma priors with shape and scale parameters equal to 0.5 for the random 

effects and error precision parameters.

In both models, after a 10,000 iteration burn-in period, we performed an additional 50,000 

iterations and obtained 100 imputations for each missing value of Y1 and Y0 and 100 

parameter values by selecting every 500th iteration. We assessed convergence of our Markov 

chains by visual inspection of trace plots and autocorrelation plots.

5. Sensitivity Analyses

We investigate how sensitive the effects of the PREMIER intervention are to changes in 

measurement error over time and between treatment conditions. A longitudinal study may 1) 

result in more accurate/precise reports of diet due to improved self-monitoring; 2) encourage 

participants to misreport their diet in order to appear compliant with the intervention; and/or 

3) result in no change in the measurement error seen at baseline.

Sensitivity analyses are anchored at calibration model invariance with respect to treatment 

and time (Definition 3 in Section 3) which is represented by the parameter constraints in (8). 

Our sensitivity analyses are based on exploring departures from these constraints and their 

results on our inferences. For interpretability, we consider sensitivity to the assumption that 

the intercept of the regression of Z on Y and X at baseline is the same at follow-up 

(β0,Z1·Y1X = β0,Z0·Y0X). We also consider sensitivity to the assumption that the slope 
between Z and Y is the same at baseline as at follow-up (β1,Z1·Y1X = β1,Z0·Y0X).

5.1 Intercept sensitivity parameter

Departures from calibration model invariance with respect to treatment and time in terms of 

the intercept parameters in (8) are based on the following reparameterization: 

β0, Z1 ⋅ Y1X
(d) = β0, Z0 ⋅ Y0X + Δβ0

(d); where the sensitivity parameter Δβ0
(d) measures the additional 

under or over reporting at month 6 (t = 1) as compared to baseline for a given level of self-

report. The superscripts correspond to the treatment group (d=1) or control group (d=0).

We scale Δβ0 in terms of a percent increase or decrease in the residual standard deviation 

σZ0·Y0X in (7). For example, when Δβ0 = 1.2 × σZ0·Y0X, the intercept of the regression of Z1 

on Y1 and X is 20% of a residual standard deviation greater than the intercept of Z0 on Y0 

and X. This sensitivity parameter can be both greater and less than 1 so that the amount of 

underreporting can both increase or decrease.

5.2 Slope sensitivity parameter

In PREMIER, participants in both the Established and the Established Plus DASH 

conditions were counseled to reduce sodium intake to less than 2300 mg/day. We center the 

regression line at baseline around this intervention target value of sodium intake and then 

multiply the baseline slope by the sensitivity parameter Δβ1
d  so that we have the following 

reparameterizations:
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β0, Z1 ⋅ Y1X
(d) = β0, Z0 ⋅ Y0X + (1 − Δβ1

(d)) × β1, Z0 ⋅ Y0X × log(2300)

β1, Z1 ⋅ Y1X
(d) = Δβ1

(d) × β1, Z0 ⋅ Y0X .

The idea here is that whether or not a participant has met the target influences their reporting 

behavior. When Δβ1
(d) > 1, participants who fail to meet (i.e . exceed) the target value self-

report less—for a given level of true intake—than they did at baseline. And participants who 

did achieve the target value self-report more—for a given level of true intake—than they did 

at baseline. The degree of deviation from baseline is based on how far the participant 

deviates from the target value. When the mean of Y1 is greater than the target value, values 

of Δβ1
(d) > 1 have the effect of increasing the mean of Z1 and values of Δβ1

(d) < 1 decrease the 

mean of Z1 as compared to a time-invariant calibration model (Δβ1
(d) = 1). See Web Appendix 

D for details.

6. Application to the PREMIER study

6.1 Imputation and analyses

We used the nested imputation approach and associated combining rules of Reiter (2008) for 

settings where data are used for imputation but not analysis. Specifically, we obtain 100 

parameter draws and generate 20 imputations for each parameter draw resulting in 2000 

imputations for each value of Z.

Using imputed values of sodium intake measured without error drawn from Models (6) and 

(10) where X represents log BMI and sex, we estimated the difference in reduction of 

sodium intake between treatment conditions as in (1). We report the effect size of the 

intervention (the treatment difference scaled by its pooled standard deviation) and the p-

value from a two-sample t-test. For each treatment group, we have an intercept sensitivity 

parameter (Δβ0
(1), Δβ0

(0)) and a slope sensitivity parameter (Δβ1
(1), Δβ1

(0)). We examine the effect of 

the PREMIER intervention across a range of values for these parameters. We scale Δβ0
(1) and 

Δβ0
(0) as a percent of the residual standard deviation parameter σZ0·Y0 in (7) and allow both 

Δβ0
(1) and Δβ0

(0) to range in 10% increments from −50% to 50% of the residual standard 

deviation. Both slope sensitivity parameters Δβ1
(1) and Δβ1

(0) range from 1/3 to 3. Finally, we set 

the δ parameter in (9) equal to 0.2 throughout all our analyses so that corr(Z1, Z0 | X) ranges 

uniformly between corr(Y1, Y0|X)±0.2 (subject to the positive definiteness restriction in 

(9)).

6.2 Results

Figures 1(a) and 1(b) are contour plots of the results of our sensitivity analyses of the effect 

of the PREMIER intervention at month 6 based on varying the intercept sensitivity 

parameters described in Section 5.1. Slope sensitivity parameters in Figures 1(a) and 1(b) 
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are fixed across all scenarios and equal to 1. The x-axis displays values for the residual 

standard deviation multiplier of Δβ0
(1), the sensitivity parameter for the treatment group 

intercept term. The y-axis displays values for the multiplier of Δβ0
(0), the sensitivity parameter 

for the control group intercept term. The solid dot represents calibration model invariance 

with respect to treatment and time (Δβ0
(1) = Δβ0

(0) = 0). Departures from time invariance occur 

when Δβ0
(d) ≠ 0. The top panel (Figure 1(a)) displays effect sizes and the bottom panel (Figure 

1(b)) their associated p-values.

Under calibration model invariance with respect to treatment and time, the effect size (ES) is 

−0.11, a small effect favoring the treatment condition (p=.004). This effect size remains 

constant under calibration model invariance with respect to treatment (i.e. Δβ
(1) = Δβ

(0)). 

Further, as illustrated by the diagonal bands in Figure 1(a), effect sizes are constant across 

values of Δβ0
(1) − Δβ0

(0). It is the difference in Δβ
(1) and Δβ

(0) that drives the treatment effect, not 

the individual values themselves (see Web Appendix D for details). However, inferences are 

very sensitive to departures from calibration model invariance with respect to treatment. The 

top left quadrant of Figures 1(a) and 1(b) is the scenario where participants in the treatment 

condition under-report less at follow-up than they did at baseline while those in the control 

condition under-report more at follow-up. Here, effect sizes are very large (ES=−1.0), and 

significant (p<.001). The opposite scenario—treatment participants under-report more, 

control participants under-report less—is displayed in the bottom right portion of Figures 

1(a) and 1(b). Here, the intervention now favors the control group. More modest 

assumptions are reflected in between these two extremes.

Figures 2(a) and 2(b) are contour plots of effect sizes and p-values based on varying the 

slope sensitivity parameters described in Section 5.2. Intercept sensitivity parameters in 

Figures 2(a) and 2(b) are fixed across all scenarios and equal to 0. The x-axis displays values 

for Δβ1
(1), the sensitivity parameter for the treatment group intercept term. The y-axis displays 

values for Δβ1
(0), the sensitivity parameter for the control group intercept term. The solid dot 

represents calibration model invariance with respect to treatment and time (Δβ1
(1) = Δβ1

(0) = 1). 

Departures from time invariance occur when Δβ1
(d) ≠ 1. As mentioned in Section 5.2, when the 

mean of Y1 is greater than the target value (as is true in the control condition), values of 

Δβ1
(d) > 1 have the effect of increasing the mean of Z1 and values of Δβ1

(d) < 1 decrease the 

mean of Z1. In the treatment condition, where the 6-month sodium value is less than the 

target value, values of Δβ1
(d) have the opposite effect. As a result, effect sizes in Figure 2(a) are 

largest and smallest in the upper right and lower left quadrants, respectively (see Web 

Appendix D for details). In general, the slope sensitivity parameters have less of an impact 

on the treatment effect as compared to the intercept sensitivity parameters. The p-values of 

the treatment effects displayed in Figure 2(b) are significant across all values of the slope 

sensitivity parameters. Tabulations of point estimates, treatment differences, 95% confidence 
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intervals, as well as effect sizes and p-values from the sensitivity analyses in Figures 1 and 2 

are reported in Web Appendix E.

7. Evaluation using internal biomarker data

A unique aspect to the PREMIER study was that 24-hour urine samples were obtained on all 

participants both at baseline and at follow-up. Figure 3 displays a forest plot of effect sizes 

and their associated 95% confidence intervals for observed 24-hour urinary sodium (top 

row), self-reported sodium, and a range of measurement error-corrected analyses based on 

different sensitivity parameters. Analyses have been sorted based on how far they deviate 

from the 24-hour urine results (vertical dotted line).

Measurement error corrections that are based on calibration model invariance with respect to 

treatment and time (or mild departures from it) provide results similar to the 24-hour urine 

analysis. Sensitivity analyses that assume treatment group participants under-report less at 

follow-up as compared to baseline provide results in line with self-reported sodium values. 

Note that measurement error corrected analyses are more precise than those analyses based 

on observed urinary sodium values due to the fact that the measurement error corrected 

analyses are based on “true” sodium intake after removing within-subject variability as 

described in Section 4.1.

8. Discussion

After correcting for measurement error, effect sizes in PREMIER were smaller than effect 

sizes based on using self-reported sodium but still significant. Treatment effects were 

sensitive to modest assumptions regarding shifts in the intercept of the calibration model. An 

assumption that treatment participants underreported 20% more of a standard deviation at 

follow-up as compared to baseline—and control participants had no change in 

underreporting—resulted in an effect size close to 0 that was no longer significant. This 

sensitivity is partly due to the fact that the measurement error corrected effect size (under 

calibration model invariance with respect to treatment and time) was small initially. Thus 

modest assumptions that result in a shrinking of this already small treatment effect can result 

in a non-significant finding. In other applications with larger effect sizes, the treatment effect 

may be more robust to these assumptions.

Our sensitivity analyses also included more extreme assumptions which resulted in 

inferences favoring the control group. As in any sensitivity analysis, the analyst must 

consider which assumptions are plausible based on evidence from previous studies and 

which are not. For example, in some settings one might consider it unrealistic that control 

participants would under-report more at follow-up than at baseline. This assumption would 

restrict the sensitivity analyses to the bottom halves of the plots in Figures 1(a) and 1(b), 

thus narrowing the range of inferences. Alternatively, the analyst could draw treatment and 

control sensitivity parameters from a joint prior where the two sensitivity parameters are 

correlated (Linero and Daniels 2015).

We only dealt with two time points and as the number of time points increases, so does the 

number of unidentified parameters. This is a also a concern in longitudinal studies with 
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nonignorable drop-out (Daniels and Hogan 2008) and an area of future work is to build on 

approaches from the longitudinal missing data literature for reducing the dimension of 

nonidentifed parameters and adapt them to measurement error correction.

The fact that our measurement-error corrected inferences were similar to inferences that 

used urinary sodium values in PREMIER suggests that our methods are appropriately 

reducing measurement error. However, a more thorough evaluation is necessary to further 

validate our approach. In Web Appendix F we give the results of a simulation study that 

examines the performance of our method under a range of invariant and varying calibration 

model scenarios using both fixed values (point-mass priors) and proper priors for the 

sensitivity parameters in order to propagate the uncertainty of the sensitivity parameters. We 

obtained low bias and good coverage when the calibration model was correctly specified and 

the use of non-degenerate priors improved coverage when the true calibration model was 

misspecified.

Throughout the paper we assumed transportability of the calibration model. This is a critical 

assumption and analysts should think carefully before transporting the results from an 

external validation study. Our model conditions on baseline demographics which may make 

the transportability assumption more feasible but the transportability assumption deserves a 

sensitivity analysis of its own and the methods described in Section 5 could be used to assess 

the sensitivity of inferences to violations of the transportability assumption.

We take a missing data approach to measurement error correction where the unknown true 

quantities are treated as unobserved. To do this, we model the joint distribution of Y and Z in 

the trial as f(Z, Y) = f(Z | Y)f(Y). Here, the identified and unidentified parameters of the 

joint distribution are transparent and easy to posit. Many measurement error methods begin 

by specifying the measurement error model as f(Y | Z). Modeling the joint distribution as 

f(Z, Y) = f(Y | Z)f(Z) is more difficult because the unidentified parameters of these 

distributions are both unidentified and restricted by the observed marginal distribution of Y. 

In addition, the validation study provides us with no information regarding the marginal 

distribution of Z in the trial.

A limitation of our work is that recovery biomarkers do not exist for many relevant 

outcomes in dietary intervention studies. Work is ongoing to widen the class of unbiased 

biomarkers (Hedrick et al. 2012). Further, we are interested in extending our current work 

using concentration biomarkers which are biomarkers that are correlated with dietary intake 

(many of which are targets of interventions) but, unlike recovery biomarkers, are not 

unbiased. Here, feeding studies that measure both true intake and concentration biomarkers 

could be used as external validation studies for measurement error correction.

We made other assumptions regarding conditional independence and associations between 

unobserved variables that were not subject to sensitivity analysis. In order to make the 

results from our sensitivity analyses manageable and interpretable, it was necessary to focus 

on those assumptions in our analyses which we felt were the least plausible and at the same 

time would have the most influence on our inferences. This is true of any sensitivity analysis 

and an advantage of the Bayesian approach investigated here is that sensitivity analyses for 
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other parameters can easily be incorporated into our imputation models through the use of 

informative priors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Contour plot for (a) effect sizes at 6-months and (b) their associated p-values from an 

analysis of the PREMIER data across a range of sensitivity parameters for the intercept of 

the measurement error model at follow-up as compared to baseline. The x-axis displays 

values for the sensitivity parameter for the treatment group, the y-axis displays values for the 

sensitivity parameter for the control group. The point plotted at (0, 0) corresponds to an 

assumption of calibration model invariance with respect to treatment and time. A color 

version of this Figure can be found in the electronic version of this article.
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Figure 2: 
Contour plot for (a) effect sizes at 6-months and (b) their associated p-values from an 

analysis of the PREMIER data across a range of sensitivity parameters for the slope of the 

measurement error model at follow-up as compared to baseline. The x-axis displays values 

for the sensitivity parameter for the treatment group, the y-axis displays values for the 

sensitivity parameter for the control group. The point plotted at (1, 1) corresponds to an 

assumption of calibration model invariance with respect to treatment and time. A color 

version of this Figure can be found in the electronic version of this article.
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Figure 3: 
Forest plot of effect sizes and their associated 95% confidence intervals for observed 24-

hour urinary sodium (top row), self-reported sodium, and a range of measurement error-

corrected analyses based on different sensitivity parameters. The terms “Greater” and “Less” 

refer to whether—for a given value of self-report—true intake at follow-up is greater or less 

than true intake at baseline, respectively. Analyses have been sorted based on how far they 

deviate from the 24-hour urine results (vertical dotted line). Measurement error corrections 

that are based on calibration model invariance with respect to treatment and time (or mild 

departures from it) provide results similar to the 24-hour urine analysis. Sensitivity analyses 

that assume treatment group participants under-report less at follow-up as compared to 

baseline provide results in line with self-reported sodium values. Note that measurement 

error corrected analyses are more precise than analyses based on observed values due to the 

fact that the measurement error corrected analyses are based on “true” sodium intake after 

removing within-subject variability.

Siddique et al. Page 18

Biometrics. Author manuscript; available in PMC 2020 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Siddique et al. Page 19

Table 1:

Demographic characteristics and baseline sodium intake in PREMIER and OPEN by gender. Values are mean 

(SD) unless otherwise noted. Three PREMIER participants were missing self-reported sodium intake at all 

three time points and were not included in our analysis. Ten PREMIER and 25 OPEN participants were 

excluded due to extreme self-reported total energy intake values.

Variable PREMIER (n=797) OPEN (n=459)

Male, n (%) 303 (38) 244 (53)

Age 50.0 (8.9) 53.7 (8.3)

BMI 33.0 (5.7) 27.7 (5.1)

(Log) Self-reported sodium 8.0 (0.41) 8.2 (0.43)

(Log) Urinary sodium 8.4 (0.44) 8.4 (0.45)

Note. PREMIER age values are from (Svetkey et al. 2003) and include the entire sample
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Table 2:

Patterns of missing data in the PREMIER and OPEN studies. The variables Y0 and Y1 represent self-reported 

sodium intake via 24-hour recall measured at baseline, and 6-months, respectively. The variables Z0 and Z1 are 

versions of Y measured without error. The variables W01 and W02 are replicate urinary sodium values taken at 

baseline in OPEN and are considered unbiased measures of Z0. The variables X and D represents background 

covariates and treatment condition, respectively. OPEN participants are assumed to all belong to the control 

condition. Grey cells indicate observed values, white cells indicate missing values. Note that all values are 

missing for Z0 and Z1 in both studies.

Data Source Y0 W01 W02 Z0 Y1 Z1 X D

PREMIER Intervention Study

OPEN External Validation Study
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