
SPECIAL REPORT

Deep mutagenesis in the study of COVID-19: a technical overview for the 
proteomics community
Erik Procko

Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA

ABSTRACT
Introduction: The spike (S) of SARS coronavirus 2 (SARS-CoV-2) engages angiotensin-converting 
enzyme 2 (ACE2) on a host cell to trigger viral-cell membrane fusion and infection. The extracellular 
region of ACE2 can be administered as a soluble decoy to compete for binding sites on the receptor- 
binding domain (RBD) of S, but it has only moderate affinity and efficacy. The RBD, which is targeted by 
neutralizing antibodies, may also change and adapt through mutation as SARS-CoV-2 becomes ende
mic, posing challenges for therapeutic and vaccine development.
Areas Covered: Deep mutagenesis is a Big Data approach to characterizing sequence variants. A deep 
mutational scan of ACE2 expressed on human cells identified mutations that increase S affinity and 
guided the engineering of a potent and broad soluble receptor decoy. A deep mutational scan of the 
RBD displayed on the surface of yeast has revealed residues tolerant of mutational changes that may 
act as a source for drug resistance and antigenic drift.
Expert Opinion: Deep mutagenesis requires a selection of diverse sequence variants; an in vitro 
evolution experiment that is tracked with next-generation sequencing. The choice of expression system, 
diversity of the variant library and selection strategy have important consequences for data quality and 
interpretation.

ARTICLE HISTORY
Received 26 August 2020 
Accepted 5 October 2020 

KEYWORDS
Deep mutational scan; SARS 
coronavirus 2; ACE2; decoy 
receptor; mutational 
landscape

1. INTRODUCTION

Investigations of protein mutations have classically been 
approached by precision targeting, in which a small number 
of mutations are deliberately introduced and tested individu
ally. This requires preconceived ideas or hypotheses on which 
residues and what changes to those residues might be rele
vant. When the important residues in a protein sequence are 
unknown, screens and selections can be used instead, in 
which a library of random mutations is in some way sorted 
to enrich for a small number of mutants with the intended 
phenotype. Both experiments are limited in the scale of infor
mation they provide. Deep mutagenesis or deep mutational 
scanning take advantage of next-generation sequencing to 
bring experimental protein mutagenesis to the realm of Big 
Data [1]. A screen or selection of a diverse library of variants is 
tracked by next-generation sequencing to observe how the 
population’s genetic makeup changes. Mutations with 
enhanced function are enriched, while deleterious mutations 
are depleted; the enrichment ratio comparing frequencies in 
the selected population with the naive library thus acts as 
a proxy for relative phenotype. Now, the relative effects of 
thousands of mutations can be assessed simultaneously in 
a single experiment and a comprehensive mutational land
scape can be calculated from experimental data.

Deep mutagenesis has been developed by multiple groups 
over the past decade [2–13] and has proven especially invalu
able to meet three goals: assisting protein engineering, 

understanding mutational tolerance within a protein 
sequence, and predicting which mutations might be asso
ciated with adverse disease outcomes, especially in the con
text of cancer or drug resistance. Two recent and prominent 
studies of SARS coronavirus 2 (SARS-CoV-2) have used deep 
mutagenesis to address each of these problems [14,15]. This 
Special Report summarizes the two studies with a focus on 
experimental details and caveats that will be unfamiliar to 
those outside the deep mutational scanning community.

2. CONCLUSION

Two deep mutagenesis studies have determined how thousands 
of mutations within the SARS-CoV-2 spike or the virus’ human 
receptor affect their binding. The data have proven invaluable for 
engineering high affinity decoy receptors that are under preclini
cal development as a COVID-19 therapy, and have revealed the 
scope of mutational tolerance within the spike that may have 
bearing on genetic drift as the virus becomes endemic and 
changes over time. While these two studies focused on expression 
and binding between the viral spike and its receptor, the under
lying selection strategies used in deep mutational scans are 
increasingly tied to more complex phenotypes, such as selections 
for structural stability based on protease-sensitivity [16], using 
competing ligands to engineer specificity into proteins including 
viral receptors [17–19], and selections based on catalytic or biolo
gical activity [20–23]. Undoubtedly there are more questions 
related to SARS-CoV-2 biology and the biochemistry of its 
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encoded proteins that will be solved using deep mutagenesis as 
the scientific community rises to this historical moment.

3. EXPERT OPINION

3.1. Engineered, high affinity decoy receptors for 
SARS-CoV-2

While much attention has been given to isolating monoclonal 
antibodies with tight affinity for the SARS-CoV-2 spike (S) 
glycoprotein [24–30], an alternative is to use the entry recep
tor as a soluble decoy to neutralize infection. S is a class I viral 
fusion protein that is proteolytically processed into two sub
units, S1 and S2, that are non-covalently associated and dec
orate the coronavirus envelope [31–33]. S recognizes 
angiotensin-converting enzyme 2 (ACE2) on host cells to initi
ate attachment and fusion of the viral and plasma membranes 
[33–38]. Soluble ACE2 (sACE2) blocks receptor-binding sites on 
S [15,37,39–42] and while escape mutations in S rapidly 
emerge in tissue culture in the presence of monoclonal anti
bodies [43], in principle the virus has limited mechanisms to 
escape a soluble decoy receptor without simultaneously losing 
affinity for the natural receptor. The decoy receptor might also 
have a virucidal effect by inducing conformational changes 
and S1 shedding, such that virus particles are inactivated even 

if sACE2 dissociates. However, monoclonal antibodies have 
superior affinity and neutralization efficacy.

To improve the therapeutic potential of decoy receptors, 
my group used deep mutagenesis to find mutations in ACE2 
that enhance affinity [15]. A library of over 2,000 single amino 
acid substitutions in ACE2 was constructed, focused on diver
sification of residues at the structurally defined interface with 
the receptor-binding domain (RBD) of S [44,45] and also within 
the ACE2 catalytic cleft. The library was expressed in a human 
cell line, with a c-myc epitope tag fused to the extracellular 
N-terminus of ACE2 for detection of surface expressed protein. 
Other than the presence of the epitope tag, ACE2 expressed in 
this experimental selection system matches native ACE2 in the 
human body. The culture expressing the ACE2 library was then 
selected by fluorescence activated cell sorting (FACS) to col
lect cells expressing ACE2 variants with tight affinity for fluor
escently labeled RBD from S of SARS-CoV-2 (Figure 1A).

For the artificial selection to be successful, cells must 
express a single protein variant from a single sequence var
iant, thereby providing a tight physical link between the phe
notype of ACE2 expressed at the plasma membrane and 
a single sequence within the cell. Getting human cells in 
culture to acquire and express a single coding variant is no 
trivial feat, as transfection methods typically introduce many 
plasmid copies. Different methods to solve this technical chal
lenge have included the use of episomal plasmids that ran
domly partition to daughter cells during division until progeny 
harbor a single coding variant over time [4], the use of engi
neered integration sites in the genome [9,46,47], or the use of 
viral vectors at low multiplicities-of-infection [48,49]. My group 
used carrier DNA to sufficiently dilute the ACE2 plasmid library 
such that each cell typically acquired no more than a single 
coding variant [11]. An episomal plasmid is used for the library 
so that extrachromosomal replication within the cell enhances 
expression of the protein under investigation. (The carrier 
DNA, itself a modified episomal plasmid, further assists in 
this process [50].) The disadvantage to this simple solution 
for linking a single genotype to phenotype is that the coding 
sequence is so diluted with carrier DNA, most cells in the 

Figure 1. Selection strategies for deep mutational scans of the RBD•ACE2 complex.
(A) A library of ACE2 variants was expressed in human cells. Full-length ACE2 (tan) was tagged with a c-myc epitope at its extracellular N-terminus for detection of surface expression with 
a fluorescent antibody (red). SARS-CoV-2 RBD (pale green) genetically fused with superfolder green fluorescent protein (sfGFP; dark green) was incubated with the cell culture. FACS was 
used to collect fluorescent cells expressing ACE2 with bound RBD-sfGFP. (B) The isolated RBD of SARS-CoV-2 (pale green) was fused at its N-terminus to Aga2p (blue) and at its C-terminus 
to a c-myc epitope tag. A saturation mutagenesis library of the RBD was expressed on the yeast surface. Following induction of RBD expression, the yeast were incubated with dimeric, 
biotinylated sACE2 (tan). Bound ACE2 was detected with fluorescent streptavidin (purple) and surface expressed RBD was detected with a fluorescent antibody (red). 

Article highlights 

● In deep mutagenesis, the relative phenotypes of thousands of muta
tions in a protein sequence are determined in a single experiment.

● The experimental mutational landscape of ACE2 for binding the RBD 
of SARS-CoV-2 provides a blueprint for engineering high affinity 
decoy receptors.

● A deep mutational scan of the SARS-CoV-2 RBD reveals considerable 
opportunity for genetic drift without loss of receptor affinity.

● Different expression systems for selecting ACE2 or spike variants have 
inherent advantages and disadvantages.

● There are opportunities for deep mutagenesis to provide biochemical 
insights on other SARS-CoV-2 proteins.
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culture do not express ACE2 and FACS time is wasted on 
sorting a large number of negative cells. This has important 
consequences on the data, as time spent sampling negative 
cells is time not spent sampling cells expressing the protein 
under investigation, and consequently variants in the library 
may be under-sampled giving poor data accuracy. Under- 
sampling becomes exceptionally concerning as the library 
size increases, and for this reason the library was limited to 
single amino acid substitutions at just 117 positions in ACE2.

Following FACS selection of the human culture to enrich a cell 
population with high binding activity for SARS-CoV-2 protein S, 
RNA transcripts were isolated and Illumina sequenced. An enrich
ment ratio is calculated for each mutation by dividing its fre
quency in the sorted cell transcripts by its frequency in the naive 
plasmid library [51]. Illumina sequencing did not cover the full 
length of ACE2 and instead the cDNA was sequenced as a series 
of fragments that together provided full coverage of the diversi
fied regions. One assumes during analysis that there are no 
additional mutations outside a sequenced fragment, 
a reasonable assumption when a mutation is found because 
the library was constructed to have only one amino acid sub
stitution per plasmid. However, the assumption breaks down 
when no mutations are observed in the sequenced fragment, 
as one cannot know whether there was a mutation elsewhere 
outside the sequenced region. As a consequence, the wild type 
sequence is not directly observed and is instead only estimated. 
There are strategies using the introduction and analysis of silent 
mutations that can resolve this issue [52]. Overall, there was close 
agreement between the mutation enrichment ratios from two 
independent replicates of the FACS experiments, indicating that 
the ACE2 library was well sampled and there was high confi
dence in the data [15].

The enrichment ratios calculated for each variant in the 
sorted ACE2 library provide a mutational landscape that 
defines the relative phenotypes of thousands of ACE2 muta
tions for binding to SARS-CoV-2 S [15]. The data in this experi
ment are qualitative and it is unclear how a log2 enrichment 

ratio of, say, −2 or +3 translates to an exact change in 
a biophysical parameter such as KD. Furthermore, mutations 
can impact not only binding affinity for the RBD of S but also 
ACE2 surface expression. To filter out the contribution of 
mutations to expression, two populations of cells were col
lected by FACS. In addition to collecting cells that express 
ACE2 and tightly bind RBD, cells were simultaneously col
lected in the same experiment that express ACE2 but have 
weak RBD binding. ACE2 mutants that were not expressed at 
the cell surface would be depleted from both sorted popula
tions, which was apparent from tracking the depletion of 
nonsense mutations. In this way, information was collected 
on how ACE2 mutations impact expression and RBD binding 
from a single FACS experiment.

The deep mutational scan of ACE2 revealed that mutations 
can indeed be found to enhance binding toward SARS-CoV-2 
RBD (Figure 2), suitable for engineering high affinity soluble 
decoy receptors [15]. Mutations were found at the binding 
interface where they enhance specific atomic contacts, and 
were also found distally in the second shell and beyond where 
they may impact ACE2 conformation, folding and dynamics. 
A soluble ACE2 variant that combines three mutations, called 
sACE22.v2.4, was found to be highly expressed, is a stable 
monodisperse dimer, binds SARS-CoV-2 S with picomolar affi
nity and potently neutralizes infection of a susceptible cell line 
by authentic virus. Its properties rival affinity-matured mono
clonal antibodies under commercial development for therapy 
and prophylaxis. Despite only affinity toward SARS-CoV-2 
being considered during the engineering process, sACE22. 
v2.4 also potently neutralizes authentic SARS-CoV-1, and we 
speculate that it will have broad activity against betacorona
viruses that use ACE2 as an entry receptor. In unpublished 
work that has yet to be peer reviewed, we have found sACE22. 
v2.4 broadly and tightly binds bat coronaviruses that may be 
a source for future pandemics, supporting the concept of 
receptor-based decoys as antiviral biologics with exceptional 
breadth.

Figure 2. Substitutions at the RBD ACE2 interface have different outcomes on binding.
As determined by yeast display, the effects of mutations in the RBD of SARS-COV-2 protein S on receptor affinity are plotted in the heat map at left, with dark green indicating the 
mutations are deleterious and pale colors indicating the mutations are neutral. The effects of mutations in human cell-expressed ACE2 on binding to soluble RBD are plotted in the heat 
map at right, with depleted mutations in orange, neutral mutations in white and enriched mutations in blue. Positional scores are mapped to the atomic structure of RBD-bound ACE2 (PDB 
6M17) at center. Conserved ACE2 residues for RBD binding are orange, while ACE2 residues that are hot spots for mutations with increased affinity are blue. RBD residues conserved for 
ACE2 binding are green. Most RBD mutations in this region of the interface are deleterious, whereas numerous mutations were found in ACE2 that increased affinity. 
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3.2. Sequence constraints on the RBD of SARS-CoV-2 
S for binding ACE2

In Starr et al, deep mutagenesis was applied to the SARS-CoV 
-2 spike to assess mutational tolerance for expression and 
ACE2 interactions [14]. Instead of investigating the entire tri
meric S protein expressed on a cellular or viral membrane, the 
isolated RBD was fused to the yeast mating factor Aga2p and 
displayed on the yeast surface [53] (Figure 1B). This is an 
artificial display platform that removes the RBD from its native 
context. N-Glycosylation in yeast is also of high-mannose type 
and lacks the complex, terminally sialylated glycans produced 
by human cells [54], which can be important when binding 
interactions are glycan-dependent as is seen for some antibo
dies targeting viral spikes [55]. However, this display platform 
harnesses yeast genetics to confer tremendous advantages for 
in vitro selection and evolution. Using yeast display, large 
diverse libraries can be readily sorted by FACS to provide high- 
quality data. Separate selections were completed at a range of 
different sACE2 concentrations to simulate a titration experi
ment, from which the data could be converted to quantitative 
changes in apparent KD on the yeast surface (Figure 2). As 
a surrogate for how RBD mutations may impact expression of 
the viral spike, the effects of mutations on RBD surface display 
were also assessed in a standalone FACS selection. Quality 
control pathways for protein secretion in yeast can be forgiv
ing of misfolded protein sequences [16] and there are residues 
of the RBD that would ordinarily be buried in the context of 
the full S protein; it therefore remains to be seen how closely 
the yeast display data will correlate with equivalent experi
ments in more physiologically relevant expression systems. 
Nonetheless, the predicted effects by yeast display of some 
mutations were validated using full length S expressed in 
human cells and packaged in pseudovirus [14].

The library encoding nearly 4,000 single amino acid substitu
tions in the SARS-CoV-2 RBD was PacBio sequenced, providing 
long reads that match untranslated nucleotide barcodes to 
a specific protein variant. Following FACS-based selection, only 
the barcodes are read to determine how favorable sequence 
variants are enriched or deleterious sequence variants are 
depleted. This resolves issues with Illumina sequencing failing 
to cover the full cDNA length, and because multiple barcodes are 
associated with any given protein variant, there are additional 
internal checks for data quality and consistency.

Despite the limitations of a yeast display platform, the deep 
mutational scan of the isolated RBD provides a high quality and 
useful data set from which several important conclusions were 
drawn. First, the ACE2 binding surface of SARS-CoV-2 RBD toler
ates surprisingly high sequence diversity, even though it is 
a critical site for function [14]. High diversity is also seen in the 
ACE2-binding sites of S proteins from SARS-related bat corona
viruses, but this matches corresponding diversity in ACE2 from 
ecologically diverse bat species [56] and does not necessarily 
mean that the RBD tolerates mutations for binding ACE2 from 
a single species. The deep mutational scan addresses this uncer
tainty and is further supported by evidence showing that diverse 
RBD sequences from bat coronaviruses are all competent for 
binding human ACE2 with varying affinities [38].

Second, mutations were found in the RBD that enhance 
binding to ACE2, yet there does not appear to be positive 
selective pressure for these variants in the human popula
tion [14]. SARS-CoV-2 affinity for ACE2 is therefore ‘good 
enough,’ with no additional fitness benefit for higher affi
nity. It is worth noting that classical SARS-CoV-1 is also 
a highly infectious and virulent pathogen, despite having 
weaker ACE2 affinity [36,57]. The rapid spread of SARS-CoV 
-2 probably has more to do with asymptomatic and pre
symptomatic transmission than enhanced receptor 
binding.

Third, mutations were found within the epitopes for 
monoclonal antibodies but maintain high ACE2 binding, 
and it is likely that SARS-CoV-2 can easily mutate to escape 
neutralization without losing infectivity [14]. This agrees 
with selection experiments of pseudovirus expressing SARS- 
CoV-2 S variants, in which escape mutants in the viral spike 
rapidly emerge to neutralizing antibodies in a single pas
sage [43]. This has profound implications for antibody ther
apy, where the standard has become combinations of non- 
competing monoclonals in a cocktail to prevent rapid resis
tance. It is currently unknown whether an engineered solu
ble decoy receptor, such as sACE22.v2.4, will similarly be 
susceptible to the emergence of viral spike variants that 
can discriminate between the engineered decoy and the 
native receptor. We hypothesize that engineered decoys 
will be broadly active against SARS-CoV-2 variants and this 
remains an active area of investigation.
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