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Abstract
Background. The aim of this study was to predict isocitrate dehydrogenase (IDH) genotypes of gliomas using an 
interpretable deep learning application for dynamic susceptibility contrast (DSC) perfusion MRI.
Methods.  Four hundred sixty-three patients with gliomas who underwent preoperative MRI were enrolled in the 
study. All the patients had immunohistopathologic diagnoses of either IDH-wildtype or IDH-mutant gliomas. Tumor 
subregions were segmented using a convolutional neural network followed by manual correction. DSC perfusion 
MRI was performed to obtain T2* susceptibility signal intensity-time curves from each subregion of the tumors: 
enhancing tumor, non-enhancing tumor, peritumoral edema, and whole tumor. These, with arterial input functions, 
were fed into a neural network as multidimensional inputs. A convolutional long short-term memory model with 
an attention mechanism was developed to predict IDH genotypes. Receiver operating characteristics analysis was 
performed to evaluate the model.
Results. The IDH genotype predictions had an accuracy, sensitivity, and specificity of 92.8%, 92.6%, and 93.1%, 
respectively, in the validation set (area under the curve [AUC], 0.98; 95% confidence interval [CI], 0.969–0.991) 
and 91.7%, 92.1%, and 91.5%, respectively, in the test set (AUC, 0.95; 95% CI, 0.898–0.982). In temporal feature 
analysis, T2* susceptibility signal intensity-time curves obtained from DSC perfusion MRI with attention weights 
demonstrated high attention on the combination of the end of the pre-contrast baseline, up/downslopes of signal 
drops, and/or post-bolus plateaus for the curves used to predict IDH genotype.
Conclusions. We developed an explainable recurrent neural network model based on DSC perfusion MRI to predict 
IDH genotypes in gliomas.

Key Points

1. �The recurrent neural network model accurately predicted the IDH genotypes of gliomas 
using DSC perfusion MRI.

2. �The model provides interpretable information from T2* susceptibility signal intensity-time 
curves for the prediction of IDH genotypes in gliomas.
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Gliomas are the most frequent primary tumors of the cen-
tral nervous system, exhibiting a devastating prognosis.1 
According to the World Health Organization (WHO) classifi-
cation system, gliomas are classified as grades I–IV based 
on histopathological and clinical criteria.2 The 5-year survival 
rate is only 5% for WHO grade IV gliomas or glioblastomas 
(GBM), with the median survival 14.6  months even after 
standard treatment including chemoradiotherapy with 
temozolomide.1,3 Moreover, the 5-year progression-free sur-
vival (PFS) rate is 50% in WHO grades II and III gliomas.4

Over the last decade, it has been shown that the pres-
ence of an isocitrate dehydrogenase (IDH) mutation is as-
sociated with overall survival as well as the diagnosis in 
gliomas.5,6 More than 80% of WHO grades II and III gliomas, 
or lower-grade gliomas (LGGs), and approximately 10% of 
secondary GBM have IDH mutations, the most common of 
which is the IDH1-R132H mutation.6 IDH mutation results 
in the loss of function of the enzyme that catalyzes the 
conversion of isocitrate to α-ketoglutarate as well as the 
gain of function of the enzyme to catalyze the conversion 
of α-ketoglutarate to (R)-2-hydroxyglutarate ((R)-2HG), an 
oncometabolite.7 However, IDH-mutant gliomas are less 
aggressive, easier to resect, and more sensitive to che-
motherapy, particularly temozolomide, resulting in longer 
survival times than are found in IDH-wildtype gliomas.8 In 
contrast to IDH-mutant gliomas, in IDH-wildtype gliomas, 
aggressive surgical resection of the non-enhancing 
tumor does not provide any additional survival benefit.9 
Moreover, IDH-wildtype LGGs have poor survival equal to 
that of GBM.10 Therefore, the preoperative prediction of the 
IDH genotype is crucial to treatment planning and prog-
nosis prediction in patients with gliomas.

The conversion of α-ketoglutarate into (R)-2-
hydroxyglutarate in IDH-mutant gliomas results in lower 
levels of hypoxia-inducible factor 1-alpha, a driver of 
hypoxia-initiated angiogenesis, in line with the less ag-
gressive clinical course observed in IDH-mutant gliomas 
compared with IDH-wildtype gliomas.11–13 Recent studies 
have suggested that the IDH genotype is associated 
with and can be predicated using relative cerebral blood 
volume (rCBV) mapping obtained from dynamic suscep-
tibility contrast (DSC) perfusion MRI,11,14 which has long 
been clinically used to investigate tumor angiogenesis. In 
particular, the IDH-mutant group had lower rCBV values 

than were found in the IDH-wildtype group,11,14 in line with 
the aforementioned studies.11–13 More recently, Zhang et al 
found that IDH-wildtype LGG vessels were molecularly 
distinct from the vasculature observed in IDH-mutated 
LGG.15 These previous results suggest that tumor angio-
genesis differs according to the IDH genotype, and these 
differences may be distinguishable based on DSC perfu-
sion MRI patterns.

Moreover, the long short-term memory (LSTM) model, 
a type of recurrent neural network (RNN) model, has 
demonstrated effective performance in various tasks, 
such as natural language processing, image captioning, 
genomic analysis, and medical diagnosis, recognizing 
patterns in sequential data.16–18 We hypothesized that an 
LSTM-based model could recognize specific patterns and 
classify multidimensional time-series data obtained from 
DSC perfusion MRI to distinguish IDH-wildtype gliomas 
from IDH-mutant gliomas. To the best of our knowledge, 
no deep learning–based methods that use raw T2* sus-
ceptibility signal intensity-time curves obtained from DSC 
perfusion MRI have previously been proposed for IDH gen-
otype prediction in gliomas.

Finally, the purpose of this study was to develop an RNN 
model for the prediction of the IDH genotypes of gliomas 
with interpretability using preoperative multimodal MR 
imaging, including non-invasive DSC perfusion MRI.

Materials and Methods 

Patients

The institutional review board of Seoul National University 
Hospital approved this retrospective study with a waiver 
of informed consent. From January 2013 to January 2018, 
enrolled in the study retrospectively were 603 patients who 
underwent treatment-naïve MR imaging. A  total of 140 
patients were excluded according to the exclusion criteria 
(Supplementary Fig. 1). Finally, a total of 463 patients 
who underwent all 4 conventional MRI and DSC perfu-
sion MRI procedures were enrolled in the study. All of the 
enrolled patients had also undergone surgery or biopsy 
for tumors with immunohistopathological confirmation 

Importance of the Study

We developed an explainable recurrent neural net-
work model with high diagnostic performance for the 
non-invasive prediction of IDH genotypes in gliomas 
using DSC perfusion MRI. Previous studies utilized 
relative cerebral blood volume (rCBV), which reflects 
tumor vascularity, to predict the IDH genotype of 
gliomas because IDH mutation is known to be asso-
ciated with tumor angiogenesis in gliomas. However, 
there is a large overlap in rCBV values between IDH-
wildtype and IDH-mutant groups, which leads to in-
accurate predictions of IDH genotype. This study 

demonstrated that a recurrent neural network model, 
which learns sequential patterns, can distinguish 
these overlapped groups by utilizing raw multidimen-
sional T2* susceptibility signal intensity-time curves 
obtained from DSC perfusion MRI, leading to improved 
and generalized diagnostic performance using an 
unseen test set. The model also provides interpreta-
bility by demonstrating which temporal features are 
crucial for the prediction of IDH genotypes based on 
molecular-biological backgrounds obtained using at-
tention mechanisms.
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of the diagnosis. Detailed information regarding the 
tissue diagnosis and genetic analysis is provided in the 
Supplementary Material.

Imaging Acquisition

To obtain the T1-weighted imaging required for tumor 
segmentation, a T1-weighted 3D magnetization-prepared 
rapid acquisition gradient echo (MPRAGE) sequence 
was performed before and after the administration of 
gadobutrol (Gadovist, Bayer) at a dose of 0.1 mmol/kg of 
body weight in most of the enrolled patients. All of the 
DSC perfusion MRI protocols were included among the 
3 dedicated protocols used in our institute. The MR scan 
parameters are provided in Supplementary Table 1.

Image Preprocessing

All patients underwent all 4 conventional MRI procedures, 
including T1-weighted imaging (T1WI), T2-weighted 
imaging (T2WI), T2-weighted fluid attenuated inver-
sion recovery (FLAIR) imaging, and contrast-enhanced 
T1-weighted imaging (CET1WI), which were required for 
tumor segmentation, as well as DSC perfusion MRI, which 
was required for the input of the neural network model. 
All MR images were co-registered to individual CET1W 
images that were mostly obtained using MPRAGE. The 
latter provided a submillimeter spatial resolution (0.7 mm), 
which was the highest resolution among the sequences. 
Intermodality co-registration as well as skull stripping 
were performed using NordicICE 4.1.3 (NordicNeuroLab). 
A mutual information-based algorithm was used to search 
for an optimal rigid transformation that aligned the 2 
datasets with different modalities to achieve intermodality 
co-registration. N4 bias field correction was applied to 
remove all of the intensity non-uniformity with a low fre-
quency.19 Next, all of the MR images were isotropically 
resampled to 1 mm with trilinear interpolation using FSL 
(FMRIB Software Library; http://www.fmrib.ox.ac.uk/fsl/).20 
All procedures used during image preprocessing are 
summarized in Fig. 1.

Tumor Segmentation

A fully automated segmentation tool that was the second 
best performing method in the international 2017 Brain 
Tumor Segmentation (BraTS) Challenge was utilized for 
segmentation. This tool used a cascade of fully convolu-
tional neural network (CNN)21‒segmented whole tumors as 
subregions, as follows: the enhancing and non-enhancing 
tumor core and the peritumoral edema, according to the 
definition presented in the BraTS Challenge,22 using con-
ventional MRI. More specifically, peritumoral edema, indi-
cated by a peritumoral FLAIR high signal intensity lesion, 
was defined as a region clearly outside the enhancing 
and non-enhancing tumor core that presented as a non-
enhanced T1-weighted as well as contrast-enhanced 
T1-weighted signal intensity abnormality (further details 
are provided in the Supplementary Material).21,22 Next, all 
tumor segmentations were manually corrected using 3D 

Slicer 4.8.1 (http://www.slicer.org/)23 by a neuroradiologist 
(K.S.C.) with 5 years of experience in neuroradiology.

DSC Perfusion MRI Data Processing and 
Normalization

Mean T2* susceptibility signal intensity-time curves were 
obtained for each of the tumor subregion and segmented 
using conventional MRI into the following categories: 
enhancing tumor, non-enhancing tumor, peritumoral 
edema, and whole tumor mask. The arterial input function 
(AIF, the fifth time course) was also obtained from DSC per-
fusion MRI. All of the time courses were normalized and 
concatenated to generate multidimensional time-series 
data. The detailed protocol used for the preprocessing of 
DSC perfusion MRI data is provided in the Supplementary 
Material.

Convolutional Long Short-Term Memory Network 
with Attention Mechanism

RNN is a deep learning model that learns sequential 
patterns or temporal dependencies within time-series 
data. In particular, LSTM, a type of RNN that effectively 
models sequences with varying lengths and captures 
long temporal dependencies and nonlinear dynamics, has 
achieved state-of-the-art results in tasks spanning natural 
language processing, image captioning, genomic anal-
ysis, and the analysis of medical data.16–18 In this study, 
bidirectional LSTM, an LSTM that allows the output units 
to be used to compute a representation that depends on 
both the past and the future, was used to reflect the con-
text of inputs.24 First, 1-dimensional (1D) CNN was used 
as a powerful regional feature extractor in the sequential 
data. The LSTM then learned the temporal dependencies 
in the extracted features from the sequential data. In other 
words, the 1D CNN found a compact latent representation 
of the T2* susceptibility signal intensity-time curve, which 
was then fed into the bidirectional LSTM to learn the spe-
cific patterns that predicted the IDH genotypes of gliomas. 
This process generated 16 hidden states and 16 output 
states for every time step. Next, the weighted sum of the 
hidden states or the sequence outputs of the bidirectional 
LSTM network was used as a single condensed represen-
tation of the entire input sequence. More specifically, we 
used the bidirectional LSTM to produce a hidden state at 
each time step and then used a feed forward neural net-
work (FFN) (Fig. 2A) attention function a (ht) to assign im-
portance (attention weights) αt , to each hidden state htat 
time steps t = 1, 2, · · · , T (Eq. 1).25 This enabled the model 
to predict a single target (ie, IDH genotype) per input se-
quence. Finally, the weighted sum of the hidden states, in-
cluding the output weights of the attention function αt  and 
a context vector c , was fed into the single layer FFN for the 
classification, as illustrated in Fig. 2B. An overview of the 
model network structure is shown in Fig. 2B.

	
et = a (ht) , αt =

exp(et)∑T
k=1 exp(ek)

, c =
T∑
t=1

αtht
� (1)
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Neural Network Model: Training, Validation, and 
Test Set

Among a total of 463 enrolled patients, 18 randomly 
chosen patients who contributed 144 samples (8 
samples per patient using the sliding window tech-
nique, as described in the DSC perfusion MRI data proc-
essing and normalization section of the Supplementary 
Material) that were never seen by the model during 
training were used as a test set (this prevented these 
data from being mixed within the training and validation 

sets). The rest of the patients were divided at an approx-
imately 8:1 ratio into generate training (n  =  395; 3160 
samples) and validation (n  =  50; 400 samples) sets in 
a random manner. To report the more generalized per-
formance of the model due to the small size of the test 
set, we performed 5-fold cross validation, in which 5 
models were trained using each fold as a validation set 
and the rest of the fold as a training set. The average 
performance of the 5 models was used to evaluate the 
generalized performance of the model.

  
Skull stripping

Co-registration

High-resolution CET1WI

N4 bias field correction

Isotropic resampling

T1WI T2WICET1WI FLAIR

Tumor segmentation

Convolutional neural network
Manual correction

DSC perfusion MRI data processing

Concatenation of
mean time-series for
each subregion

DSC

Subregion mask

Intensity normalization

Fig. 1  MRI preprocessing pipeline. All the conventional MRI data were skull stripped, co-registered, and resampled. They were then submitted 
to tumor segmentation using convolutional neural networks with manual correction. The raw T2* signal intensity-time curve was obtained from 
DSC perfusion MRI using the subregion mask: peritumoral edema (blue), enhancing tumor core (green), and non-enhancing tumor core (red).
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Neural Network Model: Evaluation

The model performance was evaluated by computing 
the accuracy, sensitivity, and specificity of the test set. 
Moreover, receiver operating characteristics (ROC) analysis 
was performed using sigmoid probabilities to obtain ROC 
curves and calculate the area under the curve (AUC). To cal-
culate the 95% confidence intervals (CIs) of the AUC values, 
bootstrapping was performed and iterated 1000 times to 
create 1000 ROC AUCs. Although we used a small dataset 
to predict 1p/19q status (ie, IDH-mutant group; n  =  1000 
samples from 125 patients) to build a deep learning model, 
we also built an LSTM-based model for the prediction of 
1p/19q status with hyperparameter modification.

Quantitative Analysis: Conventional Approach

Differences in age and the mean and 95th percentile values 
of the rCBV between the IDH genotype groups or among the 
WHO grade groups were analyzed using either Student’s 
t-test or one-way ANOVA (further details are provided in the 
statistical analysis section of the Supplementary Material). 
Using a conventional approach, we built a multivariate lo-
gistic regression model using age and mean rCBV values 
and compared its diagnostic performance with that of the 
LSTM-based model. Moreover, we built another logistic 
model using age and enhancement because they are known 
classifiers26 of IDH genotype based on disease prevalence.

Qualitative Analysis: Temporal Feature 
Interpretation

We used the attention layer, which consisted of a single FFN, 
to visualize and interpret temporal features. The attenuation 

mechanism enabled us to examine which time steps of the 
input sequences were critical for the model to achieve a clas-
sification by visualizing the weights of FFN as a heatmap.25 
The multidimensional T2* susceptibility signal intensity-time 
curve was divided into 4 segments: the pre-contrast base-
line, the downslope and upslope of the signal drop, and the 
post-bolus plateau. Among the 4 segments, 2 segments with 
the highest and second highest attentions were recorded 
in all 463 cases. Therefore, the 6 possible temporal patterns 
(TPs) (ie, if choosing 2 segments out of a total of 4 segments: 
patterns 1–6) for the heat map of attention weights and cor-
responding TPs were recorded in all 463 cases. A graphical 
definition of the TP is demonstrated in Fig. 4A.

Results

Patient Characteristics

A total of 3704 samples were generated from 463 patients 
with gliomas (272 males, 191 females; age, 52.2 ± 14.8 y; 
PFS, 21.1 ± 23.1 mo). There was no significant difference 
in age between male and female patients (P  =  0.402). 
IDH mutations were significantly more frequent in LGG 
than in GBM (55.7% vs 9.7%; P  <  0.0001). Moreover, the 
IDH-wildtype group was significantly older than the IDH-
mutant group (56.1 vs 41.9 y, P < 0.0001). The incidence of 
1p/19q codeletion was 27.6% (48 of 174) among LGGs. The 
detailed patient characteristics are summarized in Table 1.

Model Performance

For the validation set, the IDH genotype predictions 
obtained using the optimized model had an accuracy, 
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Fig. 2  (A) Schematic of the feed-forward neural network attention mechanism and (B) overview of the convolutional LSTM with an attention 
model network structure.
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sensitivity, and specificity of 92.8%, 92.6%, and 93.1%, re-
spectively. When the optimized model was applied to the 
unseen test set, its accuracy, sensitivity, and specificity 
were 91.7%, 92.1%, and 91.5%, respectively, for IDH gen-
otype prediction. The diagnostic performance achieved in 
both the validation and test sets and the normalized confu-
sion matrix for the test set are shown in Fig. 3A and B. The 
AUCs were 0.98 (0.969–0.991) and 0.95 (0.898–0.982) for 
the validation and test sets, respectively (Fig. 3C–F). In the 
5-fold cross validation, the diagnostic performance of the 
model for each fold is shown in Supplementary Fig. 1 (mean 
AUC, 0.96 ± 0.02). In the subgroup analysis by WHO grade, 
the model had an accuracy, sensitivity, and specificity of 
86.1%, 90.4%, and 83.8%, respectively, in LGG (AUC, 0.95; 
0.943–0.963), and 91.0%, 88.4%, and 91.5%, respectively, 
in GBM (AUC, 0.96; 0.949–0.976) (Supplementary Fig. 2). 
There was no significant difference in the AUC between 
these groups (P  =  0.331). The diagnostic performance of 
the LSTM-based model for predicting 1p/19q status is pro-
vided in the Supplementary Material.

Quantitative Analysis: Conventional Approach

Both the mean and 95th percentile values of the rCBV 
were significantly higher in the IDH-wildtype group than 
in the IDH-mutant group (mean, 2.94 ± 1.25 vs 2.19 ± 0.90, 
P  =  0.005; 95th percentile, 8.04  ±  3.55 vs 5.72  ±  2.52, 
P  <  0.0001) (Supplementary Table 2). In the subgroup 
analysis by WHO grade, the mean rCBV values were 
significantly higher in the IDH-wildtype group than in 
the IDH-mutant group for both LGG and GBM (LGG, 
2.53  ±  1.25 vs 2.11  ±  0.75, P  <  0.0001; GBM, 3.07  ±  1.22 
vs 2.49  ±  1.28, P  <  0.0001) (Supplementary Fig. 3E). 
The min-max range of the mean rCBV showed that the 
ranges were largely overlapping (1.04–5.83) between the 

IDH-wildtype (1.04–11.81) and IDH-mutant groups (0.86–
5.83) (Supplementary Table 2). The logistic regression 
model using age and enhancement achieved an accuracy, 
sensitivity, and specificity of 77.1%, 42.4%, and 89.9%, re-
spectively (AUC, 0.80; 0.765–0.839), and therefore had 
a significantly poorer diagnostic performance than was 
achieved by the LSTM-based model (P  < 0.0001). The di-
agnostic performance of the other logistic model using 
age and rCBV is provided in the Supplementary Material. 
The boxplots for the rCBV values that correspond to IDH 
genotypes and WHO grades are shown in Supplementary 
Fig. 3. Detailed results are provided in the Supplementary 
Material.

Qualitative Analysis: Temporal Feature 
Interpretation

Using the attention mechanism, we investigated which 
temporal features of the multidimensional T2* suscep-
tibility signal intensity-time curve are crucial for the pre-
diction of IDH mutation status. In other words, we sought 
to determine which time step or segment is important 
for classifying IDH genotypes in a given set of multidi-
mensional time-series data. A single attention vector was 
obtained for each multidimensional input per patient. 
The specific patterns used to predict IDH genotype were 
recognized in the heatmaps of attention weights that were 
overlaid on the multidimensional T2* susceptibility signal 
intensity-time curves averaged from the whole tumor.

In the IDH-wildtype group, the most common TP was TP 
6 (127 of 338; 37.6%), and the second most common pat-
tern was TP 4 (107 of 338, 31.7%) (Fig. 4B). Conversely, in the 
IDH-mutant group, the most common TP was TP 1 (79 of 125; 
63.2%), and the second most common pattern was TP 4 (17 
of 125; 13.6%) (Fig. 4B). There were significant differences 

  
Table 1  Patient demographics and genetic information

Total Patients, n = 463 Age, mean ± SD, y 

Sex   

  Male 272 (58.7%) 52.7 ± 15.3

  Female 191 (41.3%) 51.6 ± 14.1

WHO grade and IDH   

II Wildtype 17 (3.7%) 48.7 ± 16.3

Mutant 15 (3.2%) 44.3 ± 10.9

III Wildtype 60 (13.0%) 52.2 ± 15.2

Mutant 82 (17.7%) 40.9 ± 10.2

IV Wildtype 261 (56.4%) 57.5 ± 13.5

Mutant 28 (6.0%) 43.4 ± 13.9

WHO grade and 1p/19q   

II Codeleted 7 (1.5%) 41.4 ± 10.8

Non-codeleted  25 (5.4%) 48.1 ± 14.6

III Codeleted 41 (8.9%) 42.2 ± 9.3

Non-codeleted 101 (21.8%) 47.1 ± 14.9

IV Codeleted 8 (1.7%) 54.6 ± 16.7

Non-codeleted 281 (60.7%) 56.1 ± 14.1
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between the IDH-wildtype and IDH-mutant groups in the 
frequencies of the TPs obtained for T2* susceptibility signal 
intensity-time curves that were averaged from whole tumor 
(P  < 0.0001) (Supplementary Table 3). Fig. 4B summarizes 
the profiles of the TPs of the heatmaps for attention weights 
overlaid on T2* susceptibility signal intensity-time curves 
that were averaged from whole tumor in both IDH-wildtype 
and IDH-mutant gliomas. In the subgroup analysis by WHO 
grade, there were also significant differences between the 
IDH-wildtype and IDH-mutant groups in the frequencies of 
TPs of T2* susceptibility signal intensity-time curves that 
were averaged from whole tumor (P < 0.0001) in both LGG 
and GBM (Supplementary Table 3). The most common TPs in 
the IDH-wildtype and IDH-mutant groups were TP 6 and TP 1, 
respectively, in both LGG and GBM. Moreover, among the 
correctly predicted cases of IDH-wildtype and IDH-mutant 

gliomas, some had nearly identical rCBV values (mean 
rCBV, 3.59 and 3.58, respectively, as illustrated in Fig. 5A), 
indicating that they could not be distinguished based on 
rCBV alone. In these two cases, the model produced patterns 
6 and 1 in the IDH-wildtype and IDH-mutant glioma, respec-
tively (Fig. 5B and C), with these pattern analyses resulting 
in a correct prediction (class probabilities of 0.849 and 0.956, 
respectively). Supplementary Fig. 4 also shows the different 
patterns observed in IDH-wildtype and IDH-mutant gliomas.

Discussion

We developed an RNN model to predict IDH genotypes 
with a relatively large dataset (n = 463). To the best of our 
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knowledge, this report describes the first “end-to-end” 
neural network model developed to predict IDH genotypes 
using raw T2* susceptibility signal intensity-time curves 
obtained from DSC perfusion MRI and bypassing 
postprocessing to generate rCBV maps.

This prediction model achieved high diagnostic perfor-
mance with both interpretability and reproducibility for the 
test set. This was not only because the model was LSTM-
based, allowing it to exhibit high performance in sequen-
tial learning,17 but also because of the following 3 features: 
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(i) utilization of DSC perfusion MRI, which is better than 
conventional MRI at reflecting the specific tumor angio-
genesis processes and vasculature of gliomas according 
to IDH genotype; (ii) we drastically reduced the number of 
parameters in the model with a relatively small dataset for 
deep learning to prevent overfitting and allow the model 
to be more effectively generalized than is possible with 
the CNN model when using the same numbers of 2D or 
3D images; and (iii) we optimized the model by adding a 
convolutional layer, extracting semantic regional features 
and removing redundancy for highly correlated input se-
quential data, thus leading to better capture of temporal 
correlations as well as the attention layer17,25 for model 
interpretability.

Recently, CNN models developed to use conven-
tional MRI (ie, T1WI, T2WI, FLAIR, and CET1WI) have 
been proposed as robust and non-invasive methods for 
obtaining preoperative IDH genotype predictions.27,28 
However, previous studies suggested that IDH mutations 
are associated with tumor angiogenesis,11,14,15 best 
evaluated by DSC perfusion MRI, which provides a robust 
and clinically meaningful estimate of tumor angiogen-
esis. In particular, the (R)-2HG in the IDH-mutant group 
leads to a decrease in the level of hypoxia-inducible factor 
1-alpha, a driver of hypoxia-initiated angiogenesis, con-
sistent with the finding that the clinical course observed 
in the IDH-mutant group was more indolent than those of 
the IDH-wildtype group.11–13 Moreover, Chow et al revealed 
that GBM induces vascular dysregulation in peritumoral 
regions,29 the extent of which can be measured using 
blood oxygen level–dependent (BOLD) perfusion MRI, and 
that this area is larger in IDH-wildtype than in IDH-mutant 
gliomas. This finding could be used to differentiate IDH 
genotypes. Therefore, neural network models that utilize 
the raw DSC perfusion MRI signals obtained from not only 
the tumor core but also the peritumoral edema area will 
more plausibly predict IDH genotypes in gliomas, given 
the infiltrative nature of IDH-wildtype gliomas. More re-
cently, Zhang et  al found that IDH-wildtype LGG vessels 
are molecularly distinct from the vasculature of IDH-
mutated LGG.15 More specifically, rCBV was lower in the 
IDH-mutant group than in the IDH-wildtype group,11,14,30,31 
in line with the aforementioned studies.11–13 However, 
these studies showed that there was a large overlap in the 
ranges of rCBV between the IDH-wildtype and IDH-mutant 
groups,11,14 although these results may suggest that the 
tumor vasculature differs among IDH genotypes, and 
these differences may be distinguishable by DSC perfu-
sion MRI patterns. In other words, no individual differences 
will be found when the rCBV of the glioma is within the 
overlapped range, and this will lead to the inaccurate pre-
diction of the glioma’s IDH genotype. We hypothesized 
that we could develop a method to distinguish the IDH 
genotypes of gliomas in these overlapping rCBV groups by 
learning raw multidimensional DSC perfusion MRI signals 
using an LSTM-based model because these models can 
learn sequential patterns.

In addition, although leakage correction is supported 
by postprocessing software,32 rCBV assumes an intact 
blood–brain barrier, which is, however, disrupted in malig-
nant gliomas and leads to incorrect estimations of rCBV. 
Moreover, previous studies reported that using different 

postprocessing software packages (required to convert 
the acquired images into rCBV maps) resulted in clinically 
significant differences in CBV images.33,34 Finally, permea-
bility is one of the most potentially distinguishing features 
that can be derived from perfusion MRI data for the pre-
diction of IDH genotypes.35 However, rCBV does not reflect 
the permeability of tumor vessels, which can instead be 
determined based on parameters such as the percentage 
of signal intensity recovery (PSR),36 which is derived from 
the ΔR2* curves obtained from DSC perfusion MRI.

Conversely, the idea of dividing voxels belonging to 
T2 high signal intensity lesions and contrast-enhanced 
lesions and then examining the raw DSC perfusion MRI 
time-intensity curves (ie, voxelwise T2* signal intensity-
time curve analysis) is not a completely novel idea. Cha 
et al36 were able to differentiate GBM from cerebral metas-
tasis using peak height (PH) and the PSR derived from the 
ΔR2* curve of DSC perfusion MRI, and these parameters 
are correlated with rCBV and Ktrans, respectively. This 
study extends the work of Cha et  al36,37 by adding the 
use of deep learning algorithms. Moreover, these deep 
learning–based methods enabled the building of an end-
to-end trainable model without the a priori selection of 
features (eg, volume, entropy, energy), and thereby might 
allow for greater clinical applicability and reproducibility 
compared with conventional radiomics approaches.27 
Moreover, neural networks learn “representations,” and 
this leads to the discovery of novel significant features, 
whereas radiomics approaches require pre-engineered 
features with domain knowledge to be provided by human 
experts, thus reducing the probability of discovering new 
features.18 Considering this “end-to-end model” back-
ground, it is more appropriate to input raw DSC perfu-
sion MRI data instead of postprocessed rCBV data when 
building a neural network model. In addition, the high per-
formance achieved by the neural network model might 
be helpful for overcoming the limitations of current IDH 
genotyping. Currently, determining IDH genotype of 
gliomas requires a surgical biopsy, which requires general 
anesthesia and is therefore associated with possible risks. 
Moreover, immunohistochemistry to detect R132H misses 
approximately 15% of all IDH mutations,38 and sequencing 
might not be available, leading to delayed diagnosis.

Previous studies have developed many neural network 
models to provide advance predictions of fatal events, such 
as cardiac arrest, death, arrhythmia, and seizure, based on 
sequential medical data, including EEG, ECG, and other 
physiologic signals.18,39 Inspired by these previous studies, 
we utilized a convolutional bidirectional LSTM network 
with attention mechanisms, a neural network model for 
learning sequential data, to classify IDH genotypes from 
raw DSC perfusion MRI data. This approach also allowed 
the interpretation of time-series data.

Compared with a logistic regression model using age and 
rCBV, the LSTM-based model achieved significantly better 
diagnostic performance (AUC, 0.85 vs 0.95; P < 0.0001). In 
particular, the LSTM-based model had markedly improved 
sensitivity over that of the logistic regression model using 
the conventional approach (92.1% vs 52.0%).

In the subgroup analysis, the diagnostic performance 
of predictions of IDH genotypes between LGG and GBM 
showed that there was no significant difference between 
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the ROC curves, suggesting that temporal features were 
not affected by WHO grade or by an imbalance in IDH 
status among the grades. Compared with the logistic re-
gression model using known classifiers such as age and 
enhancement, the LSTM-based model achieved a higher 
diagnostic performance (P < 0.0001). There were significant 
differences in the TPs of the IDH-wildtype and IDH-mutant 
groups in both LGG and GBM, with TP 6 and TP 1 the most 
common TPs in IDH-wildtype and IDH-mutants, respec-
tively (P  <  0.0001). In the subgroup analysis performed 
using the conventional approach, mean rCBV values for the 
whole tumor were significantly higher in the IDH-wildtype 
group in both LGG and GBM (P < 0.0001).

To evaluate the generalizability of the performance of 
the model due to the small test set, we performed 5-fold 
cross validation of the LSTM-based model used to predict 
IDH genotypes. Two out of the 5 folds (folds 1 and 2) were 
slightly worse; however, the diagnostic performance (ie, 
sensitivity, specificity, accuracy, and AUC) was still similar 
to those of the validation and test sets (Supplementary Fig. 
1A). The average AUC was also comparable to the AUCs for 
the test set (0.96 vs 0.95) (Supplementary Fig. 1B).

In the temporal feature analysis, we interpreted the mul-
tidimensional T2* susceptibility signal intensity-time curve 
from DSC perfusion MRI data (ie, signal intensity-time curve 
averaged from enhancing tumor, non-enhancing tumor, 
peritumoral edema, whole tumor, and AIF, respectively) that 
was overlaid on a heatmap of attention weights that was 
generated using a convolutional LSTM model. Attention 
mechanisms show where the convolutional LSTM model 
focuses for every time-step.17,25 In our model based on the T2* 
signal intensity-time curve, the upslope of the signal drop with 
the post-bolus plateau and the pre-contrast baseline with the 
downslope of the signal drop were useful in predicting IDH-
wildtype and IDH-mutant glioma, respectively (Fig. 4). In other 
words, in terms of the prediction models, signal recovery was 
the most important feature of IDH-wildtype gliomas, in which 
it indicated that increased leaky/immature tumor vessels due 
to increased tumor angiogenesis were the crucial feature of 
IDH-wildtype gliomas,11,15 while tumor vascularity was the 
most significant feature of IDH-mutant glioma, in which it 
was correlated with PH as well as rCBV.36 In representative 
cases with nearly the same mean rCBVs in whole tumors, 
the model focused on the upslope of the signal drop and 
the post-bolus plateau of the T2* signal intensity-time curve 
obtained from the IDH-wildtype glioma (Fig. 5B). This param-
eter was correlated with signal recovery or vascular permea-
bility, which was less steep and attenuated in the IDH-wildtype 
group than the IDH-mutant group. In addition, the model fo-
cused on the pre-contrast baseline and the downslope of the 
signal drop of the T2* signal intensity-time curve obtained 
from the IDH-mutant glioma (Fig. 5C), which was associated 
with tumor vascularity and was larger and steeper in the IDH-
wildtype group than in the IDH-mutant group. Both of these 
results are consistent with previous studies11,15 that revealed 
that tumor angiogenesis is increased in the IDH-wildtype 
group compared with the IDH-mutant group, in which ab-
normal tumor vessels are leaky and immature.

There are several limitations to this study. First, there 
were differences in the magnetic field strengths of DSC 
perfusion MRI. Some were obtained using a 1.5 T scanner, 
and others were obtained using a 3 T scanner. Because 

T2* susceptibility signal intensity is strongly influenced by 
magnetic field strength, PH and PSR should be confounded 
by magnetic field strength, and this may lead to confusion 
in the neural network when predicting IDH genotypes. 
However, there was no significant association between 
magnetic field strengths for DSC perfusion MRI and IDH 
genotypes in the dataset (P = 0.053; Supplementary Table 
4). This finding indicates that the magnetic field strength 
of the scanner did not affect the predicted IDH genotype, 
and the training, validation, and test sets were there-
fore divided after random shuffling of the total dataset. 
Second, although the model was designed to be explain-
able by radiologists, we used T2* susceptibility signal 
intensity-time curves obtained from subregions of tumors 
as the features of the input signals, and only a limited 
understanding of what exactly the model focuses on is 
possible given current attention mechanisms. Finally, be-
cause the proposed model utilizes only spatial informa-
tion without incorporating the signal intensity, location, 
etc, of subregions of tumors from conventional MRI, 
incorporating the full set of conventional MRI data into the 
model may improve diagnostic performance.

In conclusion, we developed an LSTM-based model with 
high diagnostic performance to predict IDH genotypes in 
gliomas using DSC perfusion MRI. This approach is plau-
sible because IDH mutation is associated with tumor an-
giogenesis. This non-invasive method might complement 
surgical biopsy, thereby improving treatment planning re-
sponse evaluation when using anti-angiogenic therapies.

Supplementary Material

Supplementary data are available at Neuro-Oncology 
online.
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