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Abstract

Surgeons perform two primary tasks: operating and engaging patients and caregivers in shared 

decision-making. Human dexterity and decision-making are biologically limited. Intelligent, 

autonomous machines have the potential to augment or replace surgeons. Rather than regarding 

this possibility with denial, ire, or indifference, surgeons should understand and steer these 

technologies. Closer examination of surgical innovations and lessons learned from the automotive 

industry can inform this process. Innovations in minimally invasive surgery and surgical decision-

making follow classic S-shaped curves with three phases: 1) introduction of a new technology, 2) 

achievement of a performance advantage relative to existing standards, and 3) arrival at a 

performance plateau, followed by replacement with an innovation featuring greater machine 

autonomy and less human influence. There is currently no level I evidence demonstrating 

improved patient outcomes using intelligent, autonomous machines for performing operations or 

surgical decision-making tasks. History suggests that if such evidence emerges, and if the 

machines are cost effective, then they will augment or replace humans, initially for simple, 

common, rote tasks under close human supervision and later for complex tasks with minimal 

human supervision. This process poses ethical challenges in assigning liability for errors, 

matching decisions to patient values, and displacing human workers, but may allow surgeons to 

spend less time gathering and analyzing data and more time interacting with patients and tending 

to urgent, critical—and potentially more valuable—aspects of patient care. Surgeons should steer 
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these technologies toward optimal patient care and net social benefit using the uniquely human 

traits of creativity, altruism, and moral deliberation.
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Introduction

Surgeons perform two major, primary tasks: conducting operations and engaging patients 

and caregivers in shared decision-making. Unfortunately, human dexterity and decision-

making are biologically limited. Technical errors are the leading cause of preventable harm 

in surgical patients; diagnostic and judgement errors follow second.1 Individual surgeon skill 

is highly variable, fine motor dexterity degrades with age and fatigue, and technical skills 

affect patient outcomes.2–5 Time constraints and uncertainty impose reliance on cognitive 

shortcuts that lead to judgement errors, which surgeons themselves identify as the most 

common cause of major errors.6–8

Innovations in minimally invasive surgery and surgical decision-making have improved 

surgeons’ abilities to perform operations and exercise sound judgement.9–12 As technologies 

improve, these innovations rely less on human input and more on intelligent, autonomous 

machines, i.e. computer systems that learn to perform human tasks and cognitive functions 

with some degree of independence.13, 14 Currently, intelligent machines can perform manual 

tasks and make decisions with remarkable efficacy.15–18 History suggests that these abilities 

will continue to improve.19 If there comes a time when machines perform surgeon’s tasks 

with greater efficacy and lower cost, then market and patient demand may have machines 

assume these roles. Rather than regarding this possibility with denial, ire, or indifference, 

surgeons should seek to understand and steer these technologies toward optimal patient care 

and net social benefit.

Innovation Curves

Innovations in minimally invasive surgery and surgical decision-making follow classic S-

shaped curves with three phases: 1) introduction of a new technology, 2) achievement of a 

performance advantage relative to existing standards, and 3) arrival at a performance plateau, 

followed by augmentation or replacement with an innovation featuring greater machine 

autonomy and less human influence (Figure 1, Table 1).

Minimally Invasive Surgery Innovations

Fatigue, imprecision, and variability in technical skill can adversely affect surgeons and their 

patients.2–5 Technological advances in minimally invasive surgery improve surgeons’ 

abilities to perform manual dexterity tasks, and harbor the potential for autonomous robotic 

surgery.9, 10, 20, 21

Rigid Endoscopy—Endoscopy was first used to inspect the cervix more than one 

thousand years ago.22 Following a long period of technological stagnation, Phillip Bozzini 
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used a wax candle to illuminate a urologic endoscope, which was branded a “toy” by his 

contemporaries.23 Problems with thermal injuries from light sources were overcome through 

use of platinum wires heated with electric currents or light sources encased in metal 

catheters with ice water cooling. Subsequent development of separate ocular and sheath 

components allowed of insertion of instruments to perform diagnostic procedures.24, 25 

However, interventions were limited by the inability to triangulate instruments and vision, 

and the intra-abdominal contents could not be inspected. When Hans Christian Jakobaeus 

disseminated his work regarding the use of a trocar to establish pneumoperitoneum, the 

transition to laparoscopic surgery began.

Laparoscopic Surgery—Kurt Semm described laparoscopic management of gynecologic 

disorders in the 1970s.25 These techniques were applied to general surgery when Erich 

Mühe performed a laparoscopic cholecystectomy in 1985. He obtained pneumoperitoneum 

with a Veress needle, introduced pistol grip instruments though a large trocar with side-view 

optics and other small incisions, and removed the gallbladder though the large trocar.26 He 

was ridiculed for performing “Mickey Mouse surgery” and his technique was summarized as 

“small brain - small incision.”27 Philippe Mouret, another pioneer of laparoscopic 

cholecystectomy, remarked that he felt the “weight of medico-legal responsibility for having 

innovated in a classic operation, which had reached a stage of near perfection.”28 Mouret’s 

concerns were valid. In an early prospective observational study, the incidence of common 

bile duct injury was 5.5%, compared with 0–0.25% for open cholecystectomy during the 

same era.29 The learning curve was short and steep.30 As laparoscopic cholecystectomy 

gained acceptance and adoption, its safety and efficacy improved, as evidenced by decreased 

mortality, pneumonia, wound infection, and hospital length of stay.9 However, attempts to 

make further clinically significant improvements on modern laparoscopic surgery have had 

limited success.31 As laparoscopic surgery reached a performance plateau, robotic surgery 

gained acceptance and adoption.

Robotic Surgery—In 1985, a robotic brain biopsy platform, using stereotactic coordinates 

derived from computed tomography brain scans, successfully navigated a robotic arm to its 

target.32, 33 Ten years passed before results from human studies were reported.34 Subsequent 

technological improvements offered high magnification three-dimensional views, 

minimization or elimination of hand tremors, instruments that articulate to extreme angles, 

comfortable ergonomics, and platforms allowing surgeons to operate more than two robotic 

arms thus obviating the need for skilled assistants. Robotic surgery has a short, steep 

learning curve—similar to laparoscopy—and surgeons have reported lower blood loss, 

shorter hospital length of stay, fewer complications, and earlier return to work relative to 

laparoscopic and open approaches across several surgical specialties, but with higher 

operative costs, and limited high-level evidence demonstrating significant performance 

advantages.10, 20, 21, 35, 36 In a large randomized trial, robotic-assisted rectal cancer resection 

yielded no significant advantages over laparoscopic resection.37 Machine learning models 

can assess robotic operative performance and predict patient outcomes.38, 39 Further 

technological advances could offer haptic feedback, eye-tracking cameras, visualization of 

sub-surface anatomy, predictive navigation, and virtual constraints that protect anatomic 

structures such as vessels and nerves, offering potential advantages for the safe, effective 
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performance of technically demanding tasks.40 A recent pilot randomized trial demonstrated 

the feasibility of robot-assisted lymphovenous microanastomosis (8 mm diameter or less) for 

women with breast cancer-related lymphedema.41 Compared with manual techniques, there 

were no significant differences in lymphedema-related outcomes at one- and three-month 

follow-up. Autonomous robots can perform end-to-end sutured bowel anastomoses with 

significantly higher leak pressures than laparoscopic and open anastomoses sewn by 

surgeons.18 However, in addition to cost constraints, many of the factors that hinder 

laparoscopic surgery also hinder robotic surgery, such as the need to create skin and fascial 

defects to insert instruments, incurring risk for injury during trocar and instrument insertion, 

wound infection, and hernia. Autonomous microrobots could mitigate these risks.

Autonomous Microrobots—In the 1966 film Fantastic Voyage, scientists shrink a 

submarine and drive it through blood vessels to remove clot from an injured colleague’s 

brain, popularizing a notion credited to Albert Hibbs: “it would be interesting in surgery if 

you could swallow the surgeon.” Emerging technologies suggest that autonomous surgical 

microrobots are feasible. In 2016, an ETH Zurich team described a hydrogel microrobot that 

propels itself through viscous solutions with corkscrew motions by whipping a flagellum-

like tail.42 The same year, a MIT team described a biodegradable origami-like robot that 

folds into an ingestible pill, unfolds in the body, sticks to tissues by friction, and moves in 

response to external magnetic fields by redistributing its weight.15 In a 3D printed silicone 

representation of a human esophagus and stomach, the microrobot dislodged a battery 

embedded in the stomach wall and patched the defect in approximately five minutes. Other 

groups have used bull sperm and cardiac myocytes for propulsion, magnetic field-guided 

steering, DNA-protein orientations that allow robots to maneuver autonomously in response 

to their environment, and magnetotactic bacteria loaded with nanoliposomes that hone to 

hypoxic signals.43–46 The authors are unaware of any studies reporting the use of 

autonomous microrobots for surgery on humans, much less a performance advantage over 

current technologies. However, history and emerging evidence suggest that as technologies 

improve, autonomous microrobots have the potential to transform surgery.47

Surgical Decision-Making Innovations

Surgeons frequently engage patients in high-stakes shared decision-making under both time 

constraints and uncertainty imposed by acute surgical disease and busy clinic schedules. 

These circumstances promote reliance on dogma and heuristics, which can lead to bias, 

cognitive errors, and preventable harm.8, 48 Innovations in surgical decision-making can 

mitigate these challenges.

Additive Risk Scores—One of the simplest ways to support decisions is risk 

stratification by additive scores using static variable thresholds. High blood levels of C-

reactive protein (CRP) are associated with anastomotic leak following colorectal surgery. 

Postoperative day three CRP levels less than 172 mg/L has 97% negative predictive value for 

anastomotic leak, ruling out leak in nearly all cases, but a positive predictive value of only 

21%, such that high levels lack clinical utility.49 Incorporating multiple variables can 

improve predictive performance. Strate et al.50, 51 used seven risk factors to predict severe 

acute lower intestinal bleeding (0 risk factors = low risk [9%], 1–3 factors = moderate risk 

Loftus et al. Page 4

J Surg Res. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[43%], ≥4 factors = high risk [84%]). External validation demonstrated good discrimination 

with area under receiver operating characteristic curve (AUC) of 0.75.51 Clinicians can use 

these predictions to guide decisions regarding the urgency of diagnostic testing and the 

utility of close patient monitoring. Low-risk patients may be appropriate candidates for 

outpatient management, avoiding unnecessary use of inpatient resources. However, additive 

risk scores can underestimate risk for adverse outcomes among high-risk patients. 

Regression modeling techniques were used to identify static variable thresholds and generate 

scoring systems for many additive risk scores; direct application of regression modeling may 

be less prone to prediction errors among high-risk patients.52

Regression modeling—Regression modeling estimates relationships between predictor 

and outcome variables to predict outcomes or explain associations. The National Surgical 

Quality Improvement Program (NSQIP) Surgical Risk Calculator uses data from over four 

million surgeries—including procedure type, demographics, and comorbidities—to predict 

outcomes such as morbidity, mortality, hospital length of stay, and discharge disposition 

within 30 days of surgery.11 The calculator makes accurate, patient specific predictions, and 

may increase the likelihood that patients will participate in risk reduction strategies, e.g. 

prehabilitation.12 Among 150 preoperative patients who reviewed their Surgical Risk 

Calculator results, 70% stated that they would participate in prehabilitation and 40% stated 

that they would delay surgery to participate. Patients often want to be knowledgeable, 

engaged members of the healthcare team; without the use of decision-support tools, such as 

the NSQIP calculator, this desire is often unfulfilled, and an opportunity to augment shared 

decision-making is lost.53–55 Despite these advantages, data from 4 million surgeries may be 

insufficient to represent rare but important pathophysiology in a cohort of more than 60 

million patients undergoing surgery in the US each year, and regression model accuracy may 

suffer from an inability to accurately represent the complex, non-linear associations among 

predictor variables.56 Machine learning techniques are adept at this task.

Machine Learning—In 1970, Dr. William Schwartz wrote in the New England Journal of 
Medicine, “Computing science will probably exert its major effects by augmenting and, in 

some cases, largely replacing the intellectual functions of the physician.”57 Schwartz held 

that human disease is too broad and complex to be explained and interpreted by rules; 

machine learning algorithms learn from data rather than conforming to rules.58 Fifty years 

later, computers have not replaced physicians’ intellectual functions, but have demonstrated 

potential to augment decisions with varying levels of autonomy. Machine learning models 

can predict risk for several postoperative complications with accuracy greater than that of 

physicians, but often lack electronic and clinical workflow integration, limiting their use in 

routine clinical practice.59, 60

Supervised algorithms learn from data labeled by humans, then classify or make predictions 

on new unseen data; unsupervised algorithms create their own output categories—often 

agnostic of any human-attributed labels—allowing discovery of patterns and associations. 

Supervised algorithms can predict sepsis more than 24 hours prior to onset with AUC 

0.83.61 However, predictions are only as useful as the outcomes they predict. Seymour et al.
62 suggest that the overly broad definition of sepsis impairs the development of targeted 
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interventions. They used unsupervised learning to phenotype sepsis patients, assigning 

points on a scatterplot as cluster centroids, assigning all other points to the nearest centroid, 

then iteratively recalculating centroids and cluster assignments to form the tightest clusters 

possible. This method identified four unique sepsis phenotypes, potentially representing 

subgroups with different responses to targeted therapies. These techniques require time-

intensive hand-crafted feature engineering using human domain knowledge whereas deep 

models autonomously learn feature representations from raw data. Deep models can use 

electronic health record data to predict mortality among ICU patients with greater accuracy 

than the sequential organ failure assessment (SOFA) score, even when limited to the same 

input data used to calculate SOFA.63 Deep learning and statistical modeling can also use 

characters, words, and other expressions of natural language as model inputs. This 

technique, termed natural language processing, can generate oncologic decision-support 

tools predicting germline mutations.64, 65 This approach can leverage the availability of large 

volumes of genetic data and medical literature to produce personalized cancer prevention 

management strategies.66 Deep model interpretation mechanisms elucidate the relative 

importance of individual input features in determining model outputs, providing 

opportunities to assess whether associations between inputs and outputs are biologically 

plausible.63, 67 Despite these advantages, predictions and classifications can only indirectly 

inform discrete choices facing clinicians, limiting their clinical utility. Reinforcement 

learning directly informs discrete choices.

Reinforcement Learning—In reinforcement learning, an agent learns that specific 

actions under certain conditions lead to rewards and penalties, using this knowledge to 

identify actions that achieve an ultimate goal. Two characteristics distinguish reinforcement 

learning from machine learning: 1) trial-and-error search to identify the best action, and 2) 

delayed reward, i.e. choosing actions that achieve the ultimate goal rather than short-term 

rewards.68 For example, a model developed by Komorowski et al.16 recommends 

vasopressor doses and intravenous fluid volumes for septic patients, assigning rewards and 

penalties relative to 90-day survival. The model favored higher vasopressor doses and lower 

intravenous fluid volumes, consistent with evidence that volume overload harms sepsis 

patients, and that a one-size-fits-all approach to resuscitation is suboptimal.69, 70 On 

retrospective analysis, when actions taken by clinicians were concordant with model 

recommendations, mortality was slightly less than 20%. As clinician actions deviated from 

model recommendations, mortality significantly increased, up to 60%. Notably, clinicians 

may have deviated from model recommendations based on data not available to the model 

(e.g. physical exam findings, symptoms), and the same findings contributed to a worse 

prognosis, making clinician decision-making seem less effective. Therefore, available 

evidence does not support causal inference between model recommendations and decreased 

mortality.

For more complex decision-making scenarios in high-volume, high-dimension datasets, 

exhaustive searches for optimal actions can be prohibitive or impossible, but deep 

representation of the agent’s environment can mitigate these challenges. The Go board game 

has 32,490 possible first moves.71 A deep reinforcement model first learned from a human 

Go expert, then defeated the European Go champion five games to zero. Subsequently, a 
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completely autonomous model trained on self-play only defeated the human input model 

100 games to zero.17 Similar approaches have the potential to transform surgical decision-

making, but in the absence of high-level evidence for medical applications, this potential 

remains theoretical.72 In addition, reinforcement learning models require large training 

datasets to maintain effective sample sizes in sequential decision-making tasks, and such 

data are not available for many surgical diseases, especially rare ones.73

Lessons Learned from Automotive Innovations

The automotive industry adopts intelligent, autonomous machine innovations that achieve 

performance advantages according to consumer demands and business advantages. Similar 

market forces will likely drive surgery toward machine autonomy. Currently, there is no level 

I evidence demonstrating that intelligent, autonomous machines improve patient outcomes 

compared with existing standards for performing operations or surgical decision-making 

tasks, specifically (see the Supplement describing an Embase, MEDLINE, and PubMed 

search performed by the authors 10/30/2019,). These technologies remain on the initial, flat 

portion of the innovation S-curve (Figure 1). However, if future hospitals can purchase 

robotic surgical platforms that autonomously perform operations with lower costs and higher 

quality than human surgeons, or deep reinforcement learning models that consistently make 

better decisions than clinicians, then it seems likely that these technologies will gain 

adoption. History suggests that intelligent, autonomous machines will initially be used for 

simple, common, rote tasks under close human supervision, and then for complex tasks with 

minimal human supervision. Automation of programmable tasks may allow surgeons to 

spend less time gathering and analyzing data and more time interacting with patients and 

tending to urgent, critical—and potentially more valuable—aspects of patient care.

Lessons learned from automotive innovations reveal opportunities to capitalize on the 

performance advantages of new technologies without disenfranchising the people that use 

and benefit from them. When robotic arms largely replaced human assembly line workers in 

performing rote mechanical tasks, automobile prices fell within reach of the middle class, 

but many assembly line workers lost their jobs. As in the industrial revolution, there was a 

lag time between incorporation of autonomous machines and redistribution of the human 

workforce. Perhaps if this transition were anticipated, a smoother transition could be 

achieved. Anticipating a similar transition in surgery seems prudent. Eventually, the 

automotive industry evolved to use human effort and expertise in designing and overseeing 

robotic arm assembly lines. Automotive workforces also pivoted toward tasks requiring 

creativity, long-term planning, and moral deliberation, which are especially relevant in 

designing self-driving cars that sense the environment and respond accordingly. Responses 

are programmable and have important moral implications. Awad et al.74 created online 

simulations in which participants identify preferences for how self-driving cars should 

behave when distributing harm in unavoidable collisions, e.g. the car can maintain its course 

and hit a jaywalking teenager, or swerve and crash, harming its elderly passenger. The 

authors collected data on nearly 40 million decisions by participants in 233 countries and 

found significant cross-cultural variation in preferences for moral dilemmas facing self-

driving cars, precluding a one-size-fits-all approach to morally sound programming.
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Moral and ethical dilemmas also challenge the adoption of intelligent, autonomous machines 

in surgery. Management of a patient with both pulmonary edema and pre-renal azotemia 

could proceed with either diuresis or volume resuscitation. The tradeoff between respiratory 

failure requiring mechanical ventilator support versus renal failure requiring renal 

replacement therapy depends in part on the desires and values of the patient and their 

caregivers. An autonomous reinforcement learning platform trained to optimize an arbitrary 

end-point such as 90-day mortality could make a recommendation or decision that is 

medically sound, but contrary to patient values. Also, algorithms trained on biased datasets 

are likely to produce biased outputs, as demonstrated for crime recidivism predictions.75 

Similar problems could occur in machine learning healthcare applications. For example, 

associations between cardiovascular risk factors and adverse cardiovascular events differ by 

race and ethnicity; a model trained on data from the Framingham Heart Study, which 

primarily included white subjects, could produce racially and ethnically biased outputs.76 

Algorithms used for allocating liver transplants may disenfranchise female organ recipient 

candidates by prioritizing serum creatinine, which is lower among women.77 Therefore, 

investigators must align training dataset and target population demographics and other 

characteristics that have potential to introduce bias. In addition, judicial systems have 

limited experience assigning liability for errors made by intelligent machines and 

differentiating between human and machine error. In making a critical management decision 

for a life-threatening postoperative complication, a surgeon could be privy to history and 

physical exam information that is unavailable to an autonomous decision-support platform, 

take a different course of action than recommended by a model with proven efficacy, and be 

subject to unwarranted scrutiny when the patient suffers a poor outcome. Similarly, robotic 

surgical platforms with virtual constraints intended to protect anatomic structures could 

delay or prevent a surgeon from gaining control of an injured blood vessel, harming a patient 

and pitting human versus machine in assigning liability. Surgeons must meet these 

challenges with creativity, altruism, moral deliberation, and emotional intelligence, i.e., the 

ability to recognize emotional states and act accordingly. These traits remain inaccessible to 

machines. The surgeon’s role may evolve to interpreting decision-support tools and offering 

wisdom for patients and caregivers facing complex, high-stakes surgical decisions, using and 

overseeing semi- and fully-autonomous surgical instruments and robotic platforms in the 

operating room, and ensuring the safe and effective integration of intelligent, autonomous 

machines with surgical care.

Conclusions

As technologies improve, intelligent, autonomous machines may gain the capacity to 

augment or outperform humans in operative and decision-making tasks. History suggests 

that intelligent, autonomous machines will be used in surgery initially for simple, common, 

rote tasks under close human supervision, and then for complex tasks with minimal human 

supervision. Automation of programmable tasks may allow surgeons to spend less time 

gathering and analyzing data and more time interacting with patients and tending to urgent, 

critical—and potentially more valuable—aspects of patient care. This process poses ethical 

challenges in assigning liability for errors, distributing harm, and displacing human workers. 
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Surgeons should assume active roles in guiding these technologies toward optimal patient 

care and net social benefit, channeling human creativity, moral deliberation, and altruism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Past, present, and projected future innovations in surgery use progressively more computer 

autonomy and less human influence, augmenting or replacing previous methods once a cost-

effective performance advantage is achieved with a new innovation.
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