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Cell-free nucleic acid patterns in disease prediction
and monitoring—hype or hope?
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Abstract
Interest in the use of cell-free nucleic acids (CFNAs) as clinical non-invasive biomarker panels for prediction and prevention of
multiple diseases has greatly increased over the last decade. Indeed, circulating CFNAs are attributable to many physiological
and pathological processes such as imbalanced stress conditions, physical activities, extensive apoptosis of different origin,
systemic hypoxic-ischemic events and tumour progression, amongst others. This article highlights the involvement of circulating
CFNAs in local and systemic processes dealing with the question, whether specific patterns of CFNAs in blood, their detection,
quantity and quality (such as their methylation status) might be instrumental to predict a disease development/progression and
could be further utilised for accompanying diagnostics, targeted prevention, creation of individualised therapy algorithms,
therapy monitoring and prognosis. Presented considerations conform with principles of 3P medicine and serve for improving
individual outcomes and cost efficacy of medical services provided to the population.

Keywords Predictive preventive personalised medicine (PPPM/3PM) . Cell-free nucleic acids (CFNAs) . miRNA . Biomarker
panel .Methylationstatus .Physical activity .Apoptosis .Systemichypoxic-ischemic lesion .Tumourdevelopmentprogression .

Cancer . Stroke . cfDNA . ctDNA . Diet . Blood . Plasma . Serum . Saliva . Stress . Associated disease . Cardiovascular .

Neurologic . Virus . COVID-19 . Liquid biopsy . Therapy monitoring . Qualitative and quantitative analysis . Precancerous
lesions .Mutations . Breast cancer . Colorectal cancer . Lung cancer . Prostate cancer . Diabetes . Metabolic disorder

Liquid biopsy is instrumental for predictive
diagnostics and targeted treatments

Liquid biopsy (LB) and individualised profiling of biomarker
patterns presented in body fluids represent a revolutionary
approach in the workframe of 3P medicine [1]. Current paper
is dedicated to the liquid biopsy utilising specifically blood
samples as the best explored source of information amongst
other sorts of body fluids [2].

In the last years, cell-free nucleic acids (CFNAs) “signa-
ture” attracted a lot of attention for diagnostic and treatment
purposes. Altered profiles of CFNAs have been detected un-
der physiological conditions, e.g. bymaking sport, suboptimal
conditions such as overtraining syndrome in physical exer-
cises [3], acute and chronic pathological conditions including
sepsis, stroke, trauma, myocardial infarction, autoimmune dis-
eases and cancers [4]. To this end, certainly the area of onco-
logical research is particularly advanced implementing
ctDNA and miRNA detection and quantification for diagnos-
tic and treatment purposes [5].
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However, independently of the application area, the main
goal remains the same, namely to look for pathology-specific
patterns [6–8] as well as for patterns clearly indicating associ-
ated risks, for example, in vasospastic individuals who may be
particularly predisposed to an increased stress sensitivity
[9–11], neuro/degenerative pathologies [12, 13] and/or ag-
gressive metastasing cancers [14, 15].

Diagnostic and prognostic potential
of cell-free nucleic acids’ signature in stress
conditions and stress-related pathologies

Dysregulation at the level of CFNAs acts as a promising di-
agnostic biomarker panel for measuring imbalanced stress and
for predicting stress-associated pathologies. According to the
World Health Organisation (WHO), stress presents the epi-
demic of the third millennium [16]. Accumulated evidence
suggests a tight association between chronic stress and psy-
chiatric disorders [17–21]. Especially severe, prolonged and/
or chronic stress of any origin such as exercise-induced oxi-
dative stress [22] (see “Physical activity and exercise-induced
oxidative stress” section), hormonal stress [23], emotional
stress and psychological burden [24–27] as well as metabolic
stress, e.g. in diabetes mellitus [28, 29] (see also below
“Association between diabetes mellitus and carcinogenesis:
diagnostic and therapeutic potential of cell-free nucleic acids”
section) and hyperhomocysteinaemia [30, 31] amongst others,
is associated with highly increased ROS production and insuf-
ficient repair capacity—both linked to oxidative damage of
mitochondria and consequent mitochondrial dysfunction lead-
ing to the development of cardiovascular impairments
[32–34], neuro/degenerative pathologies [34–37], impaired
healing [34] and malignant cell transformation [34, 38–42].
Noteworthy, the pathomechanisms carry a systemic character
[43] that is crucial for tracing corresponding alterations in a
minimally invasive manner utilising blood samples and other
body fluids [1].

An application of liquid biopsy is a promising approach to
identify biomarker patterns specific for stress and stress-
associated diseases. Prominent examples are summarised
below.

Acquired data revealed lower expression of serum miR-183
and miR-212 in major depressive disorder (MDD) patients after
antidepressant therapy [44]. Further, miR-16, miR-135a and
miR-1202 were significantly reduced in serum of patients diag-
nosed with depression compared with healthy individuals [45].
PlasmamiR-134 (associated with the regulation of synaptic plas-
ticity and neurogenesis) was downregulated in a cohort of pa-
tients withMDDcomparedwith healthy controls.Measurements
ofmiR-134 patterns are also useful to distinguish betweenMDD,
bipolar disorder and schizophrenia [46]. Further, an increased
expression of miR-124-3p has been detected in serum of

antidepressant-free MDD patients compared with healthy con-
trols [47]. Another study revealed significantly higher levels of
plasma miR-451a and lower levels of miR-320 in a group of
depressed patients [48]. Another study detected significantly
higher levels of serum miR-221-3p, miR-34a-5p and let-7d-3p
in patients with MDD compared with controls [49]. Moreover,
depressive symptoms were associated with the downregulation
of plasma miR-144-5p considered as a useful biomarker for
pathological processes associated with depression [50].

Posttraumatic stress disorders (PTSDs) as a consequence of
acute traumatic stress demonstrate specific patterns of miR-
142-5p, miR-19b, miR-1928, miR-223, miR-332, miR-324,
miR-421-3p, miR-463 and miR-674. Anxiety and delayed
fear are reflected in specific patterns of the panel comprising
miR-142-5p, miR-1928, miR-223 and miR-19b [51] as de-
tected, for example, in veterans suffering from PTSDs. To this
end, miR-203a-3p derived from extracellular vesicles was up-
regulated, whilst miR-339-5p was downregulated in a cohort
of PTSDs patients compared with controls [52]. Differentially
expressed circulating miRNAs associated with PTSDs were
detected in another study focused on stress-related disorders in
the population of military veterans [53].

In a preclinical study, miR-24-2-5p, miR-27a-3p, miR-30e-5,
miR-3590-3p, miR-532-5p and miR-362-3p patterns were de-
creased in rats with manifested vulnerability to chronic stress,
whereas another panel comprising miR-28-3p, miR-139-5p,
miR-326-3p and miR-99b-5p was downregulated in rats more
resistant to stress—both compared with controls [54].

In the context of stress, cfDNA is an excellent biomarker
candidate for clinical application considering circulating cell-
free mitochondrial DNA (ccf-mtDNA). Correlation between
serum ccf-mtDNA and psychological stress was demonstrated
in the study focused on the cohort of healthy midlife adults. A
brief psychological challenge in tested volunteers led to in-
creased serum ccf-mtDNA, in contrast to circulating cell-
free nuclear DNA [55]. Increased plasma concentrations of
ccf-mtDNA have been demonstrated also for patients diag-
nosed with MDD and concluded as a biomarker associated
with psychiatric disorders and useful for monitoring the pa-
thology development and therapy response [56]. Table 1 sum-
marises CFNAs associated with stress.

Physical activity and exercise-induced
oxidative stress

Regular physical activity defined as movements of body me-
diated by skeletal muscles resulted in the energy expenditure
usually measured in kilocalories [57] has been demonstrated
as being crucial for physical and mental health benefits [58],
prevention of various diseases including metabolic syndrome,
obesity, insulin resistance, atherosclerosis, diabetes, neurode-
generative diseases and cancers [23–27]. Regular individually
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adapted exercise has an ability to inhibit ROS production,
ameliorates the antioxidant capacity and improves mitochon-
dria efficiency reducing oxidative stress and cellular damage
[59]. Temporary increased levels of inflammation and cfDNA
were observed in various acute exercises such as marathon,
ultramarathon, resistance exercise, continuous, interval, and
incremental treadmill running, and incremental rowing exer-
cise [60–63]. However, during the period of physiologic re-
covery, the cfDNA levels usually come back to the baseline
level [64]. In contrast, overtraining causes exercise-induced
oxidative stress [22]. Consequently, the question is—how to
distinguish between beneficial physical activity on one hand
and damaging exercise-induced oxidative stress on the other
hand, when providing recommendations at individual level?
Circulating CFNAs might be helpful answering this question,
since their patterns strongly depend on the intensity and dura-
tion of exercise being complementary to specific metabolic
markers such as lactate and creatine kinase recognising mus-
cle damage [3, 65]. To this end, the overtraining and induced
inflammation are well reflected in C-reactive protein (CRP)
levels as the marker of inflammation and highly increased
concentration of plasma cfDNA in proportion to training load
[66]. In addition, there is no any significant difference in cir-
culating cfDNA between obese and normal-weight subjects
[67]. Noteworthy, although remaining unchanged in its abso-
lute quantity, the proportional input by the foetal cfDNA is

reduced in mother’s blood by increased concentration of
cfDNA linked to the exercise during and immediately after
the physical activity. This proportion is normalised
by 30 min after the exercise is finished [68].

The initiative called Education Outside the Classroom
(EOtC) promoting physical activity against obesity in youth,
has demonstrated increased level of cfDNA for both—
sedentary behaviour and moderate-to-vigorous physical activity
groups. Based on the results, the authors recommend light phys-
ical activity with the best potential to be supportive for health in
examined children [69]. Further, diabetes predisposition can be
diagnosed, e.g. in persons with sedentary lifestyle by applying
miR-192 and miR-193b panel detected in the prediabetic stage
but not in diabetic patients. Moreover, in glucose-intolerant mice
and prediabetic individuals, regular exercises as a therapeutic
strategy have normalised the miRNA patterns to the baseline
level [70]. Furthermore, in healthy subjects, 74 circulating
miRNAs associated with various heart diseases were evaluated
at baseline, immediately after exercise and after 24 h. Only miR-
103a-3p was reduced in both types of exercises: 10 km and
marathon races. Furthermore, increased serum levels of miR-
132-3p and miR-150-5p were detected forthwith after the 10-
km race. On the contrary, decreased serum levels of miR-103a-
3p,miR-590-5p andmiR-139-5pwere observed in the same type
of exercise. Moreover, decreased levels of miR-103a-3p and
miR-375-5p were observed immediately after marathon race

Table 1 CFNAs in psychological stress and stress-associated pathologies; explanatory note: ↑ increased levels, ↓ decreased levels

Biomarker Liquid
biopsy
samples

Experimental design Study results Reference

miRNA Serum Patients (n = 33) with MDD diagnosed and treated with antidepressants ↓ miR-183; -212 [44]

miRNA Serum Patients (n = 39) with depression versus disease-free controls (n = 36) ↓ miR-16; -135a; and -1202 [45]

miRNA Plasma Patients with MDD (n = 100), bipolar disorder (n = 50), schizophrenia
(n = 50) versus disease-free controls (n = 100)

↓ miR-134 [46]

miRNA Serum Patients (n = 18) with MDD versus disease-free controls (n = 17) ↑ miR-124-3p [47]

miRNA Plasma Patients (n = 50) with depression versus disease-free controls (n = 41) ↑ miR-451a
↓ miR-320

[48]

miRNA Serum Patients (n = 32) with MDD versus disease-free controls (n = 21) ↑ miR-221-3p; -34a-5p; and let-7d-3p [49]

miRNA Plasma Patients (n = 169) with depressive disorders versus disease-free controls
(n = 52)

↓ miR-144-5p [50]

miRNA Serum Sprague Dawley rat model of PTSDs Dysregulation of miR-142-5p; -19b;
-1928; -223-3p; -332; -324; -421-3p;
-463; and -674

[51]

miRNA Plasma Military veterans with PTSDs (n = 10) and without PTSDs (n = 10) ↑ miR-203a-3p
↓ miR-339-5p

[52]

miRNA Peripheral
blood

Combat veterans (n = 24) with and without PTSDs ↑ miR-19a-3p; -101-3p; 20b-5p; -20a-5p
↓ miR-486-3p; -128-3p; -15b-3p;

-125b-5p;

[53]

miRNA Blood Rat model of chronic social defeat ↓ miR-24-2-5p; -27a-3p; -30e-5;
-3590-3p; -532-5p and -362-3p

[54]

ccf-mtDNA Serum Participants (n = 50) exposed to brief psychological challenge ↑ ccf-mtDNA [55]

ccf-mtDNA Plasma Individuals (n = 50) with MDD versus disease-free controls (n = 55) ↑ ccf-mtDNA [56]
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and remained low also after 24 h. Further, several cardiac
markers were upregulated and lasted for 24, 48 and/or 72 h after
both exercises. Taken together, circulating miRNAs can be use-
ful for patients with dysfunction symptoms after an acute attack
of endurance physical activity [71]. Additionally, increased
levels of circulating miRNAs including miR-126, miR-130b,
miR-221 and miR-222 at baseline levels were detected in
obese versus normal-weight subjects. These patterns but at
higher levels were observed after acute aerobic exercise in obese
subjects, even after controlling for VO2max and insulin resistance
(HOMA-IR) [72].

In summary, specific CFNAs patterns have been dem-
onstrated in relationship to physical activity that allows to
clearly differentiate between beneficial physical activity
and exercise-induced oxidative stress and to provide ac-
companied diagnostics and individualised recommenda-
tions for healthy individuals and athletes, individuals in
suboptimal health as well as for a variety of patients.
Corresponding information is summarised in Table 2.

Ischemic lesions and stroke

Stroke is one of the leading and preventable causes of sudden
death and the most common cause of long-term disability world-
wide [73, 74]. Ischemic stroke (IS) accounts for approximately
80–85% of stroke cases against haemorrhagic one [75, 76]. In
short, IS is associated with a cascade of events including cerebral
ischemia, obstructions in cerebral blood flow, generation of re-
active oxygen species, inflammatory processes, neuronal damage
and apoptosis leading to neurological dysfunction [77]. IS is a
heterogeneous, multifactorial disease associated with an interac-
tion between genetic and modifiable risk factors [74]. Besides
evident genetic predisposition, dietary patterns and lifestyle-
related stressors strongly contribute to the development of IS
[78]. Current diagnostic approaches applied for IS are not rarely
associated with some obstacles such as prolonged time of the
imaging performance, poor sensitivity and / or data interpreta-
tion, particularly in case of asymptomatic clinical picture [78]. To
this end, so-called young stroke—the rapidly increasing patient
cohort below 50 years of age with unclear aetiology—is partic-
ularly challenging for healthcare globally [13] demanding inno-
vative solutions in the framework of 3P medicine. Phenotyping
and blood-based biomarkers are currently under extensive con-
sideration for the risk assessment and predictive diagnosis of IS
[13, 79]. To this end, the blood-brain barrier may prevent releas-
ing brain-specific molecules into the bloodstream [80]. However,
due to ischemia-related progressive cell death and consequent
blood-brain barrier breakdown, the cfDNA release into the blood
might accompany IS [77]. Moreover, due to chronic systemic
effects, e.g. in vasospastic individuals predisposed to IS [13], a
significant increase in the cfDNA blood concentration may hap-
pen days and weeks before the acute IS event.

Indeed, the cfDNA concentration correlates well with the
severity at admission and with individual outcomes in IS pa-
tients [81] supporting meaningful measurements of plasma
nuclear and mitochondrial cfDNA patterns [82] including
specificity of the DNA fragmentation (300–400 bp range)
profiling for diagnostic and prognostic purposes [77, 81–83].

miRNA panels provide complementary information in
overall IS diagnostics: circulating exosomal miR-223 is
significantly increased in acute IS against healthy controls,
and its level correlates with stroke severity and individual
outcomes [84]. In contrast, serum miR-221-3p and miR-
382-5p patterns are downregulated in IS patients against
healthy controls [85]. Moreover, the combination of miR-
21-5p and miR-30a-5p was demonstrated as being of great
utility to distinguish between hyper-acute, subacute and
recovery phase of IS [80]. The miRNA panel comprising
PC-3p-57,664, PC-5p-12,969, miR-122-5p and miR-211-
5p demonstrates a correlation between upregulation in IS
patients and post-mortem IS-brain specimens [86].

Table 3 summarises information on CFNAs in IS.

Precancerous lesions and early cancer
detection

Liquid biopsy application to early cancer detection demands
highly sensitive detection methodology in order to track cir-
culating tumour DNA (ctDNA) amounts or diverse sub/
cellular structures secreted by precancerous lesions and/or at
initial stages of cancer. For instance, testing viral sequences
related to tumours, such as human papillomavirus (HPV) or
Herpesvirus family (Epstein-Barr virus (EBV), cytomegalovi-
rus (CMV) [87]), along with ctDNA methylation analysis is
instrumental for diagnosing HPV-derived precancerous le-
sions. HPV 16 and 18 strains have been described as related
to high risk, potentially leading to cervical cancer [88]. A
cervical precancerous state is characterised by changes in col-
lar cells making them more susceptible to cervix cancer de-
velopment within 10-year time span, if not treated in a timely
manner [89]. A meta-analysis study showed that despite the
existing heterogeneity amongst studies, HPV cDNA detection
is a specific and relatively sensitive tool for cervical cancer
diagnosis [89]. Another study revealed the presence of HPV in
98.4% of tumours, being HPV16 and 18 dependent for 89.4%
of cervical cancer patients detected [87]. Likewise, RNA-seq
database indicated the presence of HPV in the majority of
cervical cancers [90]. In addition, EBV, CMV and
Herpesvirus 6 (HHV6) were detected in 21 and 18% of rectal
and colon cancers, respectively. EBV was found to be associ-
ated with 23% of stomach cancers. Herpesviruses are often
detected in stomach, colon and rectum cancers. Some types of
liver cancers have been linked with hepatitis B and C virus
(HBV and HCV). HPV was present in a small amount of
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bladder cancers along with a subset of head and neck cancers
[87].

Premalignant neoplastic lesions, in particular, adenomas
have often been detected to have distinct miRNA expression
patterns. In a study assessing miRNA expression profiles of
CRC and adenomas miR18a was upregulated in adenoma
patients versus healthy controls [91]. A further study revealed
ratios amongst three circulating miRNA to allow discriminat-
ing between benign prostate adenoma (hyperplasia) and pros-
tate cancer in a more specific manner than standardised
prostate-specific antigen (PSA) levels [92]. Another study de-
scribed the use of several non-invasive biomarkers

concomitantly (PSA together with androgen receptor CAG
analysis and promoter methylation analysis) increasing pre-
dictive power of the prostate cancer and allowing its discrim-
ination from benign prostate hyperplasia in 70–80% of cases
[93].

Furthermore, quantitative and qualitative cfDNA character-
isation has been described as capable to detect certain cancer
types [94, 95], although being challenging yet for cancer
screening application [96], since cfDNA origin, specificity
and release kinetics have still to be clarified [97–100]. Plasma
levels of short and long fragmented DNA and total cfDNA in
oral cancer and precancerous lesions were evaluated and

Table 2 Differences in CFNAs levels after acute or chronic exercises; explanatory note: ↑ increased levels, ↓ decreased levels

Biomarker Liquid biopsy
samples

Experimental design Type of exercise Study results Reference

cfDNA Plasma 17 Recreationally trained men
(healthy volunteers); age,
21.56 (2.6) years; body
weight, 77 (7.1) kg; body
height, 1.77 (0.11) m; body
fat, 12.2 (2.1) %

12-week resistance training
regimen: 8 resistance
multi-joint exercises selected
to stress the entire muscula-
ture: bench press, squat, leg
press, snatch, hang clean, dead
lifts, barbell arm curls
and rowing

↑ Cell-free plasma DNA
during t1, t2 and t3; ↑
CRP, ↑ creatine kinase; ↑
uric acid

[66]

cfDNA Plasma n = 14 (7 obese and 7
normal-weight) healthy male
subjects in the age of 18–45

Treadmill—acute high-intensity
interval exercise (30 min of
total exercise, including a
5-min warm-up period of
walking/jogging)

Both obese and
normal-weight male: ↑
cfDNA, ↑ IL-8

[67]

cfDNA Plasma Nine pregnant women carrying
male foetuses at gestational
age 12(+0) weeks to 14(+6)
weeks

Cycling ↓ Foetal cfDNA fraction, ↑
cfDNA of pregnant
women

[68]

cfDNA Saliva EOtC programme: fifth-grade
students (n = 37 with outdoor
lessons), control group (n = 11
with indoor lessons)
(fall/spring/summer)

Light physical activity and
moderate-to-vigorous physi-
cal activity

Students with outdoor
lessons: ↓ cortisol, ↑
cfDNA

[69]

Circulating miR-192
and miR-193b

Serum n = 92 male individuals with
different degrees of glucose
tolerance; 6-week-old
C57BL/6J male mice

Regular exercise (exercise
programme: twice per week
for 16 weeks)

Prediabetic humans and
glucose-intolerant mice: ↑
miR-192, ↑
miR-193b;prediabetic
humans and
glucose-intolerant mice
with regular exercise: ↓
miR-192, ↓ miR-193b

[70]

74 Circulating
miRNAs

Serum Healthy, highly trained
middle-aged amateur subjects
(n = 9)

10-km race (half-marathon) and
marathon

10-km race: ↓ miR-103a-3p,
↑ miR-132-3p, ↑
miR-150-5p, ↓
miR-590-5p, ↓
miR-139-5p

Marathon: ↓ miR-103a-3p, ↓
miR-103a-3p, ↓
miR-375-5p

[71]

Circulating miR-126,
miR-130b,
miR-221, miR-222

Plasma N = 24 (12 normal-weight
and 12 obese) subjects

30-min aerobic exercise
(75% VO2max).

After acute aerobic exercise
in obese subjects: ↑
miR-126, ↑ miR-130b, ↑
miR-221, ↑ miR-222

[72]

EOtC = education outside the classroom, CRP = C-reactive protein, t1, t2, t3 = time poins, IL-8 = interleukin 8
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quantified. Results demonstrated an increased cfDNA concen-
tration and integrity of DNA in oral cancer comparedwith other
cohorts, rendering it a tool for early oral cancer detection [101].
Further study evaluated somatic circulating mutations in pa-
tients with breast, lung, colorectal and ovarian cancers to assess
cancer disease staging [102]. Data revealed overall significant
increase of cfDNA in cancer patients’ plasma compared with
healthy subjects. Thereby, breast cancer cohort demonstrated
the lowest mutant allele fraction of ctDNA. Noteworthy, ad-
vanced disease stages III and IV correlated with higher amount
of ctDNA compared with early disease stages I and II across all
cancer cohorts [102].

Chronic inflammation in carcinogenesis
reflected in CFNAs signature

Chronic inflammation (together with infectious diseases relat-
ed inflammation) is estimated to be responsible for approxi-
mately 25% of all cancer cases [103]. In the context of inflam-
matory milieu, epithelial and inflammatory cells secrete reac-
tive oxygen and nitrogen species (ROS and RNS) causing
DNA damage [104]. This DNA damage and mutagenic

lesions, such as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-
oxodG) and 8-nitroguanine, occur in organs undergoing in-
flammation, eventually driving carcinogenesis [105].
Furthermore, parasites, viruses (HPV, EBV and hepatitis vi-
rus) and bacteria are considered to be pathogenic agents car-
cinogenic to humans [105]. Inflammation may also be pro-
moted by physical, chemical and immunological factors [103,
106]. Chronic inflammation induces tissue injury, due to ge-
netic and epigenetic aberrations, nucleic acid, lipid and protein
damage via to ROS/RNS production. This tissue damage may
activate tissue regeneration resulting from stimulation of
progenitor/stem cells. Thus, accumulation of mutations in
stem cells by ROS/RNS may result in mutant stem cells or
cancer stem cells leading to carcinogenesis [105].
Consequently, detection of specific cfDNA, miRNA and
methylation patterns are considered of great clinical utility
for early cancer detection [107].

Indeed, cfDNA is known to accumulate under chronic in-
flammation, due to decreased clearance [108]. cfDNA, nucle-
ar and mitochondrial DNA are actively secreted and
mediate many processes such as immunomodulation, tumour
growth progression and inflammation [108]. For instance,
prostate carcinogenesis and disease progression are known

Table 3 CFNAs as a biomarker panel in ischemic stroke

Biomarker Liquid
biopsy
samples

Experimental design Study results Reference

cfDNA Plasma Ischemic stroke patients (n = 26) Correlation of cfDNA levels with severity of stroke
at admission and poor outcome within 3 months

[81]

cfDNA Plasma Ischemic stroke patients (n = 54) Higher cfDNA associated with severity at the time
of admission and poor outcomes

[77]

cfDNA fragments Plasma Ischemic stroke patients
(n = 48) versus healthy controls
(n = 20)

High abundance of plasma cfDNA fragments
(300–400 bp) in ischemic stroke patients versus
healthy controls

[83]

Plasma nuclear and
mitochondrial DNA

Plasma Acute ischemic stroke patients
(n = 50) versus at risk control
subjects (n = 50)

Higher plasma nuclear and mitochondrial DNA in
acute ischemic stroke patients versus subjects at risk

Persistence of higher plasma nuclear DNA within
1 month after acute IS event

Positive correlation between plasma nuclear DNA
and clinical severity

[82]

Exosomal miR-223 Serum Acute ischemic stroke patients within
72 h (n = 50) versus healthy
controls (n = 33)

Exosomal miR-223 correlated with NIHSS scores
Higher exosomal miR-223 associated with acute

ischemic stroke occurrence
Higher exosomal miR-223 in patients with poor

outcomes versus patients with good outcomes

[84]

Exosomal miRNA-21-5p in
combination with
miRNA-30a-5p

Plasma Ischemic stroke patients (n = 143) Diagnosis of ischemic stroke
Distinguishing between hyper-acute, subacute and

recovery phases of ischemic stroke

[80]

miRNA-221-3p and
miRNA-382-5p

Serum Ischemic stroke patients (n = 78)
versus healthy controls (n = 39)

Downregulated miRNA-221-3p and
miRNA-382-5p in ischemic stroke patients ver-
sus controls

[85]

miRNAs panel (PC-3p-57664,
PC-5p-12969, miR-122-5p,
miR-211-5p)

Serum Ischemic stroke patients (n = 34)
versus healthy controls (n = 11)

Correlation between upregulation in ischemic
stroke patients and post-mortem ischemic
stroke-brain specimens

[86]

NIHSS National Institutes of Health Stroke Scale

608 EPMA Journal (2020) 11:603–627



to be promoted by chronic inflammation [109–111]. Risk fac-
tors related to prostatic inflammation are frequently related to
immunological, genomic and environmental factors such as
physical trauma, urinary microbial infection, chemical irrita-
tion, unhealthy diet and abnormal body weight [112, 113].
Recruitment of leukocytes, namely macrophages, lympho-
cytes, granulocytes and monocytes to the prostate have been
observed in the prostate cancer driven inflammation responses
[114, 115]. In advanced stages of prostate cancers, elevated
peripheral blood neutrophil-to-lymphocytes ratios were ob-
served, portraying worse overall survival (OS) and reduced
sensitivity to chemotherapy and to anti-androgens [116].

Cell-free nucleic acids in cancer management

Although analysis of solid tumour tissues is a golden standard
in oncology [117], tissue biopsies entail some risks for pa-
tients apart from being limited in identifying genetic hetero-
geneity or tracking neoplasm evolution alternations within a
tumour [118]. Clinical and laboratory advances have broad-
ened tumour-related diagnosis, prognosis and predictive mea-
sures. In fact, the use of cfDNA has marked a potential
minimally-invasive alternative option for genomic
diagnostics.

ctDNA was described to be the tumour-derived fraction of
cell-free DNA secreted into the blood [119]. ctDNA patterns
in blood are considered as being a potent analytical option
alternative to solid tumour biopsies for cancer detection and
monitoring, due to rapid, non-invasive and cost-effective bio-
marker identification [120]. Besides cfDNA/ctDNA,
malignancy-related blood patterns include circulating
miRNA, circulating tumour cells (CTCs) and exosomes
[121, 122]. Notably, also saliva, cerebrospinal fluid (CSF),
pleural fluid, urine and tears are prospective sources of
tumour-originated material [123–127].

ctDNA detection in a broad range of neoplasms

ctDNA, released by cancer cells, have been identified in a
broad range of neoplasm types both in early and late cancer
stages, displaying levels from < 1 to > 100,000 mutated DNA
fragments per ml of plasma. In cancer patients, ctDNA frac-
tions differ greatly, fluctuating from less than 0.1% to more
than 90% of overall cfDNA. There is an obvious great vari-
ability amongst ctDNA detected in patients with differing
cancer type; however, variations in ctDNA fraction amongst
patients with analogous tumour type may be attributed to bi-
ological disparities, as well as varying cell death rates within
tumour cells [128–130]. Even though there are studies de-
scribing a correlation amongst the amount of cfDNA, cancer
status and disease progression [131, 132], others reveal
cfDNA quantification to be insufficient as an independent

diagnostic tool, lacking information about tumour develop-
ment [133, 134]. cfDNA low circulation concentration togeth-
er with its considerable proportion of fragmentation make it a
challenging compound to analyse [135]. Furthermore, identi-
fication and evaluation of ctDNA within total cfDNA repre-
sent a great challenge in cancer detection [128–130].
Nevertheless, ctDNA bears the tumour specific molecular fea-
tures capable of early cancer diagnosis and prediction as well
as disease prognosis.

ctDNA patterns advance diagnostic approach

ctDNA has been detected in cancer patients’ plasma prior to
mainstream screening methods: mutation of KRAS2 and P53
in healthy subjects are described as related to an increased risk
of developing bladder cancer within a period of 6 years [136].
Detection of plasma/serum DNA alterations at early tumour
stages along with the current available markers renders
ctDNA a useful diagnostic mean for early breast cancer
[133]. Similarly, the quantification of DNA levels and micro-
satellite alterations in plasma DNA of lung cancer patients,
suggested a correspondence with their clinical condition, serv-
ing additionally as non-invasive follow up assays [134]. In a
metastatic breast cancer study a decrease in cfDNA integrity
along with an increase in plasma cfDNA concentration has
been described compared with healthy controls [137].
Another study analysed CRC patient samples in a quantitative
and qualitative manner. Results revealed high plasma and se-
rum cfDNA values at the time of surgery, which further in-
crease in relapsed patients, confirming CRC and determining
cancer status [94].

ctDNA allows targeted cancer therapy

The ability of tracking therapy response is one of the most
significant traits of liquid biopsies, particularly in therapies
with resistance mechanisms. KRAS mutations in colorectal
tumour (CRC) progression are associated with acquired resis-
tance and reduced response to anti-epidermal growth factor
receptor (EGFR) therapies [138]. In a study comparing
KRAS and BRAF mutations in both metastatic CRC plasma
cfDNA and tumour tissue, specificity and sensitivity of 100%
for BRAF V600E mutation and 96% on KRAS point muta-
tions have been demonstrated. Thus, this study reveals high
potential for developing better personalised medical services
[139]. Furthermore, KRAS mutations were analysed in CRC
samples, aiming to determine prevalence of KRAS amplifica-
tion and evaluate its overall sensitivity to EGFR therapies. In
presence of this genetic lesion, a lack of responsiveness to
anti-EGFR inhibitors was found [138]. Similarly, another in-
dependent study revealed KRAS mutations to be common
determinants of acquired resistance in CRC cancer patients
[140].
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Multiregional and shotgun sequencing of circulating tu-
mour plasma DNA has revealed the potential to assess molec-
ular heterogeneity of overall disease [141]. In a study quanti-
fying ctDNA from CRC patients, ctDNA determination could
track tumour dynamics in patients subjected to chemotherapy
or surgery, revealing a potential customisable genetic ap-
proach [128]. Similarly, ctDNA was detected in 97% of pa-
tients with metastatic breast cancer with somatic genomic
modifications, and identified tumour dynamics greater than
CA 15–3 or CTC [129]. Another study testing prostate cancer
plasma samples determined the genomic scenario and disease
progression through the analysis of ctDNA in a non-invasive
manner [142].

ctDNA in therapy monitoring and prognosis

Circulating tumour DNA patterns have been described as a
non-invasive biomarker able to detect marginal disease resi-
dues after surgery or neoplastic therapies [143–146].
Detection of ctDNA at time of diagnosis in NSCLC patients
together with residual ctDNA is associated with poor progno-
sis [147]. Furthermore, a study revealed the prognostic capac-
ity of ctDNA in plasma from CRC patients to determine sur-
vival rates and increased patient recurrence [148]. Elevated
levels of cfDNA and plasma mutant KRAS levels
(pmKRAS) were described to be directly correlated, making
plasma cfDNA to an alternative prognosis biomarker [149].
Similar data were published by Dawson et al. for the breast
cancer patient cohort [129]. In an advanced non-small cell
lung cancer (NSCLC) patient study, ctDNA appeared to be
more sensitive to mutation detection than CTC [150]. An
independent study also indicated ctDNA to be a
potent prognostic biomarker [151].

Measuring plasma or serum ctDNA profiles to monitor
cancer development is a promptly developing field with great
clinical potential. Studies focused on ctDNA as a tool for
cancer diagnostic, prediction and/or prognosis are
summarised in Table 4. ctDNA analysis may reinforce its
use as personalised treatments for cancer patients.
Nevertheless, validating studies are essential to bring this tool
into daily clinical practice.

miRNA panels in cancer management—prominent
examples

Anomalous miRNA patterns have been correlated with path-
ogenicity of several human cancers [187]. Overexpression of
miRNA in cancer prompts their action as tumour suppressors
or oncogenes depending on the target [188]; some miRNA
may act as both concomitantly. Tumour-related miRNA are
more stable to processing than other molecules, making them
optimal tumour biomarkers [127]. Studies utilising miRNA as

non-invasive biomarkers for cancer detection are summarised
in Table 5.

Colorectal cancer Ng et al. described the significant overex-
pression of miR-17-3p and miR-92 in plasma from CRC pa-
tients versus control subjects. miR-92 marker specifically dif-
ferentiates CRC from gastric cancer markers, making it to
more sensitive CRC marker [152]. Similarly, a meta-analysis
observed an increase in miR-17 in plasma/serum/faecal levels
of CRC patients, with 68% specificity [156]. miR-92a togeth-
er with miR-21 was highly increased in serum samples,
possessing prognostic value in CRC patients [156]. Further,
results from the analysis of CRC patient plasma revealed sig-
nificant upregulation of a miRNA panel (miR-15b, miR-18a,
miR-19a, miR-19b, miR-29a and miR-335) depicting differ-
ent miRNA expression patterns amongst CRC patients and
healthy subjects [91]. Further experiments validated these re-
sults, with 91% sensitivity and 90% specificity for CRC and
advanced adenoma (AA) detection and prognosis [153].
Plasma miR-18 [154] and serum miR-19a [155, 160] have
also been described to be significantly increased in CRC pa-
tients in comparison with healthy controls. miR-29a has also
shown an important role as a potential biomarker for CRC
detection. Furthermore, miR-29a combined with miR-92a
are capable to distinguish advanced CRC from healthy sub-
jects with 83% sensitivity and 84.7% specificity [158].

miR-21 has been extensively reported in multiple cancers
as promoting proliferation and tumour growth, being one of
the most relevant diagnostic miRNA oncogenes in tumour
onset [189]. A study testing 380 miRNA described 19 dysreg-
ulated miRNA in CRC patient plasma samples. miR-21 up-
regulation discriminated CRC patients from healthy subjects
with a sensitivity and specificity of 90% [159]. Furthermore,
two independent studies revealed upregulation of miR-21
levels in CRC patients compared with controls even years
prior to the clinical manifestation of the disease [160, 161].

Exosomal miRNAs, although still insufficiently investigat-
ed, are increasingly applied as biomarkers for cancer detection
featuring high specificity. For instance, increased serum levels
of exosomal miR-19a and miR-92a in CRC patients against
controls have been detected [162]. Similarly, upregulation of
serum exosomal miR-21 and miR-23 amongst others, was
described in CRC patients [163].

Breast cancer In breast tumour studies, many differentially
expressed miRNA have been detec ted in breas t
cancer patients compared with healthy women. miR-1, miR-
92a, miR-133a and miR-133b have been described as some of
the most prevalent upregulated biomarkers in breast cancer
samples [164]. Another study revealed miR-182 serum levels
to be increased in patients with breast cancer versus controls.
Furthermore, serum miR-182 levels were significantly lower
in oestrogen receptor (ER)- and progesterone receptor (PR)-
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positive breast cancer patients than those in ER- and PR-
negative patients, demonstrating their clinical utility for breast
cancer diagnosis [165]. Additionally, 4 upregulated plasma
miRNA (miR-148b, miR-376c, miR-409-3p and miR-801)
managed to discriminate breast cancer patients from controls
[166]. miR-34a, miR-93 and miR-373 serum levels were dis-
tinguishable between M0 breast cancer patients on one hand
and healthy subjects on the other hand, whilst miR-17 and
miR-155 differentiated M0 from M1 patients [167]. Further
studies described miR-21 and miR-146a as increased in plas-
ma levels, therefore, distinguishing breast cancer patients
from healthy controls [168]. Similarly, another study revealed
miR-21 increased serum levels, which together with miR-10b,
miR-125b, miR-145, miR-155 miR-191 and miR-382 are in-
dicative for breast cancer occurrence [169]. Moreover, two
independent studies have described miR-21 increase to be of
importance to discriminate breast cancer patients from healthy
women [170, 171]. Increased miR-21 concentrations
corresponded with visceral metastasis [171]. miR-92 de-
creased levels along with elevated miR-21 were positively
associated with lymph node detection and tumour size [170].
A microarray panel study analysing 1100 miRNAs found 59
differentially expressed miRNA in whole blood from early
stage breast cancer patients against healthy individuals, from
which 13 were up-regulated and 46 were downregulated
[172]. Looking for differences specific for breast cancer, 8
up-regulated and one downregulated plasma miRNA were
discovered: miR-16, miR-21 and miR-451 were significantly
increased and miR-145 significantly reduced in breast cancer
patients [173].

Lung cancer To date, lung carcinogenesis molecular sig-
nature has been mainly monitored through mRNA sys-
tematic analysis along with detection of protein expres-
sion levels [190]. However, miRNA expression pattern
analysis may portray novel diagnostic and prognostic
tools for predictive and early lung cancer detection
[191]. Indeed, a study assessing miRNA expression in
early-stage NSCLC serum samples revealed significantly
increased miR-1254 and miR-574-5p levels, allowing for

discrimination of NSCLC patients from controls with a
77% and 82% specificity and sensitivity, respectively,
and in the validation cohort with a 71% specificity and
73% sensitivity [174]. Furthermore, 10 serum miRNA
(miR-20a, miR-24, miR-25, miR-145, miR-152, miR-
199a-5p, miR-221, miR-222, miR-223 and miR-320)
were detected to be differentially expressed in NSCLC
serum patient samples compared with controls. This spe-
cific miRNA profiling was able to detect NSLCL
33 months prior to the clinical manifestation of the dis-
ease [175]. 34-miRNA signature model was created to
detect early-stage NSCLC within a population of high-
risk asymptomatic subjects with an 80% accuracy [176].
In another study, miR-21 increased levels positively cor-
related with lymph node and tumour-node metastases in
NSCLC patients; shorter 3-year overall survival com-
pared with patients with low levels of miR-21 expression
was demonstrated [177]. Similarly, miR-21 as well as
miR-126, miR-210 and miR-486-5p were detected as a
potential NSCLC diagnostic panel, portraying 86.2% of
sensitivity and 96.6% specificity [181]. Contrarily, anoth-
er study found that miR-21 along with miR-15b, miR-17,
miR-28-3p, miR-106a, miR-126, miR-142-3p, miR-148a,
miR-197, miR-221 and miR-486-5p were decreased in
poor prognosis lung cancer cases [180]. NSCLC serum
patient study described increased levels of miR-30d and
miR-486 together with decreased levels of miR-1 and
miR-499 as correlated positively with poor NSCLC prog-
nosis [178]. Plasma miRNA analysis revealed miR-155,
miR-182 and miR-197 levels to be considerably higher in
lung cancer patients than in controls with a sensitivity of
81.33% and a specificity of 86.76%. Higher pattern
values were detected in patients with metastasis than in
those without [179]. Furthermore, miR-21, miR-126,
miR-155 and miR-223 (84% specificity and 83% sensi-
tivity) have arisen as a potential biomarker signature for
lung cancer detection [182]. Altogether, these studies
suggest that corresponding miRNA panels (but individual
miRNAs) have a predictive power for lung cancer
detection.

Table 4 ctDNA as a biomarker
for neoplastic detection,
predictive diagnostics and
prognosis

Procedure Application Reference

Diagnosis Early detection [94, 133, 134, 136, 137]

Prediction Molecular heterogeneity [141]

Tumour dynamic assessment [128, 129, 142]

Determination of early treatment response [138, 139]

Acquired resistance [138, 140]

Prognosis Detection of marginal disease residues [143–146]

Survival and recurrence rate [148]

Tumour load determination [149]
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Table 5 Circulating miRNA panels for cancer detection, monitoring and prognosis

Cancer
type

Biomarker Liquid biopsy
samples

Experimental design Reference

CRC miR-17-3p and miR-92 elevated in CRC
patients

Plasma Three phase study: (phase I) plasma and biopsies from n = 5
patients with CRC, n = 5 healthy subjects; (phase II) n = 25
CRC patients, n = 20 healthy subjects; (phase III) n = 90
CRC patients; n = 50 healthy subjects (control); n = 20 in-
flammatory bowel disease (IBD) patients and n = 20 gas-
tric cancer (GC) patients were included to determine bio-
marker specificity

[152]

CRC miR-15b, miR-18a, miR-19a, miR-19b,
miR-29a and miR-335 upregulated in
CRC patients, with respect to healthy
subjects

Plasma n = 123 newly diagnosed patients with sporadic colorectal
neoplasia (n = 63 with CRC and n = 60 with AA) versus
n = 73 healthy subjects (control)

[91]

CRC miR-15b, miR-18a, miR-19a, miR-19b,
miR-29a and miR-335 upregulated in
CRC patients, with respect to healthy
subjects

Plasma n = 96 CRC patients, n = 101 diagnosed with AA versus
n = 100 healthy subjects (control)

[153]

CRC miR-18a and miR-200c Plasma n = 78 CRC patients versus n = 86 healthy subjects (control) [154]

CRC miR-17, miR-19a, miR-20a and miR-223 Serum Two sample- set: 1-n = 30 CRC patients and 2-n = 100 CRC
patients (control subjects n/d)

[155]

CRC miR-17 Serum/plasma/faecal Meta-analysis comprising 10 studies with a total
n = 938 CRC patients and n = 638 healthy subjects
(control).

[156]

CRC miR-21 and miR-92a Serum n = 200 CRC patients, n = 50 advanced adenoma (AA)
patients, n = 80 healthy subjects (control)

[157]

CRC miR-29a and miR-92a Plasma n = 157 patients total (n = 120 CRC patients and n = 37 AA),
n = 59 healthy subjects (control)

[158]

CRC Upregulation of miR-21, miR-31 and
miR-135b

Plasma n = 66 CRC patients, n = 50 healthy subjects (control) [159]

CRC miR-19a-3p, miR-21-5p and miR-425-5p Serum n = 196 CRC patients, n = 138 healthy subjects (control) [160]

CRC miR-18a, miR-21, miR-22 and miR-25 Plasma n = 67 CRC patients (control subjects n/d) [161]

CRC Exosomal miR-19a and miR-92a Serum n = 227 CRC patients, n = 28 healthy subjects (control) [162]

CRC Exosomal miR-21, miR-23a, miR-150,
miR-223, miR-1229, miR-1246 and
let-7a

Serum n = 88 primary CRC patients, n = 11 healthy subjects
(control)

[163]

Breast miR-1, miR-92a, miR-133a and miR-133b
(upregulated)

Serum n = 132 breast cancer patients and n = 101 healthy subjects
(control)

[164]

Breast miR-182 Serum n = 46 breast cancer patients and n = 58 healthy subjects
(control)

[165]

Breast miR-148b, miR-376c, miR-409-3p and
miR-801

Plasma n = 127 sporadic breast cancer cases and n = 80 healthy
subjects (control)

[166]

Breast miR-34a, miR-93 and miR-373 Serum n = 120 patients with primary breast cancer (M0), n = 32
patients with overt metastasis (M1) and n = 40 healthy
subjects (control)

[167]

Breast miR-21 and miR-146a Plasma n = 14 breast cancer patients and n = 8 healthy subjects
(control)

[168]

Breast miR-10b, miR-21, miR-125b, miR-145,
miR-155, miR-191 and miR-382

Serum n = 61 breast cancer patients and n = 10 healthy subjects
(control)

[169]

Breast Increased miR-21 levels and decreased
miR-92a levels

Serum n = 100 serum samples of patients with primary breast cancer
versus n = 20 healthy subjects (control)

[170]

Breast Increased miR-21 Serum n = 102 breast cancer patients of different stages versus n = 20
healthy subjects (control)

[171]

Breast 13 up-regulated miRNA and 46 downreg-
ulated miRNA (59 differentially
expressed)

Whole blood n = 48 early stage breast cancer patients versus n = 57 healthy
subjects (control)

[172]

Breast miR-16, miR-21 and miR-451 significantly
increased and miR-145 significantly re-
duced in breast cancer patients

Plasma Case-control cohort: n = 170 breast cancer patients versus
n = 100 healthy subjects (control); validation test: n = 95
other types of cancers (blindly validated), n = 70 breast
cancer patients, n = 50 healthy subjects (control)

[173]

Lung miR-1254 and miR-574-5p Serum Discovery cohort: n = 11 patients with early-stage NSCLC
versus n = 11 healthy subjects (control). Validation cohort:
n = 22 patients versus n = 30 controls

[174]
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Prostate cancer Prostate cancer (PC) diagnosis, monitoring
and prognosis are widely based on the androgen-regulated
genes and prostate-specific antigen (PSA) [192]. In recent
years, miRNA have been described to impact cancer features
by either promoting (oncogenic miRNA) or suppressing (sup-
pressive miRNA) tumour development and disease progres-
sion [193]. PC often presents with a deregulation of miRNA
that may operate as oncogenes or tumour suppressors [194].
Indeed, increased miR-141 levels were shown in PC serum
samples [184]. Increased expression of miR-18a was strongly
correlated with promotion of PC, acting as an oncogenic
miRNA allowing discrimination between PC and benign pros-
tatic hyperplasia (BPH) [183]. Moreover, miR 182-5p and
miR-375-3p blood levels were detected as non-invasive
screening signature and potential prognostic biomarker
for PC development [185].

There is an accumulated evidence of numerous miRNA
tested in prostate cancer tissue samples acting as tumour
suppressors [195, 196]. ERG is able to bind to miR-200b/
a/429 assisting transcription in PC cells in tumour tissues
[196]. Moreover, miR-135a-1 was described to act as a

potential tumour suppressor in metastatic PC by aiming at
EGFR [195].

Another study revealed serum circulating miR-372 in-
volvement in the progression of human PC by aiming p65-
mediated NF-κB/MMP-9/PSA signalling pathway. Thus,
targeting miR-372/p65 interplay or interceding in miR-372
expression may present a valuable tool for diagnosis and treat-
ment of PC patients [186]. However, studies addressing
miRNA panels PC specificity for example against prostate
inflammation are needed.

Association between diabetes mellitus
and carcinogenesis: diagnostic
and therapeutic potential of cell-free nucleic
acids

Diabetes mellitus gathers several metabolic diseases
characterised by a chronic state of hyperglycemia. It can result
in a deficiency in secretion of insulin, lack of insulin effect or
both simultaneously. Different types of diabetes exist, namely

Table 5 (continued)

Cancer
type

Biomarker Liquid biopsy
samples

Experimental design Reference

Lung miR-20a, miR-24, miR-25, miR-145,
miR-152, miR-199a-5p, miR-221,
miR-222, miR-223 and miR-320

Serum n = 400 NSCLC serum patients versus n = 220 healthy
subjects (control)

[175]

Lung 34 serum miRNA Serum Two sets: 1. training set: n = 25 adenocarcinoma (AC) pa-
tients versus n = 39 healthy subjects (control), 2. testing set:
n = 22 AC, 12 squamous cell carcinomas (SCCs), n = 30
healthy subjects (control)

[176]

Lung miR-21 Serum n = 88 NSCLC patients versus n = 17 healthy subjects
(control)

[177]

Lung Increased miR-30d and miR-486 levels and
decreased miR-1 and miR-499 levels

Serum Total n = 303 patients: n = 30 patients with longer survival,
n = 30 patients with shorter survival, n = 243 NSCLC
patients in training set n = 120 and testing set n = 123

[178]

Lung miR-155, miR-182 and miR-197 Plasma n = 74 lung cancer patients (33 stages I–II, 41 stages III–IV)
versus n = 68 healthy subjects (control)

[179]

Lung Decreased miR-21 along with mir-15b,
mir-17, mir-28-3p, mir-106a, mir-126,
mir-142-3p, mir-148a, mir-197, mir-221
and mir-486-5p levels

Plasma n = 40 plasma samples (n = 19 patients in the training set and
n = 34 plasma samples from 22 patients from the validation
set) and control were represented by 15 pools of 5–7
healthy subject plasma samples

[180]

Lung miR-21, miR-126, miR-210 and
miR-486-5p

Plasma n = 58 NSCLC patients (30 Stage I–II, 28 Stage III–IV)
versus n = 29 healthy subjects (control)

[181]

Lung miR-21, miR-126, miR-155 and miR-223 Serum n = 6919 patients versus n = 7064 healthy subjects (control) [182]

Prostate miR-18a Peripheral blood n = 24 prostate cancer (PC) patients, n = 24 benign prostatic
hyperplasia (BPH) patients and n = 23 healthy subjects
(control)

[183]

Prostate miR-141 Serum n/d [184]

Prostate miR-182-5p and miR-375-3p Plasma n = 252 prostate cancer patients versus n = 52 healthy subjects
(control)

[185]

Prostate miR-372 Serum n = 20 serum samples from prostate cancer patients versus
n = 20 healthy subjects (control)

[186]
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type 1, type 2 and gestational diabetes, that differ in genetics
and aetiology [197]. Type 1 diabetes (T1D) is an autoimmune
disorder characterised by hyperglycemia and β cell destruc-
tion [198], whereas type 2 diabetes (T2D) is considered a
metabolic syndrome.

Diabetes and carcinogenesis

Published epidemiological evidences portray a correlation
between diabetes and cancer risk [199]. There are several
potential risk factors common to both diseases, such as
age, gender, diet, physical activity and obesity, amongst
others [200]. Diabetic patients present increased blood
glucose levels, along with advanced glycation end-
products (AGE) that eventually leads to higher levels of
DNA damage [201]. Studies have described AGE capa-
bility to cause DNA strand breaks in colon and liver cells,
as well as in murine podocytes. Metabolic stress, mito-
chondrial impairments and insufficient DNA repair in-
crease risk of all-site carcinogenesis and cancer progres-
sion in diabetic patients [38, 201].

For example, correspondence between diabetes and
CRC has been described in numerous studies [202]. In
fact, a study revealed a 5-year decreased overall CRC,
colon and rectal cancer survival (18, 19 and 16%, re-
spectively) in patients with diabetes [203]. Another
study showed an increased risk in diabetic women of
developing CRC than men [204]. In women a direct
risk by diabetes for breast cancer development has been
described. A meta-analysis showed an increased cancer
risk in diabetic women versus non-diabetic individuals
[205]. A potential link between diabetes and breast can-
cer is promoted by oestrogen levels [206, 207].

In a lung cancer study contrasting lung cancer pa-
tients with and without diabetic history, diabetes was
not a detrimental factor for lung cancer survival [208].
Prostate cancer and diabetes studies have resulted in
dissimilar outcomes. For one, a meta-analysis study re-
vealed diabetic men to have decreased risk of develop-
ing prostate cancer [209]. Another study described an
increase in 29% in prostate cancer-related mortality in
diabetic patients compared with non-diabetic subjects
[210]. Obviously, a detailed patient stratification by
individualised patient profiling is essential to bring more
consensus in the data interpretation that allows for a
disease prediction and of high quality personalised ser-
vices to the patient [9].

Anti-diabetic drugs are known to decrease diabetes patho-
physiological factors (high blood glucose and AGE), howev-
er, drugs such as metformin may also reduce risk of cancer in
diabetic patients. In fact, studies have postulated anti-oxidant
properties of anti-diabetic drugs and renin-angiotensin system
inhibitors to potentially reduce cancer risk [211, 212].

Diagnostic and therapeutic potential of cell-free
nucleic acids in diabetes

Determining differentially expressed miRNA or differentially
methylated β cell derived DNA might better identify T1D co-
horts, as miRNA are known to be imperative in T1D pathogen-
esis and regulating β cell function [213]. The use of proinsulin/
C-peptide (PI/C) ratios may support identification of β cell de-
struction in subjects prior to the development of T1D, serving as
a non-invasive marker of β cell malfunction [214].

miRNA-375 has been reported as being one of the most
abundantly expressed miRNA in β cells. In fact, mice lack-
ing miR-375 appeared to have decreased β cell mass and
increased glucagon secretion, resulting in a hyperglycemic
state [215]. A similar study portrayed an overexpression of
miR-375 in primary mouse islets [216]. Consequently,
miR-375 was tested as a potential biomarker for diabetes.
In fact, increased miR-375 was detected in mice prior to
hyperglycemia onset [217]. miRNA-375 plasma levels
were elevated in patients at 7 days post islet transplantation
[218]. Serum miRNA sequencing analysis has identified
miR-52, miR-24, miR-25, miR-26a, miR-27a, miR-27b
miR-29a, miR-30a-5p, miR-148a, miR-181a, miR-200a
and miR-210 as differentially expressed in T1D patients
[219]. Further studies have tested miRNA patterns in im-
mune cells from T1D patients, revealing an increased ex-
pression of miR-326 in lymphocytes from T1D subjects
[220]. Another study determined decreased expression of
miR-146 in PBMC from T1D patients against non-diabetic
controls [221].

Evaluation of increased unmethylated insulin DNA in cir-
culation is a key to detect evolution of T1D resulting from β-
cell death [222]. Two independent studies revealed higher
unmethylated to methylated insulin DNA ratios versus non-
diabetic controls [223] and higher circulating levels of both
methylated and unmethylated insulin DNA in early onset T1D
patients [224]. Similarly, plasma cell-free DNA levels from
new onset T1D and allogeneic islet transplantation subjects
were higher than in controls [225, 226].

Furthermore, T2D patient’s serum was tested for spe-
cific miRNA profiles: T2D were compared with obese
patients and healthy controls. Combined miR-138 and
miR-503 patterns enabled to discriminate between diabet-
ic and obese diabetic patients. Further, using miR-15b in
combination with miR-138 and miR-376a may help to
distinguish between T2D and obesity. This evidence
makes serum miRNA profiling to a potential T2D predic-
tive tool [227]. Furthermore, a study which investigated
plasma miRNA profiles in T2D patients revealed
diminishing plasma levels of 10 miRNA and a slight in-
crease of miR-28-3p. In fact, analysis of miR-15a, miR-
28-3p, miR-126, miR-223 and miR-320 represent a suit-
able T2DM signature array [228].
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Table 6 Pathology-
specific CFNA panels Marker Disease Reference

miR-20a-5p Stress [53]

miR-16 Stress [45]

miR-30e-5 Stress [54]

miR-221-3p Stress [49]

miR-34-5p Stress [49]

miR-135a Stress [45]

miR-142-5p Stress [51]

miR-223-3p Stress [51]

miR-451a Stress [48]

miR-320 Stress [48]

let-7d-3p Stress [49]

miR-124-3p Stress [47]

miR-125b-5p Stress [53]

miR-128-3p Stress [53]

miR-101-3p Stress [53]

miR-19a-3p Stress [53]

miR-19b Stress [51]

miR-20b-5p Stress [53]

miR-20a-5p Stress [53]

miR-15b-3p Stress [53]

miR-134 Stress [46]

miR-144-5p Stress [50]

miR-183 Stress [44]

miR-203a-3p Stress [52]

miR-212 Stress [44]

miR-27a-3p Stress [54]

miR-324 Stress [51]

miR-332 Stress [51]

miR-339-5p Stress [52]

miR-3590-3p Stress [54]

miR-362-3p Stress [54]

miR-421-3p Stress [51]

miR-463 Stress [51]

miR-486-3p Stress [53]

miR-532-5p Stress [54]

miR-674 Stress [51]

miR-1202 Stress [45]

miR-1928 Stress [51]

miR-24-2-5p Stress [54]

miR-132-3p Physical activity [71]

miR-150-5p Physical activity [71]

miR-375-5p Physical activity [71]

C-reactive protein (CRP) Physical activity [66]

miR-103a-3p Physical activity [71]

miR-130b Physical activity [72]

miR-192 Physical activity [70]

miR-193b Physical activity [70]

miR-590-3p Physical activity [71]

miR-382-5p Ischemic stroke [85]
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Pathology-specific versus common cell-free
nucleic acid patterns

Imbalanced stress- and ischemia-related disorders, diabetes
and cancer share several risk factors such as toxic environ-
ment, suboptimal life-style and dietary habits, specific pheno-
types, vasospasm, accelerated ageing and abnormal body
weight (both underweight and obesity), amongst others [9,
10, 13, 113, 229–232].

To this end, diabetes mellitus has been demonstrated as a
prominent example of cancer risk factor [200]. Unfortunately,
in many cases, studies do assess potential biomarkers out of

context of collateral pathologies and potentially related health
conditions that has been strongly criticised in the literature
[233]. Those deficits should be compensated via well de-
signed further studies, on one hand to indicate common origin
and molecular pathways involved in several and collateral
pathologies [234]. On the other hand, pathology-specific pat-
terns are of great value for predictive diagnostic purposes,
targeted prevention and cost-effective personalisation of med-
ical services [6, 235].

Table 6 provides examples for pathology-specific and
Table 7 for common CFNA panels in health conditions and
disorders which the current paper has referred to.

Table 6 (continued)
Marker Disease Reference

miR-122-5p Ischemic stroke [86]

miR-211-5p Ischemic stroke [86]

PC-3p-57,664 Ischemic stroke [86]

PC-5p-12,969 Ischemic stroke [86]

miR-19a CRC cancer [91, 153, 155, 162, 203]

miR-135b CRC cancer [159]

miR-150 CRC cancer [163]

miR-200c CRC cancer [154]

miR-335 CRC cancer [91, 153]

miR-34a Breast cancer [167]

miR-382 Breast cancer [169]

miR-146a Breast cancer [168]

miR-451 Breast cancer [173]

miR-30d Lung cancer [178]

miR-142-3p Lung cancer [180]

miR-197 Lung cancer [179, 180]

miR-486-5p Lung cancer [178, 180, 181]

miR-135a-1 Prostate cancer [236]

miR-141 Prostate cancer [184]

miR-182-5p Prostate cancer [185]

miR-372 Prostate cancer [186]

miR-375-3p Prostate cancer [185]

Proinsulin/C-peptide (PI/C) Diabetes [214]

miR-15a Diabetes [228]

miR-26a Diabetes [219]

miR-27a Diabetes [219]

miR-27b Diabetes [219]

miR-52 Diabetes [219]

miR-138 Diabetes [227]

miR-146 Diabetes [221]

miR-181a Diabetes [219]

miR-200a Diabetes [219]

miR-326 Diabetes [220]

miR-375 Diabetes [215–217]

miR-376a Diabetes [227]
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Pathology-specific CFNA panels

Predominant CFNAs signatures for stress are miR-3590-3p,
miR-362-3p, miR-421-3p [51, 54]. Several experimental and
clinical studies identified dysregulation in others stress asso-
ciated miRNA panels: miR-183; -212; -16; 135a; -1202; -134;
-124-3p; -451a; -320; -221-3p; -34a-5p; let-7d-3p; -144-5p; -
142-5p; -19b; -1928; -223-3p; -332; -324; -463; and -674; -
203a-3p; -339-5p; -19a-3p; -101-3p; 20b-5p; -20a-5p; -486-
3p; -128-3p; -15b-3p; -125b-5p; -24-2-5p; -27a-3p; -30e-5; -
532-5p [44–54]. Some studies analysed cfDNA [66–69] as
well as circulating miRNA panels (miR-192; -193b; -126; -
130b; -221; -222) [70–72] after acute and chronic exercise.
Last but not least circulating miRNA (miR-223; -21-5p; -30a-
5p; -221-3p; -382-5p; -122-5p; -211-5p; PC-3p-57,664; PC-
5p-12,969) [80, 84–86], cfDNA and mtDNA could act as
promising diagnostic and prognostic biomarkers of ischemic
stroke [77, 81–83].

The miR-19a dysregulation has been described in numerous
studies related to CRC cancer patients compared with controls

[91, 153, 155, 160, 162]. Moreover, miR-335 was also detected
in CRC tumours by several different groups [91, 153]. Breast
cancer specific biomarkers detected aremiR-34a,miR-382,miR-
146a and miR-451 [167–169, 173]. Patterns of miR-197 [179,
180] and miR-486-5p [178, 180, 181] have been analysed as
pathology-specific biomarkers in lung cancer patients.
Moreover, prostate cancer specific biomarkers are miR-135a-1,
miR-141, and miR-372, amongst others [184, 186, 195].

One of the most prominent diabetes mellitus biomarker is
miR-375 [215–217] along with further biomarkers described
as specific for diabetes detection such as the panel of miR-
138, miR-181a, miR-326 andmiR-376a, amongst others [219,
220, 227]. Table 6 summarises pathology-specific
CFNA panels.

Common CFNA panels

Comprehensive analysis demonstrated common CFNA panels
amongst different diseases. For instance, miR-21 has been de-
scribed to be present in CRC, breast and lung cancers. miR-21-

Table 7 Common CFNA panels
Marker Disease Reference

miR-15b CRC cancer-lung cancer-diabetes [91, 180, 227]

miR-16 Stress-breast cancer [44, 45, 173]

miR-17 CRC cancer-lung cancer [155, 156, 180]

miR-18a CRC cancer-prostate cancer [91, 153, 154, 183]

miR-19a-3p Stress-CRC cancer [53, 160]

miR-19b Stress-CRC cancer [51, 91, 153]

miR-20a CRC cancer-lung cancer [155, 175]

miR-21 CRC cancer-breast cancer-lung cancer [157, 159, 160, 163, 168–171, 173, 177,
180–182]

miR-21-5p Ischemic stroke-CRC cancer [80, 160]

miR-24 Lung cancer-diabetes [175, 219]

miR-25 Lung cancer-diabetes [175, 219]

miR-28-3p Stress-lung cancer-diabetes [54, 180, 228]

miR-29a CRC cancer-diabetes [91, 153, 158, 219]

miR-30a-5p Ischemic stroke-diabetes [80, 219]

miR-92a CRC cancer-breast cancer [158, 162, 164, 170]

miR-126 Physical activity-lung cancer-diabetes [72, 180–182, 228]

miR-139-5p Stress-physical activity [54, 71]

miR-145 Breast cancer-lung cancer [169, 173, 175]

miR-148a Lung cancer-diabetes [180, 219]

miR-155 Breast cancer-lung cancer [169, 179, 182]

miR-182 Stress-breast cancer-lung cancer [44, 165, 179]

miR-210 Lung cancer-diabetes [181, 219]

miR-221 Physical activity-lung cancer [72, 175, 180]

miR-221-3p Stress-ischemic stroke [49, 85]

miR-222 Physical activity-lung cancer [72, 175]

miR-223 Stress-ischemic stroke-CRC cancer-lung
cancer-diabetes

[51, 84, 155, 163, 175, 182, 228]

miR-320 Stress-lung cancer-diabetes [48, 175, 228]
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5p and miR-223 are related to both ischemic stroke and CRC
cancer. Furthermore, miR-223 has been described for lung can-
cer, ischemic stroke, diabetes and stress-related diseases. Lung
cancer shares several miRNA markers with stress-related disor-
ders (miR-28-3p, miR-182, miR-223 andmiR-320) and physical
activity (miR-126, miR-221 and miR-222). miR-16 and miR-
182 are present in both breast cancer and stress-related diseases.
Moreover, miR-15b, miR-24, miR-25, miR-28-3p, miR-126,
miR-148a and miR-320 were present in lung cancer and diabetic
patients. Dysregulation of miR-21, miR-145 and miR-155 have
been found in both breast and lung cancer patients. Whereas,
miR-15b, miR-17and miR-20a are common markers in CRC
and lung cancers.

Table 7 summarises common CFNA panels. Further stud-
ies addressing interrelations amongst human disorders and
shared CFNAs signature are essential.

What is known about CFNAs signature utility
in COVID-19 management?

Many research teams around the world are intensively working
on prediction of the COVID-19 epidemics, protective measures
to populations, therapeutic and vaccination issues. It has been
clearly demonstrated that lack of specific diagnostic laboratory
tools may lead to incorrect political decisions causing either un-
necessary overprotection of the population that is risky for a
long-term economic recession, or underprotection of the popula-
tion leading to a post-containment pandemic rebound [237, 238].

Blood parameters are highly indicative for the patient strat-
ification, disease cause and individual outcomes [239].
Patients demonstrating severe course of COVID-19-related
disease suffer from cytokine storms and multiorgan failure
[240]; however, the underlying mechanisms still remain un-
certain. Available information demonstrates that profuse in-
nate immune responses aggravate individual outcomes [241].
Viral infections have been described to prompt cellular necro-
sis, which amplifies anti-viral immune responses releasing
damage associated molecular patterns (DAMPs) [242].
Severely affected cells and tissues intrinsically secrete
CFNAs such as mitochondrial DNA (MT-DNA) [243]. It
has been demonstrated that COVID-19 patients with increased
levels ofMT-DNA are at elevated death risk, necessity of ICU
care and intubation. Consequently, cell-free MT-DNA is a
potential biomarker for individualised survival status predic-
tion [243].

PPPM-related conclusions

LB and individualised profiling of biomarker patterns pre-
sented in body fluids represent a revolutionary approach
in the work-frame of 3P medicine. In the last years,

CFNAs signature attracted a lot of attention for diagnostic
and treatment purposes. Altered profiles of CFNAs have
been detected under both physiological and pathological
conditions. Although oncological research is particularly
advanced implementing CFNAs for diagnostic and treat-
ment purposes, independently of the application area, the
main goal remains the same, namely to look for
pathology-specific biomarker patterns as well as for pat-
terns clearly indicating associated risks, for example, in
vasospastic individuals who are a prominent example of
patients predisposed to an increased stress sensitivity,
neuro/degenera t ive disorders and/or aggress ive
metastasing cancers as discussed above. This article high-
lights the involvement of CFNAs in local and systemic
processes dealing with the question, whether specific pat-
terns of CFNAs in blood, their detection, quantity and
quality (such as methylation status) might be instrumental
to predict a disease development/progression and could be
further utilised for accompanying diagnostics, targeted
prevention, creation of individualised therapy algorithms,
therapy monitoring and prognosis. Presented consider-
ations conform with principles of 3P medicine [244] and
can be implemented for improving individual outcomes
and cost-efficacy of medical services provided to the
population.
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