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Introduction
Per- and polyfluoroalkyl substances (PFAS) are synthetic chem-
icals consisting of a fully fluorinated carbon chain. Due to their 
chemical and thermal stability, PFAS have been widely used in 
consumer products and industrial process since the 1940s, such 
as stain repellents, lubricants, paints, textiles, firefighting foams, 
nonstick cookware, and food packaging.1 Long-chain PFAS can 
persist indefinitely in the environment, and bioaccumulate in 
humans and other organisms.2–4 Food sources, drinking water, 
dust, and air are the main exposure routes to humans.5,6

According to the National Health and Nutrition Examination 
Survey in 2015–2016, the geometric means of perfluorooctanoic 

acid (PFOA), perfluorooctane sulfonate (PFOS), perfluoronona-
noic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) in 
the serum samples of the general US population were 1.56, 4.72, 
0.58, and 1.18 ng/ml, respectively.7 The half-lives for serum or 
plasma elimination of PFAS in humans range from 2 to more 
than 10 years in previous studies.8–11 For pregnant women, the 
PFAS concentrations in maternal serum, umbilical cord serum, 
and breast milk are strongly associated with each other.12

Some studies suggest that exposure to PFAS could cause 
adverse reproductive health effects in humans,13–17 while others 
found little association.18–20 Due to physiological changes during 
pregnancy, including increased glomerular filtration rate and 
parallel expansion of blood volume,21,22 the observed inverse 

What this study adds
In this manuscript, we examine associations between PFAS 
detections in public water supplies and birthweight in the US on 
the county-level during 2013–2015. PFAS water concentrations 
used in this study are free of reverse causality and/or physio-
logical confounding compared to PFAS serum measurements. 
We show that using county-level multiple-stratified average 
birthweights in weighted regression models produces effect esti-
mates equivalent to those that would be obtained from using 
individual-level data on birthweight and confounders. In addi-
tion, we explore the association between PFAS and birthweight 
more comprehensively by including some understudied PFAS 
chemicals (i.e., PFHxS and perfluoroheptanoic acid [PFHpA]) 
and accounting for co-exposure to other contaminants and 
number of drinking water violations. Overall, our work is the 
first nation-wide statistical analysis in the US on PFAS in public 
water supplies and birthweight.
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Background: Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the serum of the general US population, and were 
detected in public water systems serving approximately 16.5 million US residents during 2013–2015. Low birthweight was associ-
ated with PFAS exposures in previous studies.
Methods: Birthweights for singleton births during 2013–2015 were obtained from CDC WONDER, multiply stratified by county, 
maternal age, race, education, smoking status, and parity. PFAS water concentrations were obtained from EPA UCMR3 database 
and aggregated by county. Multiple regression weighted by inverse variance was used to produce effect estimates equivalent to 
those that would be obtained from individual-level data on birthweight and confounders.
Results: Adjusting for stratification demographic confounders (maternal age, race, education, smoking status, and parity), we 
found an average change in birthweight of 0.9 g (95% confidence interval [CI] = −0.5, 2.2), −1.3 g (−1.6, −0.9), −3.8 g (−4.9, −2.7),  
and −3.8 g (−4.3, −3.3) per ng/L increase in the population-weighted average perfluorooctanoic acid, perfluorooctane sulfonate, 
perfluoroheptanoic acid, and perfluorohexane sulfonic acid in public water supplies by county, respectively. We found an average 
change in birthweight of −1.0 g (95% CI = −1.2, −0.8) per ng/L increase in the sum of perfluorooctanoic acid, perfluorooctane sulfon-
ate, perfluoroheptanoic acid, and perfluorohexane sulfonic acid concentrations in public water supplies.
Conclusions: The direction and magnitude of association between PFAS and birthweight varied by PFAS chemical in this study. 
Conclusions are tempered by inherent limitations of the 2 public-use datasets, and by the sensitivity of our results to alternative 
methods such as mutual adjustment for co-exposures.
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association between PFAS concentrations and birthweight could 
be due to reverse causality or uncontrolled confounding factors 
such as glomerular filtration rate.23,24 A recent meta-analysis 
found an inverse association between PFOA and birthweight 
when the blood was sampled late in the pregnancy; however, lit-
tle association was found when blood was sampled at times less 
susceptible to physiological confounding or reverse causation 
(i.e., shortly before conception or early in pregnancy).24

Under the third Unregulated Contaminant Monitoring Rule 
(UCMR3), the US Environmental Protection Agency (US EPA) 
tested thirty contaminants, including 6 PFAS, in public water 
systems (PWSs) during 2013–2015.25 Based on samples collected 
from multiple points in a PWS, UCMR3 provides scientifically 
valid data on the occurrence of unregulated contaminants. It is 
the most comprehensive dataset of PFAS occurrence in public 
drinking water in the US.26,27

Few epidemiological studies on PFAS and birthweight have 
accounted for or use study designs that are resistant to reverse 
causality/physiological confounding, or have considered co-expo-
sure to PFAS other than PFOA and PFOS, or co-exposure with 
other pollutants. Based on UCMR3 and the birthweight data 
from CDC WONDER, we conducted a county-level study of 
PFAS and birthweight in the US while adjusting for maternal age, 
race, education, smoking status, and parity, a similar set of adjust-
ment variables to previous studies.19,28,29 In addition, we were able 
to investigate co-exposures to other UCMR3 contaminants and 
overall water quality when examining the association between 
a specific PFAS and birthweight. Although use of county-level 
exposure measures likely introduces some degree of Berkson mea-
surement error, this study is free of reverse causality/physiological 
confounding due to our use of an external exposure metric, PFAS 
concentrations in public water, rather than an exposure metric 
potentially influenced by physiological processes, that is, serum 
concentrations during pregnancy.30 In addition, we show that 
our use of county-level multiple-stratified average birthweights in 
weighted regression models produces effect estimates equivalent 
to those that would be obtained from using individual-level data 
on birthweight and the stratification variables.

Methods

Data collection

Multiple-stratified birthweight data

We obtained the average birthweight from singleton births 
from 2013 to 2015, multiple-stratified by county, maternal 
age, bridged-race (race), education, tobacco use (smoking sta-
tus), and live birth order (parity) from CDC WONDER.31 CDC 
suppresses data for groups with less than 10 births. Within 
each state, counties with less than the population of 100,000 
persons were de-identified and combined under the label of 
“Unidentified Counties” in the dataset, thus we excluded them 
from our analysis as they could not be linked with the UCMR3 
data. Equivalent subdivisions to “County” included “Parish” 
in Louisiana, “Borough” in Alaska, and “Independent City” in 
Virginia, Maryland, and Missouri. Overall, there were 580 US 
counties with populations greater than 100,000. In the states 
and years that applied the 1989 US Standard Certificate of Live 
Birth (Alabama, Arizona, Arkansas, Hawaii, Maine, Michigan, 
and West Virginia in 2013; Rhode Island during 2013–2014; 
Connecticut and New Jersey during 2013–2015), education 
and smoking status of the mothers were coded by CDC as 
“Excluded” and “Not Reported,” respectively, as they were not 
comparable to the data that used the 2003 revision of the birth 
certificate. We excluded the groups with “Unknown or Not 
Stated,” “Excluded,” or “Not Reported” information in edu-
cation, smoking status, and parity, which accounted for 9.6% 
of the singleton births in the 580 large US counties (Figure S1, 
Supplemental Digital Content I; http://links.lww.com/EE/A101). 

After the exclusion, the birthweight data covered 552 counties in 
the US. Overall, these counties could represent the US counties 
with populations greater than 100,000 that applied the 2003 
revision of the birth certificate. For crude (unadjusted) epide-
miological analysis, we obtained the average birthweight from 
singleton births from 2013 to 2015 stratified by county only, 
excluding the “Unknown or Not Stated,” “Excluded,” and “Not 
Reported” categories in education, smoking status, and parity.

PFAS and other water quality indicators

Under UCMR3, 30 contaminants, including 6 PFAS (PFOA, 
PFOS, perfluorobutane sulfonic acid [PFBS], PFNA, PFHpA, and 
PFHxS) were monitored using analytical methods developed by 
the US EPA.32 PFAS were monitored using EPA Method 537 at 
4,908 US PWSs during 2013–2015, including almost all PWSs 
serving >10,000 people and a representative sample of around 
800 PWSs serving ≤10,000 people. The number of UCMR3 water 
samples collected at each PWS during 2013–2015 ranged from 1 
to 484. In total, 1,928 counties were monitored in UCMR3 over 
the 3 years, covering the 50 US states, District of Columbia, and 
some of the other US territories. Multiple PWSs could serve the 
same county, and different counties could also share a common 
PWS. In our analyses, the number of water samples taken within a 
county was the sum of water samples from all the PWSs that serve 
this county; if a PWS served 2 counties, then the water samples 
were counted in the number of water samples for both counties. 
The distribution of the number of water samples taken per county 
is shown in Table S1 in Supplemental Digital Content I; http://
links.lww.com/EE/A101. The minimum reporting level (MRL) 
was 10 ng/L for PFHpA, 20 ng/L for PFOA and PFNA, 30 ng/L 
for PFHxS, 40 ng/L for PFOS, and 90 ng/L for PFBS. Overall, 
around 16.5 million people in the US were served by PWSs con-
taining at least 1 of the 6 PFAS at concentrations exceeding the 
MRLs. Proxy indicators for PFAS exposure in this study include 
the percentage of water measurements with PFAS detection by 
county and the population-weighted average PFAS water concen-
trations by county. We merged the UCMR3 PFAS data with the 
CDC birthweight data by county, and excluded Hampton City in 
Virginia as it was not monitored under UCMR3. The final data-
sets include 551 counties in the US (see Figure S1 and Table S2 in 
Supplemental Digital Content I; http://links.lww.com/EE/A101), 
covering 47 US states and District of Columbia.

Because only a limited number of contaminants were mon-
itored under UCMR3, and might not be indicative of general 
water quality, we also obtained the count of violations by 
PWS for the 551 counties during 2013–2015 from the US EPA 
(SDWIS Federal Reports Advanced Search) and used the average 
count of violations per PWS by county under the US EPA rules33 
as an indicator of the overall water quality. Because only 4 coun-
ties had detections for PFBS and only 10 counties had detections 
for PFNA, we excluded both PFBS and PFNA from the anal-
ysis. PFOA, PFOS, PFHpA, and PFHxS are all moderately or 
highly correlated with each other (correlation coefficients range 
from 0.49 to 0.74), which is expected as they often have shared 
sources. Other water quality indicators including the num-
ber of violations and other UCMR3 contaminants except for 
1,4-dioxane are weakly associated with PFAS (r < 0.3), and thus 
were not adjusted for in our analyses (Figure S2, Supplemental 
Digital Content I; http://links.lww.com/EE/A101). Among the 
551 counties in the data, 87 counties had detection for at least 1 
of PFOA, PFOS, PFHpA, and PFHxS. In comparison, among the 
1,928 counties monitored under UCMR3 during 2013–2015, 
162 counties had detection for at least 1 of the 4 PFAS.

For analyses using continuous PFAS concentrations, we only 
used data for the 87 counties with at least 1 detection of PFOA, 
PFOS, PFHpA, or PFHxS. For each UCMR3 water measure-
ment in these 87 counties, we substituted values that were below 
the MRL with MRL/ 2 . After the substitution, for each PFAS 
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chemical we first averaged the concentrations by PWS, and then 
averaged across PWSs by county, weighting by the average pop-
ulation served by each PWS during 2013–2015. The distribution 
of the number of water samples taken from the 87 counties is 
shown in Table S3 in Supplemental Digital Content I; http://
links.lww.com/EE/A101.

Descriptive statistics for the percentage of water measure-
ments with detection for PFOA, PFOS, PFHpA, and PFHxS are 
shown in Table 1, and the population-weighted average water 
concentrations of PFAS in the counties with detection of at least 
1 of the 4 PFAS are shown in Table 2. The average percentages 
in Table 1 are all less than 1% due to the fact that over 80% 
of the counties did not have detection for PFAS. Because our 
study only includes a small part of the counties monitored by 
UCMR3, we also show the descriptive statistics of water mea-
surements for all 1,928 counties in UCMR3 and the 162 coun-
ties with detection of at least 1 of the 4 PFAS in UCMR3 in 
Tables S1.1 and S1.2 in Supplemental Digital Content I; http://
links.lww.com/EE/A101. The average values of the 2 proxy indi-
cators for PFAS exposure in all UCMR3 counties are similar to 
those of the counties covered by our study.

Weighted linear regression models

We obtained multiple-stratified county-level birthweight statis-
tics (mean and SD) from the CDC. We calculated the aggre-
gated county-level birthweight statistics (Table 3) for the 551 
counties, for which the distributions of age, race, education, 
smoking status, and parity are similar to that of the entire US 
population (Table S4, Supplemental Digital Content I; http://
links.lww.com/EE/A101). In the Supplemental Digital Content 
II; http://links.lww.com/EE/A102, we show that using coun-
ty-level multiple-stratified average birthweights in weighted 
regression models produces equivalent results to those that 
would be obtained from individual-level data on birthweight 
and confounders. In particular, using the number of births in 
each stratum for the weights produces the same regression 
slope and variance of the effect estimate that would be obtained 
from unweighted multiple linear regression with the individu-
al-level data, and using the inverse variance34 of the average 
birthweight for the weights produces the same regression slope 
and variance of the effect estimate that would be obtained from 
individual-level weighted regression allowing for heteroscedas-
ticity. This is a very useful result for avoiding aggregation bias 
(also known as ecological fallacy) for analysis of public-use 
birthweight data and other datasets that multiply stratify on 
key confounding variables. However, results will only be iden-
tical when adjusting for covariates that are available with mul-
tiple stratification at the county-level; adjustment for covariates 
that are not multiply stratified (e.g., US Census poverty rates) 
could result in different parameter estimates than those that 
would be obtained using individual-level data (e.g., personal 
socioeconomic status). Because of this mathematical result and 
the strong negative correlation between poverty and education 
level based on 2013, 2014, and 2015 American Community 
Survey 1-year estimates (r = −0.82), we did not include the 
county-level percentage of poverty in the primary analyses. 
Additional adjustment for the county-level poverty percentage 

was only conducted as sensitivity analyses. In addition, analyses 
using individual-level exposure measurements (e.g., tap water 
PFAS concentrations measured at each participant’s home) may 
produce different results than analyses using group-level expo-
sure assignments.

In secondary analyses, we employed lasso regression to 
account for exposure mixtures, penalizing the coefficients for 
each PFAS chemical and 1,4-dioxane.

We used statistical software R, version 3.6.0 for statistical 
analyses.

Results
In Figures  1 and 2, we display the relation between average 
birthweight and the 2 proxies for PFAS exposure while using 
inverse-variance weights in the regression models.

Using inverse-variance weights and covariate-adjusted mod-
els, we found for the 551 counties significant negative associa-
tions between birthweight and PFAS detection; while adjusting 
for co-exposures to other PFAS and 1,4-dioxane reversed the 
effect estimate for PFOA (Figure  1). In addition, we com-
pared 2 different weights in regression: group size (number 
of births), and inverse variance of average birthweight. The 
results of analyses using these 2 sets of weights in different 
models are similar, but adjustment for confounders produces 
somewhat different results from the crude analyses (Tables 
S5–S8, Supplemental Digital Content I; http://links.lww.com/
EE/A101).

For the 87 counties with detection of at least 1 of the 4 
PFAS, we examined the association between the popula-
tion-weighted average PFAS water concentrations and birth-
weight, using inverse-variances as regression weights (Tables 
S9–S12, Supplemental Digital Content I; http://links.lww.com/
EE/A101). We also summed the population-weighted average 
water concentrations of the 4 PFAS to determine the overall 
association of PFAS with birthweight (Table S13, Supplemental 
Digital Content I; http://links.lww.com/EE/A101). Using 
inverse-variance weights and MRL/ 2  substitution in the 
covariate-adjusted models, we found no association between 
birthweight and PFOA concentration (0.9 [−0.5, 2.2] g per 
ng/L, Table S9), and significant negative associations between 
birthweight and PFOS (−1.3 [−1.6, −0.9] g per ng/L, Table 
S10), PFHpA (−3.8 [−4.9, −2.7] g per ng/L, Table S11), and 
PFHxS (−3.8 [−4.3, −3.3] g per ng/L, Table S12) concentra-
tions. Additionally adjusting for co-exposures to other PFAS 
and 1,4-dioxane greatly impacted the effect estimate for PFOA. 
Overall, the sum of 4 PFAS was negatively associated with 
birthweight (−1.0 [−1.2, −0.8] g per ng/L, Table S13). We also 
conducted sensitivity analyses with zero substitution and MRL 
substitution to compare to the results from MRL/ 2  substitu-
tion. For PFOA, PFHpA, PFHxS, and the sum of 4 PFAS, the 
results were consistent regardless of the substitution methods 
(Table S9 and Tables S11–S13). For PFOS, the 3 substitution 
methods produced noticeably different results when adjusting 
for other PFAS (Table S10).

Table 1.

Percentage of water measurements with detection (%) of PFAS 
in 551 counties in the US, 2013–2015.

Contaminant Mean (%) SD (%) Min (%) Max (%)

PFOA 0.68 3.35 0.00 42.98
PFOS 0.59 2.87 0.00 37.19
PFHpA 0.65 4.26 0.00 58.33
PFHxS 0.40 2.60 0.00 47.11

Table 2.

Population-weighted average of UCMR3 water concentrationsa 
(ng/L) of PFAS in 87 counties in the US with detection of at least 
1 of PFOA, PFOS, PFHpA, or PFHxS, 2013–2015.

Contaminant Mean SD Min Max

PFOA 14.84 1.33 14.14 20.53
PFOS 30.58 4.17 28.28 54.31
PFHpA 7.74 1.88 7.07 20.18
PFHxS 22.60 2.92 21.21 35.08

aValues that were below the MRL were Substituted with MRL/ 2 .
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Discussions

We used the public-use dataset of UCMR3 and Natality data 
from CDC WONDER to conduct a county-level study of birth-
weight and PFAS concentrations in drinking water in the US, 
with multiple stratification by key confounding variables to 
yield unbiased estimation of the individual-level associations. 
There are several advantages of using the 2 datasets in the 
study. First, epidemiological associations using PFAS water 
concentrations are free of reverse causality and/or physiolog-
ical confounding, which may have biased the epidemiological 
associations reported by other studies using PFAS serum mea-
surements, especially when collected late in pregnancy. Second, 
we explore the association between PFAS and birthweight 
more comprehensively by including some understudied PFAS 
chemicals, that is, PFHxS and PFHpA. Third, the availability 
of multiple-stratified birthweight data from CDC allows us 
to control for maternal age, education, race, smoking status, 
and parity, producing equivalent results to those that would be 
obtained from individual-level data on birthweight and these 
confounding variables. In this study, weighting by group size 
(equivalent to ordinary multiple regression using individu-
al-level data) or inverse variance (equivalent to weighted mul-
tiple regression for heteroscedasticity using individual-level 
data) produced similar results.

Continued exposure to relatively low PFAS concentrations 
in drinking water can substantially increase serum concen-
trations, with reported steady-state serum: drinking water 
ratios of about 114:1 for PFOA, 125:1 for PFOS, and 194:1 
for PFHxS.35–38 After long-term consumption of contaminated 
drinking water, the population-weighted average water con-
centrations of 14.84, 30.58, and 22.60 ng/L (1 ng/L = 10−3 ng/
ml) for the 87 counties in the US during 2013–2015 (Table 2) 
are expected to increase serum concentrations by about 1.7, 
3.8, and 4.4 ng/ml for PFOA, PFOS, and PFHxS, respectively. 
The estimates are similar to the medians (interquartile range 
[IQR]) of 1.6 (1.1–2.5) ng/ml and 4.8 (2.8–8.1) ng/ml for 
PFOA and PFOS, respectively, and higher than the median 
(IQR) of 1.2 (0.7–2.1) ng/ml for PFHxS for the general US 
population, suggesting that these exposures may have had 
measurable impacts on serum PFAS concentrations in these 
communities. The estimated effect sizes for PFAS serum con-
centrations would be 1/114, 1/125, and 1/194 of that of the 
water concentrations for PFOA, PFOS, and PFHxS, respec-
tively. So, after adjusting for potential demographic confound-
ers, our estimated effects are equivalent to an average change 
in birthweight of 7.6 g (95% confidence interval [CI] = −4.3, 
19.4) per ng/ml increase in serum PFOA; −10.1 g (95% CI = 
−13.0, −7.2) per ng/ml increase in serum PFOS; and −19.5 g 
(95% CI = −21.9, −17.1) per ng/ml increase in serum PFHxS. 
In comparison, a recent meta-analysis by Steenland et al.24 
reported a change in birthweight of −10.5 g (−16.7, −4.4) per 
ng/ml increase of PFOA in maternal or cord blood; and −3.3 g 
(−9.6, 3.0) per ng/ml when restricting to studies where blood 
was sampled early in pregnancy or shortly before conception, 
similar to the null association we found between PFOA and 
birthweight while adjusting for demographic confounders. 
Nevertheless, this is just a preliminary comparison without 
accounting for any uncertainty for the water to serum con-
version factor, which is beyond the scope of this paper and 
should be addressed in future research. In addition, with the 
above estimates after water to serum conversions, we can 
expect a change in birthweight of 10.6 g (95% CI = −6.0, 27.2) 
for an IQR change of serum PFOA (1.4 ng/ml); −53.5 g (95%  
CI = −68.9, 38.2), for an IQR change of serum PFOS (5.3 ng/
ml), and −27.3 g (95% CI = −30.7, −23.9) for an IQR change 
of serum PFHxS (1.4 ng/ml) in the general US population.

Our study also has a number of limitations. First, we 
attempted to identify the causal effects of PFAS on birthweight, 
but our interpretations are limited by the observational nature 
of the data and limited availability of multiple-stratified vari-
ables that had been collected on birth certificates at the individ-
ual level, which makes it difficult to rule out measurement error 
and uncontrolled confounding. Although effect estimates for the 
percentage of water measurements with detection for each PFAS 
became slightly larger in the negative direction after adjust-
ment for known multiple-stratified confounders, suggesting that 
further adjustment using more accurate confounder measures 
would only increase the absolute effect sizes, we cannot guar-
antee the absence of an unidentified confounder strong enough 
to reverse the association. In sensitivity analyses, additional 
adjustment for the county-level percentage of poverty did not 
substantially change the results in Figures 1 and 2 (see Figure 
S3, Figure S4, Table S14, and Table S15 in Supplemental Digital 
Content I; http://links.lww.com/EE/A101), with the exception 
of population-weighted average PFOA water concentration, for 
which the effect was changed from null (0.9 g per ng/L, 95%  
CI = −0.5, 2.2; Table S9) to negative (−2.4 g per ng/L, 95%  
CI = −3.8, −1.1; Table S15) in the model adjusted for demo-
graphic confounders. Nevertheless, the percentage of poverty 
was barely correlated with the 2 proxy indicators for PFAS 
exposure on the county-level (Tables S16 and S17, Supplemental 
Digital Content I; http://links.lww.com/EE/A101); therefore it 
was unlikely to confound the associations observed in Figures 1 

Table 3.

Predictors of birthweighta among singleton pregnancies in 551 
counties in the US, 2013–2015.

Categories No. births (%)

Average  
birthweight  

(g) (SD)

Total 8,128,278 (100%) 3,311 (537)
Maternal age (years)
  <15 2,443 (0.03%) 3,072 (538)
  15–19 473,761 (5.8%) 3,176 (536)
  20–24 1,715,641 (21.1%) 3,244 (532)
  25–29 2,346,570 (28.9%) 3,322 (531)
  30–34 2,318,108 (28.5%) 3,358 (535)
  35–39 1,076,339 (13.2%) 3,350 (557)
  40–44 192,050 (2.4%) 3,312 (579)
  45–49 3,343 (0.04%) 3,273 (606)
  ≥50 23 (0.0%) 3,346 (607)
Race
  American Indian or Alaska Native 30,786 (0.4%) 3,339 (552)
  Asian or Pacific Islander 612,625 (7.5%) 3,215 (500)
  Black or African American 1,351,695 (16.6%) 3,140 (593)
  White 6,133,172 (75.5%) 3,358 (528)
Education
  Eighth grade or less 267,655 (3.3%) 3,316 (537)
  Ninth through 12th grade with no diploma 878,382 (10.8%) 3,217 (548)
  High school graduate or GED completed 1,908,856 (23.5%) 3,260 (552)
  Some college credit, but not a degree 1,665,300 (20.5%) 3,302 (551)
  Associate degree 571,644 (7.0%) 3,347 (538)
  Bachelor’s degree 1,635,478 (20.1%) 3,380 (515)
  Master’s degree 739,914 (9.1%) 3,381 (509)
  Doctorate or professional degree 198,879 (2.5%) 3,356 (495)
  Unknown or not stated 94,496 (1.2%) 3,297 (572)
  Excluded 167,674 (2.1%) 3,304 (544)
Smoking Status
  No 7,437,775 (91.5%) 3,320 (536)
  Yes 366,430 (4.5%) 3,123 (559)
  Not reported 262,122 (3.2%) 3,306 (545)
  Unknown or not stated 61,951 (0.8%) 3,313 (538)
Parity
  First 3,276,032 (40.3%) 3,258 (547)
  Second 2,573,346 (31.7%) 3,355 (517)
  Third and over 2,254,966 (27.7%) 3,337 (546)
  Unknown or not stated 23,934 (0.3%) 3,274 (555)

aThis table summarizes birthweights singly stratified by 1 predictor at a time, but regression models 
used multiply stratified birthweight statistics.

http://links.lww.com/EE/A101
http://links.lww.com/EE/A101
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and 2. The change in effect estimate for PFOA from Figure 2 to 
Figure S4 by additionally adjusting for the county-level percent-
age of poverty highlights the difficulty in interpreting multi-level 
studies, and potential cross level bias in ecological inference 
when including a county-level variable (i.e., the percentage of 

poverty) that is highly correlated with an individual-level vari-
able (i.e., education level).39 The increases in precision from 
crude models to adjusted models in Figures  1 and 2 can be 
explained by the well-established result of decreased residual 
standard error for multiple regression after adjusting for strong 

Figure 1.  The change of average birthweight (g) for 10% increase in the detection of PFAS: MLE, 95% CI. Using regressions weighted by inverse variance of 
average birthweight. Crude model: association between PFAS and birthweight only. Adjusted model: adjusted for maternal age (<15, 15–19, 20–24, 25–29, 
30–34, 35–39, 40–44, 45–49, ≥50), race (American Indian or Alaska Native, Asian or Pacific Islander, Black or African American, White), education (eighth 
grade or less; ninth through 12th grade with no diploma; High school graduate or GED completed; Some college credit, but not a degree; Associate degree; 
Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking status (yes, no), and parity (first, second, third and over). Adjusted co-exposure 
model: adjusted for the other 3 PFAS, 1,4-dioxane, and all covariates in the adjusted model.

Figure 2.  The change of average birthweight (g) for 1 ng/L increase in the population-weighted average PFAS water concentration: MLE, 95% CI (1 g per ng/L = 1 g  
per ppt = 1,000 g per ng/ml). Using MRL/ 2  substitution for the non-detections and regressions weighted by inverse variance of average birthweight. Crude 
model: association between PFAS and birthweight only. Adjusted model: adjusted for maternal age (<15, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 
≥50), race (American Indian or Alaska Native, Asian or Pacific Islander, Black or African American, White), education (eighth grade or less; ninth through 12th 
grade with no diploma; high school graduate or GED completed; some college credit, but not a degree; associate degree; bachelor’s degree; master’s degree; 
doctorate or professional degree), smoking status (yes, no), and parity (first, second, third and over). Adjusted co-exposure model: adjusted for the co-expo-
sures (the other 3 PFAS and 1,4-dioxane; or 1,4-dioxane only for the model includes the sum of PFAS), and all covariates in the adjusted model.
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predictors of the outcome.40 This setting is quite different from 
logistic regression, for which adjustment for covariates can 
result in a loss or at best no gain of precision.41 Adjustment for 
co-exposure to other PFAS and 1,4-dioxane changed the effect 
estimates differently for the percentage of water measurements 
with detection for each PFAS (Figure  1), reversing the effect 
from negative to positive for PFOA, increasing the effect size 
in the negative direction for PFOS, and attenuating the nega-
tive associations towards the null for the other 2 PFAS. This 
highlights some of the difficulties in fitting and interpreting sta-
tistical models with correlated exposure mixtures, even using 
a large dataset. In particular, bias amplification could occur 
due to residual confounding while including co-exposures with 
a common source,42 which could explain why the adjustment 
for the other PFAS had such a strong effect on the regression 
parameter for PFOA. However, the direction and magnitude 
of bias amplification are not readily predictable in this setting. 
Overall, we believe that the results from adjusted models that 
do not include co-exposures are more reliable because they are 
less susceptible to bias amplification.42 In secondary analysis, we 
used lasso regression (with 10-fold cross-validation to obtain 
the optimal shrinkage parameter) to penalize the coefficients for 
4 PFAS and 1,4-dioxane in inverse-variance weighted models. 
In this analysis, the coefficients for PFOA, PFHpA, and PFHxS 
are attenuated towards the null; while the coefficient for PFOS 
does not change significantly and the coefficient for 1,4-dioxane 
is zeroed out. In the models using population-weighted average 
water concentrations of the chemicals (PFOA, PFOS, PFHpA, 
PFHxS, and 1,4-dioxane) as proxy exposure for the 87 counties 
with at least 1 detection for PFOA, PFOS, PFHpA, or PFHxS, 
adjustment for co-exposure increases the effect size in the pos-
itive direction for PFOA, attenuates the negative association 
towards the null for PFOS, increases the effect size in the neg-
ative directions for PFHpA and PFHxS (Figure 2). In the lasso 
regression using inverse-variance weights and MRL/ 2  substi-
tution, the coefficient for population-weighted average water 
concentration of PFOS is zeroed out, and the coefficients for 
population-weighted average water concentrations of the other 
PFAS are attenuated towards the null.

Second, the public-use birthweight data from CDC WONDER 
has several notable drawbacks, as shown by the flow chart of 
data processing in Figure S1, Supplemental Digital Content I; 
http://links.lww.com/EE/A101. (1) CDC suppresses data for 
the groups with less than 10 births; when we multiply strati-
fied the data by county, maternal age, race, education, smoking 
status, and parity, we lost 5.3% of births compared to the data 
that was only stratified by county. (2) Counties with less than 
100,000 population are de-identified in the dataset, which can-
not be linked to the UCMR3 dataset, thus restricting the scope 
of the study to less than 580 counties. (3) There is likely some 
underreporting of maternal smoking status, which is difficult to 
obtain reliable data from birth certificate.43 (4) We excluded the 
missing values from the data, which accounted for 9.6% of the 
singleton births in the 580 counties. The “Excluded” category in 
education and “Not Reported” category in smoking status were 
missing at random, dependent only on the version of birth cer-
tificate used in the state in a specific year, rather than the value 
of the variables (education and smoking status) that are missing; 
and conditional on the version of birth certificate, the probabil-
ity of missingness does not depend on the value of the variables. 
However, the “Unknown or Not Stated” in parity, education, 
and smoking status could depend on the actual values of these 
variables thus could be missing not at random. We lost all the 
births from 28 counties and 5.6% of the remaining 552 counties 
due to the exclusion. In all, the suppression, de-identification, 
and missingness reduced the number of births in our analysis 
by 32.9%; therefore our results based on the 551 counties may 
not be generalizable to the whole US. For the 551 counties, the 
missingness rate is 5.3%. With CDC permission and security 

clearances it is possible to obtain access to unsuppressed and 
fully identified birthweight data at secure federal facilities; we 
are currently taking steps to apply for access.

Third, our estimates for PFAS exposure solely relied on 
the UCMR3 data, which has several limitations: (1) we were 
unable to account for other sources of exposure to PFAS and 
other chemicals, such as food, dust, air pollution, non-UCMR3 
chemicals in water, and/or unmeasured PFAS chemicals may be 
associated with both UCMR3 PFAS exposure and birthweight, 
in which case they may contribute uncontrolled confounding 
to our results. (2) The detection thresholds (MRLs) for the 6 
PFAS measured in UCMR3 were as much as 16 times higher 
than the detection limits for the current standard testing method 
(method 537), so only the highest levels of PFAS contamination 
were reflected in the data; thus, it is likely that the percentages 
of water measurements with PFAS detection for each county 
underestimate the true extent of exposure. (3) Because UCMR3 
only provides the PFAS concentrations in drinking water during 
2013–2015 and the PFAS concentrations assigned for each 
county in our study may not reflect historical water exposure or 
total body burden for each individual, likely adding some degree 
of nondifferential exposure measurement error, predominantly 
of the Berkson type. (4) The number of samples taken from each 
PWS varied substantially across different counties but was often 
small, limiting the precision of the average concentrations at the 
PWS level. (5) One PWS could serve several counties, but we 
only know the total population served by each PWS rather than 
the population served by each PWS within each county, thus 
the population-weighted average water concentrations of PFAS 
by county could also be inaccurate. (6) UCMR3 was designed 
to monitor water quality by PWS, not to measure county-level 
exposure or exposure to specific subgroups defined by race, 
education or other characteristics that might be associated with 
residential location and water supply within a county; however, 
we assumed that everyone within a county had the same average 
PFAS exposure level and assign the population-weighted aver-
age water concentrations of PFAS to all the groups within the 
same county. (7) We also did not account for the fact that some 
people in these counties may be using private wells or smaller 
water systems not included in UCMR3, and thus may have had 
different exposures than their neighbors. We understand that 
USGS is developing information on PFAS in private wells in the 
US; incorporating that information into birthweight analyses 
would be a valuable future direction.
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