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Abstract

Magnetic Resonance Fingerprinting (MRF) is an MRI-based method that can provide quantitative 

maps of multiple tissue properties simultaneously from a single rapid acquisition. Tissue property 

maps are generated by matching the complex signal evolutions collected at the scanner to a 

dictionary of signals derived using Bloch equation simulations. However, in some circumstances, 

the process of dictionary generation and signal matching can be time-consuming, reducing the 

utility of this technique. Recently, several groups have proposed using machine learning to 

accelerate the extraction of quantitative maps from MRF data. This article will provide an 

overview of current research that combines MRF and machine learning, as well as present original 

research demonstrating how machine learning can speed up dictionary generation for cardiac MRF
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I. Introduction

THE Magnetic Resonance Imaging (MRI) signal is sensitive to a variety of tissue properties, 

including the relaxation time constants T1 and T2, diffusion, perfusion, and many others. 

Most clinical MRI scans are qualitative, meaning the signal is weighted by one or more of 

these tissue properties. However, the signal intensity at each pixel is not a direct 

measurement of any tissue property, and consequently the images must be interpreted 

subjectively. Quantitative MRI, which involves measuring tissue properties on an absolute 

scale, has recently become more feasible for clinical use due to advances in acquisition and 

reconstruction methods. Quantitative images, also called maps, can be interpreted 
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objectively and may indicate pathological changes earlier compared to qualitative images 

[1], [2].

Magnetic Resonance Fingerprinting (MRF) is a technique for quantifying several tissue 

properties simultaneously [3]. MRF uses a time-varying pulse sequence that causes tissues 

to produce characteristic signal evolutions depending on their tissue property values, much 

like a fingerprint. Quantitative maps are reconstructed by matching measured signal 

evolutions to a dictionary of simulated signals. MRF scans can be highly accelerated 

because signal matching is robust to incoherent aliasing artifacts.

Although MRF is promising, in some circumstances the process of dictionary generation and 

signal matching is slow and memory-intensive, which could limit its practical utility. This 

article will present an overview of quantitative imaging and MRF, followed by a review of 

state-of-the-art methods that employ machine learning for MRF dictionary generation and 

signal matching. Finally, a novel application of neural networks will be presented for rapid 

dictionary generation in cardiac MRF [4]. The article will mainly discuss MRF for T1 and 

T2 quantification, which has been the focus in machine learning research.

II. Traditional Methods for Quantitative MRI

Quantitative MRI methods produce maps where every pixel represents an absolute 

measurement of a tissue property, such as T1 or T2. Traditionally, maps are generated by 

sequentially acquiring images with different T1 or T2 weighting. For instance, images may 

be collected at different time points after an inversion or saturation pulse to vary the T1 

contrast or with different echo times after a 90° excitation to obtain different T2 contrast. 

Then the signal intensity at each pixel is fit to a simple model, such as exponential recovery 

for T1 or exponential decay for T2, to extract a quantitative map. Traditional mapping 

sequences often suffer from long scan times, which may be uncomfortable for patients and 

limit scan throughput. They also increase the likelihood of motion artifacts arising from bulk 

patient movement, respiration, cardiac motion, peristalsis, or flow. Additionally, 

conventional techniques only measure one tissue property per scan, so maps of different 

properties may not be spatially registered.

Quantitative methods must also address issues of accuracy, precision, and reproducibility. 

Different pulse sequences, image reconstruction techniques, or signal models may result in 

the measurement of different values for the same tissue property. Even the same method may 

produce different measurements across scanners if it is sensitive to confounding effects that 

are not accounted for in the signal model. For example, Modified Look-Locker Inversion 

Recovery (MOLLI) is routinely used in the clinic for cardiac T1 mapping, but it is also 

influenced by T2, off-resonance, magnetization transfer, and heart rate [5], [6]. For this 

reason, it is recommended to acquire baseline MOLLI T1 measurements for every scanner 

[7]. The lack of standardization is a barrier for many conventional quantitative techniques.

III. Overview of Magnetic Resonance Fingerprinting

Magnetic Resonance Fingerprinting (MRF) is a novel technique for quantitative MRI which 

could potentially address some of the shortcomings of traditional quantitative methods. This 
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section will describe the basic mechanics of MRF and its potential advantages over other 

techniques. Fig. 1 and 2 summarize the key components of MRF data acquisition and 

reconstruction, with a focus on T1 and T2 quantification. Each step will be described in 

detail in the following sections.

A. MRF Pulse Sequence

Although many different pulse sequences could be used in conjunction with MRF, all MRF 

pulse sequence described in the literature use acquisition settings that change throughout the 

scan (Fig. 1A). MRF pulse sequences deliberately keep signals in a persistent transient state 

to better distinguish tissues with different T1 and T2 values. This approach differs from 

standard mapping techniques that are mainly limited to producing signals with exponential 

forms. It also differs from qualitative scans, which are typically used to acquire images after 

signals have reached steady state. A well-designed MRF sequence uses changing pulse 

sequence settings to enhance the sensitivity to T1 and T2 so that spins with different T1 and 

T2 values will produce measurably different signal evolutions. Similar to human fingerprints, 

which can be used to identify a unique individual, the measured signal evolution can be used 

to identify the underlying tissue property values. MRF sequences have many degrees of 

freedom. They may employ variable flip angles, repetition times (TR), and echo times (TE). 

Some sequences additionally use magnetization preparation pulses with variable timings, 

such as inversions or T2 preparations, to enhance T1 and T2 sensitivity. Different imaging 

readouts have been proposed, including balanced steady-state free precession (bSSFP) [3], 

fast imaging with steady-state precession (FISP) [8], pseudo steady-state free precession 

(pSSFP) [9], and quick echo splitting (QUEST) [10].

B. Data Sampling

MRF k-space data are collected at a high temporal resolution in order to characterize the 

time-varying signal evolutions. Whereas standard mapping sequences collect a handful of 

high-quality images with different T1 or T2 weighting, MRF rapidly acquires hundreds to 

thousands of highly undersampled images. For instance, the original MRF work employed a 

variable density spiral k-space trajectory that required 48 interleaves to fully sample the 

edges of k-space and one interleaf to fully sample the central area of k-space. In many MRF 

implementations, one undersampled image is collected during a single-shot k-space readout 

every TR, or roughly every 5-15ms. MRF data are typically sampled using non-Cartesian 

trajectories (Fig. 2A). The original MRF work used spiral sampling, although radial [9], 

rosette [11], echo planar imaging (EPI) [12], and other trajectories [13] are also employed. 

Non-Cartesian trajectories are used for their beneficial properties, including incoherent 

aliasing when undersampled (Fig. 2B) [14], frequent sampling of the k-space center, 

robustness to motion [15], [16], and efficient k-space coverage (for spiral) [17]. The 

trajectory is rotated every TR, often by the golden angle [18], to distribute aliasing artifacts 

incoherently through time. The artifacts manifest as a noise-like interference superimposed 

on the signal evolution that ideally does not impede pattern recognition (Fig. 2C). The signal 

evolution at one voxel location from the aliased image series is referred to as a “fingerprint.”
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C. MRF Dictionary

The MRF dictionary is a lookup table of simulated signal evolutions for different tissue 

property values (Fig. 1B). Dictionaries may be generated using a Bloch equation simulation 

or extended phase graphs [19]. The only knowledge needed to build the dictionary are the 

pulse sequence parameters (flip angles, TRs, etc.) and a discrete set of tissue property values 

which may be found in the measurement data. The tissue property values are selected to 

cover the expected physiological range, but the total number is limited to save computation 

time and memory. In most applications, the dictionary is precomputed and reused for all 

scans, provided the sequence parameters do not change.

D. Pattern Recognition

The final step in the MRF workflow is to compare the measured signal evolutions with the 

dictionary to extract quantitative maps (Fig. 2D). Dot product matching was the original and 

simplest method for signal matching in MRF [3]. First, all dictionary entries and measured 

signal evolutions are divided by their l2-norms to place them on a similar scale. Next, the dot 

product is computed between each measured signal and the entire dictionary. Note that MRF 

signals are generally complex-valued. The dictionary entry that maximizes the absolute 

value of the dot product is identified as the best match. This process is repeated for each 

pixel to generate T1 and T2 maps. Proton spin density is calculated as the complex 

coefficient needed to scale the measured signal to its matching fingerprint in the dictionary. 

More advanced matching techniques have been proposed to mitigate artifacts or reduce scan 

time using compressed sensing [20], multiscale reconstructions [21], or low-rank matrix 

completion [22]-[25]. Many of these techniques are iterative and come at the expense of 

longer reconstruction times.

E. Potential Benefits of MRF over Conventional Quantitative Approaches

One advantage of MRF is that confounding tissue or system properties, which could lead to 

errors in the quantitative maps if ignored, can be integrated in the dictionary. For example, 

slice profile imperfections, off-resonance frequency, and B1
+ can be explicitly modeled in the 

Bloch equation simulations [26], [27]. Previous studies have shown that MRF yields 

accurate T1 and T2 measurements in a variety of applications including brain [28]-[31], 

cardiac [4], abdominal [32], breast [33], musculoskeletal [34], and ocular [35] imaging. T1 

and T2 measurements using FISP-MRF are reproducible over time [36] and on different 

MRI scanners at multiple sites in phantom studies [37]. Repeatability studies have been 

performed using MRF for brain [38] and breast [39] imaging. Looking to the future, cross-

vendor and multi-center studies using MRF are needed to ensure the repeatability of 

measurements made across a variety of MRI scanners. The effect of other phenomena on 

MRF measurements—such as diffusion, chemical exchange, or magnetization transfer—are 

less well-studied. However, the incorporation of more complex physical models into the 

MRF framework could enable measurement of such properties and is an active area of 

research [40], [41].
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IV. Machine Learning and MRF Dictionary Generation

While MRF is a powerful approach to quantitative MRI, MRF does suffer from a number of 

practical challenges which could be alleviated by the use of machine learning. The two 

primary areas where machine learning has been applied are the dictionary generation and 

pattern recognition steps. A summary of recent machine learning methods for MRF is 

provided in Table I, and each will be discussed in more detail in the following sections. This 

section begins by describing practical issues with dictionary generation and then summarizes 

recent work using machine learning to address these problems.

A. Practical Challenges

1) Dictionary Simulation Time and Size: When generating a dictionary with a Bloch 

equation simulation, processing time scales linearly with the size of the dictionary—that is, 

the sequence length (number of TRs) and the number of unique combinations of tissue 

properties for which signal evolutions must be calculated. The total number of signal 

evolutions Q in a dictionary can be approximated as

Q ≈ ∏i = 1
p Ni (1)

where Ni is the number of discrete values for tissue property i and p is the number of tissue 

properties. This formula is an approximation because some tissue property combinations are 

excluded if they do not occur physiologically, such as T2 > T1.

As seen in (1), the dictionary size expands exponentially with the number of tissue 

properties to be included in the dictionary. Computation time and memory requirements are 

manageable when the number of tissue properties is small. For example, the FISP-MRF 

dictionary presented in [8] contains 18,838 fingerprints each with 1000 time points. Here, 

only the effects of T1 and T2 are modeled, as FISP is relatively insensitive to off-resonance 

frequency, and diffusion effects are ignored for simplicity [42], [43]. However, the dictionary 

becomes impractically large with more tissue property dimensions. A variation of bSSFP-

MRF has been proposed for the simultaneous quantification of T1, T2, T2
∗, off-resonance 

frequency, and intravoxel phase dispersion, which uses a dictionary containing 30 million 

signals [44]. An application with an even larger dictionary is MRF with intercompartment 

water exchange (MRF-X) [45]. MRF-X has been proposed to measure relaxation times in 

two subvoxel compartments (for example, intracellular and extracellular spaces), the volume 

fraction of each compartment, and the rate of intercompartment water exchange. The MRF-

X dictionary has six tissue properties and contains over 500 million signal evolutions with 

3000 time points.

Dictionary size also grows when there is a high sampling density along each tissue property 

dimension. Unlike curve fitting, which produces continuous outputs, the dictionary is 

simulated at discrete values. Quantization errors in the maps will be more pronounced if the 

tissue property dimensions are sampled too coarsely. In practice, an intermediate sampling 

density is chosen to reduce quantization error while also keeping the dictionary to a 

reasonable size. For example, a typical FISP-MRF dictionary for neuroimaging may have 
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possible T1 values 20-3000ms (increment 10ms) and 3000-5000ms (increment 200ms), and 

T2 values 10-300ms (increment 5ms) and 300-500ms (increment 50ms) [8].

2) Corrections for System Imperfections: Additional relevant signal dependencies 

beyond T1 and T2 can be modeled in the dictionary calculation step to better describe the 

behavior of the magnetization, thereby improving accuracy and reproducibility of MRF 

maps. For instance, RF transmit inhomogeneities (B1
+), which cause spatially dependent 

deviations from the expected flip angle, can be included in the signal model [46], [47]. 

However, this leads to an additional B1
+ dimension that must be included in the dictionary, 

leading to long calculation times and large dictionary sizes. Plug-and-play (PnP) MRF 

extends this concept further using multiple complementary transmit coil modes to improve 

the robustness to B1
+ at high field [48]. Here, the tradeoff for the improved accuracy in T1 

and T2 mapping is increased dictionary size, since there is additional B1
+ dimension for each 

transmit channel.

Other corrections use complex physical models that do not change the dictionary size but 

still require longer to simulate. For example, slice profile correction is implemented by 

performing a separate Bloch equation simulation for spins at different distances from the 

slice center [46], [49]. Then the corrected dictionary is obtained by summing the signals 

over the slice dimension. Another example of a correction that requires more computation 

time is preparation pulse efficiency [50]. Magnetization preparation pulses, such as 

inversions and T2 preparations, are usually implemented with adiabatic pulses due to their 

insensitivity to B0 and B1
+ inhomogeneities [51]. However, these pulses have long durations 

during which T2 relaxation occurs, which may introduce errors if not modeled [52]. The 

time to generate a typical FISP-MRF dictionary is approximately 30 seconds without these 

corrections, compared to 3 minutes with corrections for slice profile and preparation pulse 

efficiency [50]. With an additional B1
+ correction, the time scales with the number of 

possible B1
+ values in the dictionary and simulation can easily require more than one hour.

3) Applications Requiring Frequent Dictionary Generation: While the MRF 

dictionary can usually be precomputed because the pulse sequence is known a priori, the 

exact pulse sequence timing is not known in some MRF applications. In these cases, the 

dictionary can only be generated after the scan is completed and must be calculated anew for 

each MRF data collection. For example, in cardiac MRF, data are acquired during one phase 

of the cardiac cycle over several heartbeats to avoid motion artifacts [4]. To obtain accurate 

T1 and T2 quantification, a scan-specific dictionary is simulated that takes into account the 

subject’s heart rate recorded from an electrocardiogram (ECG) during the scan. MRF 

sequence optimization is another application that requires frequent dictionary generation 

[53], [54]. Every time the sequence parameters are updated, a new dictionary must be 

created to assess its T1 and T2 sensitivity.
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B. Machine Learning Approaches for MRF Dictionary Generation

Machine learning techniques, and in particular neural networks, are a promising tool for 

addressing some challenges regarding MRF dictionary generation. Several groups have 

proposed training neural networks with simulated fingerprints to learn a nonlinear functional 

mapping that approximates the Bloch equations. Once trained, the network can generate 

signal evolutions using feedforward calculations that are more than 100 times faster than 

simulating the Bloch equations. Additionally, neural networks can implicitly learn 

corrections, such as those for slice profile effects, if they are provided during training. Fast 

dictionary generation is especially helpful for large-scale dictionaries with many tissue 

properties or long sequence lengths. Quantization errors could be reduced by using a high 

sampling density along each tissue property dimension, which would take prohibitively long 

using a Bloch equation simulation. Neural networks may also aid MRF sequence 

optimization since new dictionaries can be generated on-the-fly to assess their T1 and T2 

sensitivity.

1) Generative Adversarial Network for MRF: One approach for accelerating 

dictionary generation uses a particular class of neural networks called a generative 

adversarial network (GAN) [55]. A GAN consists of two competing networks. The 

generative network creates signal evolutions that imitate actual fingerprints, while the 

discriminative network attempts to classify whether a signal is real or forged. In [56], the 

authors implement both networks with four fully-connected hidden layers having 128 

neurons. This GAN takes the sequence parameters (flip angles and TRs), and tissue 

properties (T1 and T2) as control variables, and outputs the signal evolution resulting from 

this combination of factors. The network can be trained using simulated signals, in this case 

a FISP-MRF sequence with 1000 TRs. Maps that are reconstructed using the GAN approach 

agree well with maps reconstructed using a dictionary generated by a Bloch equation 

simulation. A major advantage of the GAN method is speed; in this work, it took only 7s to 

output a dictionary with 5970 entries using the GAN compared to 2 hours using a Bloch 

equation simulation with slice profile correction.

2) Neural Network for Cardiac MRF Dictionary Generation: Section VI will 

describe a novel approach using a fully-connected neural network that can output a cardiac 

MRF dictionary in less than one second when given ECG timing information as input. This 

machine learning approach removes a major bottleneck in cardiac MRF data processing, as 

there is no need to perform a separate Bloch equation simulation after every scan.

V. Machine Learning and MRF Pattern Recognition

A. Practical Challenges

Dot product matching is an exhaustive search that compares a measured signal evolution 

with every entry in the dictionary. This approach has the advantage of finding the globally 

optimal match out of all simulated fingerprints. However, it is prohibitively time-consuming 

and memory intensive when there are many tissue properties or when there is a high 

sampling density along each tissue property dimension.
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To put the computation time in context, it takes approximately 30 seconds in MATLAB to 

reconstruct 256x256 T1 and T2 maps using a FISP-MRF sequence with 1000 TRs and a 

dictionary with 18,838 entries [8]. The reconstruction time grows rapidly when there are 

more tissue properties. Reconstructing six 128x128 tissue property maps for MRF-X by 

matching to a relatively sparse dictionary with 500 million entries requires more than one 

day [45].

Other algorithms faster than dot product matching have been proposed. Fast group matching 

[57] and Fast Library for Approximate Nearest Neighbors (FLANN) [58] both organize the 

dictionary into a tree-like data structure so that only a fraction of the dictionary is searched. 

With fast group matching, T1, T2, and off-resonance maps for bSSFP-MRF can be 

reconstructed in 2s, which is 100 times faster than dot product matching. However, these 

techniques require upfront computation to simulate the entire dictionary and organize it into 

a clustered data structure. Furthermore, these computations need to be repeated if the pulse 

sequence changes. MRF-ZOOM is another method that matches signals to a coarse 

resolution dictionary and iteratively refines the tissue property estimates, avoiding the need 

to search through and store a high resolution dictionary [59]. However, this method makes 

assumptions about the matching process, such as convexity, that may not generalize to all 

MRF sequences.

Another challenge in MRF is that aliasing artifacts are superimposed on the measured 

fingerprints. Because each individual image frame is highly undersampled, many time 

frames are usually acquired to obtain robust measurements with dot product matching. The 

need for long fingerprints leads to longer scan times, but more importantly for this 

discussion, long pattern matching times as well.

B. Machine Learning Approaches for Pattern Recognition

This section will provide an overview of recent machine learning approaches that improve or 

accelerate pattern recognition in MRF. One of the most exciting prospects for MRF with 

machine learning is the potential to bypass the dictionary generation step altogether 

[60]-[62]. Instead, a neural network can be trained to learn a nonlinear mapping which takes 

measured signals as inputs and directly outputs tissue property maps. The problem of pattern 

recognition is no longer an exhaustive search through a dictionary; instead, it becomes a 

rapid feedforward calculation. This approach has lower memory requirements since only the 

network weights and biases need to be saved. Another benefit is that the tissue property 

maps can take on continuous values. This differs from dot product matching, which is prone 

to quantization errors due to the discrete nature of the dictionary. In some cases, machine 

learning approaches permits robust signal matching with fewer time points, allowing a 

reduction in scan time. Additionally, the maps may have less residual aliasing or noise 

enhancement compared to standard dictionary matching. Several examples of such 

approaches are discussed below.

1) Fully-Connected Neural Networks: MR fingerprinting Deep RecOnstruction 

NEtwork (DRONE) uses a feedforward neural network for fast pattern recognition [60]. The 

neural network architecture is shown in Fig. 3. The network takes the magnitude of a 

Hamilton and Seiberlich Page 8

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measured signal evolution as input, and provides an estimate of T1 and T2 as outputs. This 

framework has been implemented for two variants of FISP-MRF. The first variant used a 

Cartesian EPI readout with 25-50 TRs, and the second variant used an undersampled spiral 

trajectory with 600 TRs. The EPI images are input without preprocessing, whereas the 

undersampled spiral data are first reconstructed with a sliding window filter to reduce 

aliasing artifacts [63]. Next, there are two fully-connected hidden layers with 300 neurons, 

which is followed by the output layer that yields T1 and T2 estimates. DRONE was trained 

with 69,000 signal evolutions simulated using extended phase graphs, and random Gaussian 

noise was added to promote robust learning [64].

DRONE reconstructs maps substantially faster than standard dot product matching and with 

comparable accuracy. The time needed to reconstruct 128x128 T1 and T2 maps was 10ms 

using DRONE compared to 3s with dictionary matching for the EPI sequence. For the spiral 

sequence, the reconstruction time was 76ms for DRONE compared to 380s with dictionary 

matching. Notably, the matching time does not scale linearly with sequence length. 

Although the number of TRs in the spiral sequence is 20 times larger compared to the EPI 

sequence, the reconstruction time using DRONE is only seven times longer.

Neural networks can also perform pattern recognition directly on highly undersampled MRF 

data instead of using pre-processing to reduce artifacts. As previously described, the use of 

undersampled spiral k-space trajectories superimposes a noise-like interference on the 

measured fingerprints. The noise is modulated by the signal level at each TR and, in general, 

is not Gaussian. Thus, rather than training a network with simulated signals corrupted by 

Gaussian noise, an empirical noise model can instead be used. For instance, the authors in 

[65] employ a neural network with three fully-connected layers, which takes a signal 

evolution as input and outputs a T1 or T2 estimate. To generate training data, artifact noise 

signatures were found by subtracting measured fingerprints obtained from in vivo MRF 

scans from their closest matching fingerprints in the dictionary. Training data were generated 

by simulating 100,000 signal evolutions using the Bloch equations. Empirical noise was 

added to each signal by randomly selecting an artifact noise signature and SNR level and 

then adding a random phase shift. When trained with data using the empirical noise model, 

the network yielded maps comparable to standard dictionary matching. However, the maps 

had substantial errors when the network was trained with data corrupted by Gaussian noise. 

Note that this technique takes unprocessed fingerprints as inputs (i.e. signals from the 

aliased image series), so it is important for the training data to also contain aliasing artifacts 

due to undersampling of k-space. In comparison, DRONE preprocesses the input with a 

sliding window filter to mitigate aliasing artifacts, so it is not essential for the training data 

to be derived from undersampled k-space data.

Although MRF signal evolutions are complex-valued, the majority of machine learning 

literature focuses on real data. When applying machine learning techniques to MRF, one 

simple approach is to split the real and imaginary parts of the MRF signals into separate 

channels, which doubles the number of neurons in the input layer. However, better 

performance could be obtained by keeping the input in complex form. Recently, a new 

complex cardiod activation function has been introduced in a neural network for MRF 

pattern recognition [66]. This activation function is an extension of the rectified linear unit 
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(ReLU) that leaves the input phase unchanged and diminishes the magnitude based on the 

input phase. It simplifies to a traditional ReLU when the input is real-valued. A neural 

network that employed this activation function produced more accurate maps compared to 

networks that split the MRF signals into real and imaginary channels.

2) Convolutional Neural Networks: A convolutional neural network (CNN) is a 

subclass of feedforward networks where each neuron performs a convolution using a filter 

with learned coefficients. CNNs may be appropriate for pattern recognition because specific 

T1 and T2 values are associated with characteristic MRF signal shapes or features.

CNNs have been proposed for pattern recognition for FISP-MRF data collected with an 

undersampled spiral trajectory [62], [67], [68]. As shown in Fig. 4, this network consists of 

4-6 convolutional layers, an average pooling layer, and 4-6 fully-connected layers with 

ReLU activation functions. The use of convolutional layers and average pooling encourages 

the network to learn features across different temporal scales. Training data were gathered 

from both phantom and in vivo brain MRF scans, treating the signal evolution at each pixel 

location as a separate training example. The proposed CNN was employed to reconstruct 

maps at a clinical resolution (1.2mm2 in-plane) 7-10 times faster than standard dictionary 

matching on a CPU. It was also found that CNNs with more hidden layers outperformed 

shallower networks when the MRF scan was undersampled.

3) Spatially-Constrained Tissue Quantification: With dot product matching, each 

measured signal is matched to the dictionary independently of all other signals. However, 

neighboring pixels often contain similar tissue properties if parts of the image are 

homogeneous. Furthermore, undersampling in k-space distributes the signal arising from one 

pixel to many other pixels. These ideas are exploited in Spatially-Constrained Tissue 

Quantification (SCQ), which is a neural network approach for performing pattern 

recognition on patches of undersampled MRF images [61]. As shown in Fig. 5, this 

approach uses two consecutive neural networks. The first subnetwork performs feature 

extraction on a pixel-by-pixel basis. It transforms signal evolution into a low-dimensional 

feature vector (in this work, the feature vector has 46 elements). The compression step 

allows the second network to be smaller, which improves accuracy and reduces the training 

time. The output of the feature extraction network is used as input to the spatially-

constrained quantification network. This subnetwork is implemented as a U-net which first 

performs convolution and downsampling, followed by upsampling and convolution. Overall, 

MRF signals from a 54x54 image patch are used to estimate the T1 and T2 values at a target 

pixel location.

Training data were collected from in vivo brain MRF scans from several volunteers. 

Dictionary dot product matching was used to generate ground truth T1 and T2 maps. 

Training was divided into two steps. First, the feature extraction subnetwork was trained 

separately, using the measured MRF signals as inputs and the ground truth T1 and T2 values 

as outputs. Second, the entire network was trained end-to-end using blocks of signals from 

the in vivo scans. Instead of a conventional mean square error loss function, a relative 

difference loss function is used so that learning is not dominated by large T1 and T2 values.
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The SCQ method is considerably faster than standard dot product matching. It took only 

2.3s to reconstruct 256x256 T1 and T2 maps compared to 14.2s using dictionary matching 

with SVD compression. This technique also achieved a 4-fold reduction in scan time (from 

23s to 6s, or 2304 TRs to 576 TRs) without compromising accuracy in the tissue property 

maps, whereas standard dot product matching yielded larger errors in both T1 and T2 when 

the scan was shortened.

VI. A Neural Network for Rapid Cardiac MRF Dictionary Generation for 

Arbitrary Heart Rhythms

As described above, machine learning approaches can dramatically reduce the time needed 

to reconstruct MRF data and even enable more complex applications of MRF. While 

machine learning can be deployed to accelerate pattern matching or dictionary generation in 

MRF, the next part of this article will highlight a specific application where a neural network 

is used to rapidly calculate dictionaries for cardiac MRF.

A. Introduction

Recently, cardiac MR Fingerprinting (cMRF) was introduced for simultaneous T1 and T2 

quantification [14]. Several changes were made to the original MRF framework to make the 

technique robust for cardiac applications. Most relevantly, to reduce motion artifacts, data 

from one slice are acquired during a 16-heartbeat breathhold, and ECG triggering limits the 

data acquisition to diastole. One difficulty with ECG triggering is that it introduces pauses 

on the order of one second between acquisition windows. Relaxation occurs during these 

pauses that causes cMRF timecourses from different tissues to appear more similar, 

decreasing the ability of cMRF to accurately measure T1 or T2. To counter this problem, 

inversion pulses with variable inversion recovery times and T2 preparations with variable 

echo times are used in cMRF during the ECG trigger delays. Time-varying flip angles are 

applied during the acquisition window, and the maximum flip angle is kept small (below 

25°) to reduce the sensitivity to slice profile imperfections and B1
+ inhomogeneities [16].

With an ECG-triggered cMRF acquisition, the subject’s heart rate affects the amount of T1 

relaxation that occurs between each acquisition window. In order to obtain accurate tissue 

property maps, the ECG signal is recorded and used to simulate a new dictionary specific for 

each scan. The use of scan-specific dictionaries is different from most other MRF 

applications, where the pulse sequence is fixed beforehand. In those cases, the dictionary can 

be precomputed and reused for all future scans.

Frequent dictionary generation is a bottleneck in the cMRF workflow that could limit its 

practical utility. Any additional complexities in the dictionary simulation will further 

increase the computation time. For example, modeling slice profile imperfections and 

preparation pulse efficiency in the dictionary is recommended since it improves the accuracy 

of the T1 and T2 measurements [16]. However, the computation time increases from 30 

seconds to 3 minutes with these corrections. Long computation times are a challenge for 

online reconstruction and can interfere with the fast-paced clinical workflow.
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In this work, machine learning is applied to accelerate the process of cMRF dictionary 

generation. A neural network is trained to learn a functional mapping that takes T1, T2, and 

cardiac rhythm as inputs and rapidly generates a dictionary of signal evolutions. This work is 

different from prior techniques that combine machine learning with MRF because the 

sequence timing depends on heart rate and is not fixed. The following sections begin by 

describing the neural network architecture. The network is trained using signal evolutions 

generated using the Bloch equations for 1020 simulated cardiac rhythms. Numerical 

simulations are performed to test the robustness of the network to heart rate variability and 

missed ECG triggers. A validation study is performed in the ISMRM/NIST system phantom 

with different artificial cardiac rhythms. Finally, in vivo data are presented from scans of 

volunteers at 3T comparing myocardial T1 and T2 values derived from dictionaries output by 

the neural network and dictionaries generated by Bloch equation simulations.

B. Materials and Methods

A diagram of the 16-heartbeat cMRF pulse sequence is provided in Fig. 6, which has been 

described in more detail elsewhere [4], [50]. Note that the inversion and T2-preparation 

times remain consistent from scan to scan, but the intervals between acquisition modules 

change depending on the subject’s heart rate.

1) Neural Network Architecture: The neural network architecture is shown in Fig. 7. 

The network takes a 17-element vector as input. The first two elements are the pair of T1 and 

T2 values for which the signal evolution should be computed. The remaining 15 elements 

contain the RR interval times, which are the times between the end of one acquisition 

window and the beginning of the next acquisition window (Fig. 6). Even though the scan 

duration is 16 heartbeats, there are only 15 RR intervals because spins are initially at 

equilibrium. After generating the training data, as described below, the T1, T2, and RR 

intervals are normalized to the range [−1, 1]. The data passes to two fully-connected layers 

having 300 neurons. Each fully-connected layer is followed by batch normalization and a 

ReLU activation function. The final layer is fully-connected with 1536 outputs, 

corresponding to the real and imaginary parts of the signal evolution for 768 TRs. This 

network can be used to build a dictionary by sequentially inputting thousands of T1 and T2 

pairs for a given cardiac rhythm.

2) Network Training: The network was trained using signals derived from the Bloch 

equations for randomly generated cardiac rhythms. To create the training data, the average 

heart rate was varied from 40 to 120 beats per minute (bpm) with a step size of 5bpm. 

Random Gaussian noise was added to the RR interval times (not to the signals themselves) 

to promote the learning of variable heart rates. For each average heart rate, 60 different 

rhythms were simulated by varying the noise standard deviation from 0% to 50% of the 

mean RR interval. A total of 4392 timecourses were simulated for each cardiac rhythm with 

T1 between 20-3000ms and T2 between 2-600ms. The specific T1 and T2 combinations were 

different for each cardiac rhythm. Overall, there were 1020 cardiac rhythms x 4392 

timecourses, or approximately 4.5 million timecourses in the training dataset. Corrections 

for slice profile imperfections and preparation pulse efficiency were modeled in the training 

data [50].
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Missed ECG triggers are common during cardiac scans and were explicitly included in the 

training data. Missed triggering occurs when a subject’s heart rate speeds up, which causes a 

diastolic acquisition window to extend into systole of the next heartbeat. The scanner waits 

for this heartbeat to complete before collecting the next block of data, effectively causing a 

longer than normal pause between acquisition windows. For every cardiac rhythm in the 

training dataset, each heartbeat was assigned a 5% probability of having a missed ECG 

trigger, which was modeled by doubling the original RR time.

A separate validation dataset was generated with average heart rates from 40 to 120bpm 

(step size 20bpm). For each average heart rate, five different rhythms were simulated by 

adding Gaussian noise to the RR intervals with standard deviation values from 5% to 50% of 

the mean RR interval. Again, 4392 T1 and T2 combinations were simulated for each rhythm, 

and each heartbeat had a 5% chance for missed ECG triggering. The training and validation 

datasets did not contain any duplicate signals.

The neural network was implemented with the MATLAB Deep Learning Toolbox. Training 

was performed using ADAM [69] with a learning rate of 0.001, l2-regularization of 0.0001, 

mini-batch size 1024, and a mean square error loss function. A cross-validation check was 

performed twice per epoch, and the training was terminated when the validation loss was 

larger than the previously smallest loss more than five times. Overall, it took approximately 

9 hours to generate the training and validation datasets using parallelized MATLAB Mex 

code, and 12 hours to train the network on a CPU. Training ran for 30 epochs before 

termination.

3) Numerical Simulations: Monte Carlo simulations were performed to test the 

accuracy of the network with different cardiac rhythms. The first simulation investigated the 

robustness of the results to heart rate variability. Ground truth signals were simulated using 

the Bloch equations with tissue property values representative of myocardium (T11400ms 

and T250ms). The average heart rate was varied from 40-120bpm (step size 20bpm). A 

unique cardiac rhythm was generated for each average heart rate by adding Gaussian noise 

to the RR intervals with standard deviation from 0% to 50% (step size 5%) of the mean RR 

interval. A dictionary was output by the neural network, and the best-matching entry was 

found that maximized the inner product between the ground truth signal and the dictionary 

after normalization. The simulation was repeated 500 times for each cardiac rhythm, and the 

average root mean square error (RMSE) for T1 and T2 were calculated using the equation

RMSE =
T i

measured − T i
reference

T i
reference x 100 % i ∈ {1, 2} (2)

The second simulation investigated the robustness to missed ECG triggering. As before, 

ground truth signals were simulated using the Bloch equations for T1 and T2 values 

representative of myocardium. The average heart rate was varied from 40-120bpm (step size 

20bpm), and noise with standard deviation of 5% of the mean RR interval time was added to 

each cardiac rhythm. The number of missed triggers during the scan was varied from 0 to 8 

(step size of 1). The simulation was repeated 500 times for each case, with different 
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heartbeats randomly selected to have a missed trigger event. Accuracy was assessed by 

computing the normalized RMSE for T1 and T2. All simulations were performed using 

noiseless cMRF signal evolutions. In addition, the simulations were repeated using ground 

truth values ranging from T1 20-3000ms and T2 2-300ms; these results are provided in 

Supporting File 1.

4) Phantom Validation: The ISMRM/NIST system phantom [70] was scanned on a 3T 

Siemens Magnetom Skyra (Siemens AG Medical Solutions, Erlangen, Germany) using a 20-

channel head array coil. Only the T2 layer was scanned since it has physiologically relevant 

relaxation times. cMRF data were collected while simulating several different artificial 

cardiac rhythms. In the first set of experiments, data were collected with constant heart rates 

from 40-120bpm (step size 10bpm). In the second set of experiments, the heart rate was 

changed halfway through the scan after the eighth heartbeat. In one scan, the heart rate 

instantaneously changed from 60 to 80bpm, and in another it changed from 80 to 60bpm. All 

cMRF data were acquired with a 192x192 matrix, 300mm2 FoV, and a 255ms diastolic scan 

window. Data were acquired using a variable spiral trajectory with 48 interleaves and 0th 

moment compensation [71], and the trajectory was measured in a separate scan session [72]. 

Undersampled (R=48) single-shot spiral data from each TR were gridded to the image 

domain using the non-uniform Fast Fourier Transform (NUFFT) [73].

cMRF maps were reconstructed by dot product matching between the measured data and 

two different dictionaries, one derived from the Bloch equations and the other generated by 

the neural network. The mean and standard deviation in T1 and T2 were computed within 

manually drawn ROIs. cMRF measurements from the Bloch equation and neural network 

approaches were compared with reference values provided by NIST using a linear regression 

analysis.

5) Cardiac Mapping in Volunteers: In vivo cardiac scans were performed in 17 

volunteers at a medial slice position in short-axis orientation at 3T as part of an IRB-

approved, HIPAA-compliant study after obtaining written informed consent. cMRF data 

were acquired with 34 channels from a cardiac array coil and the built-in spine array. The 

acquisition window was placed in late diastole based on each subject’s heart rate. Similar to 

the phantom study, maps were reconstructed using two dictionaries, one derived from the 

Bloch equations and another output by the neural network. The mean and standard deviation 

for T1 and T2 were computed within ROIs drawn in six medial AHA segments. A Bland-

Altman analysis was performed to compare the measurements obtained with the Bloch 

equation and neural network approaches [74].

C. Results

1) Computation Time and Memory: The time needed to generate a dictionary with 

768 time points and 26,680 T1 and T2 combinations is 0.8s for the neural network compared 

to 158s using a Bloch equation simulation. Note that the dictionary includes corrections for 

slice profile and preparation pulse efficiency. Saving only the network coefficients requires 

2MB of memory compared with 303MB to store the entire dictionary.

Hamilton and Seiberlich Page 14

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2) Numerical Simulations: Results from the heart rate variability simulation are shown 

in Fig. 8. The network is extremely accurate for T1, with RMSE values less than 1% for 

average heart rates from 60-120bpm up to a noise level of 50%. Slightly larger errors are 

seen for the slowest average heart rate of 40bpm, although the RMSE stays below 1% up to 

a 30% noise level. RMSE values are slightly higher for T2, with larger errors seen for the 

highest average heart rate of 120bpm. RMSE values are below 2% for most heart rates even 

up to a 50% noise level.

Fig. 9 is a plot of the T1 and T2 errors as a function of the number of missed ECG triggers. 

The RMSE values for T1 are below 1% for all heart rates between 60-120bpm even when 8 

heartbeats have missed ECG trigger events, and they are below 2% when the average heart 

rate is 40bpm. For T2, the RMSE values are always below 1.5% for average heart rates 

between 60-120bpm and below 3% when the average heart rate is 40bpm.

3) Phantom Validation: As shown in Fig. 10, cMRF measurements using the neural 

network approach in the ISMRM/NIST system phantom lie close to the identity line (all R2 

> 0.998), which indicates excellent agreement with the reference values. Good agreement is 

also seen when an abrupt change in heart rate occurs halfway during the scan, a scenario 

which does not occurs halfway during the scan, a scenario which does not appear in the 

training data.

4) Cardiac Mapping in Volunteers: Representative maps from a volunteer scan are 

shown in Fig. 11. Visually, the maps reconstructed using dictionaries generated from the 

Bloch equations and the neural network appear similar. A difference map computed by 

subtracting the Bloch equation maps pixelwise from the neural network derived maps has a 

noise-like appearance. There are larger differences in the lungs where signal intensity is low, 

as well as in some vessels containing fluids with long T1 and T2 values.

Bland-Altman plots comparing the segment-wise myocardial T1 and T2 values derived from 

the Bloch equation and neural network dictionaries are shown in Fig. 12. For T1, the bias 

was 6.1ms with 95% limits of agreement (14.5,2.3)ms, and for T2, the bias was 0.2ms with 

95% limits of agreement (0.9, 0.5)ms. There are 5 outliers (5% of the data) on the T1 plot 

and 4 outliers (4% of the data) on the T2 plot.

D. Discussion

This work has demonstrated the feasibility of training a neural network to rapidly generate 

cMRF dictionaries for arbitrary cardiac rhythms. The neural network was able to synthesize 

a dictionary in less than 1 second, compared to 3 minutes using a Bloch equation simulation. 

This work removes a major bottleneck in cMRF processing by removing the need to create a 

new dictionary after every scan. Notably, the network performs well even in the presence of 

variable or rapid heart rates (Fig. 8) and with missed ECG triggering (Fig. 9), provided these 

cases are represented in some fashion in the training data.

Machine learning techniques for pattern recognition may be trained using simulated data or 

data from actual MRI scans. Both approaches have their own advantages. In this work, 

simulated training data were used, and care was taken to ensure that the training data were 
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representative of actual cardiac rhythms that could be encountered. Random noise was added 

to the RR interval timings to improve the robustness to heartbeat-to-heartbeat variations. 

Also, 5% of the training data were corrupted by missed ECG triggers to further improve the 

network’s generalizability, as shown in the numerical simulation results. One advantage of 

using simulated data is that a potentially unlimited amount of training data can be generated 

to improve the learning algorithm. On the other hand, training using actual MRI data may 

expose the learning algorithm to physical effects that are important to consider yet 

complicated to simulate.

The neural network introduced here could promote the translation of cMRF into clinical use. 

Previously, cMRF has been implemented using the open-source Gadgetron platform to 

perform online reconstructions at the scanner [75], [76]. However, the total reconstruction 

time was 112s per slice, with 100s needed for dictionary simulation and 12s for gridding and 

pattern matching. This implementation did not include corrections for slice profile or 

preparation pulse efficiency, which increase the computation time six-fold. With the 

proposed neural network, the total reconstruction time could potentially drop to 13s (1s 

dictionary generation, and 12s gridding and matching), which is not expected to impede 

clinical workflow. Furthermore, only the network coefficients need to be saved on the 

reconstruction computer (2MB), which occupy much less space than each dictionary 

(303MB).

Maps reconstructed with dictionary-based techniques like cMRF suffer from quantization 

error due to the discrete nature of the dictionary. This work used a relatively dense 

dictionary with 26,680 tissue property combinations. However, because the neural network 

outputs timecourses so rapidly, it may be feasible to generate a finer-resolution dictionary 

with smaller T1 and T2 step sizes. Additional work will be performed to investigate how the 

sparseness of the training data relates to the smallest achievable step size in the dictionary 

output by the network.

There are several areas that can be explored in future work. The network performance could 

be improved by training with additional data, either using more simulated cardiac rhythms or 

a database of ECG recordings. The network could also be modified take additional tissue or 

scanner properties as inputs, such as B1
+. Finally, the overall cMRF reconstruction time could 

be reduced by developing a neural network that takes undersampled cMRF images as inputs 

and directly outputs tissue property maps.

VII. Conclusions and Future Directions

This review has summarized several ways machine learning may address practical problems 

in MRF. First, neural networks may accelerate dictionary generation, which is crucial for 

applications that quantify many tissue properties simultaneously or require frequent 

calculation of new dictionaries. Second, machine learning may permit faster, more robust 

pattern recognition by bypassing dictionary generation altogether and directly estimating 

tissue property values from measured data. Recent approaches have proposed the use of 

fully-connected neural networks, convolutional networks, and more advanced network 

architectures, like U-nets, for pattern recognition. Finally, original research was presented 
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using a neural network to rapidly generate dictionaries for cardiac MRF. This work 

addresses an important practical bottleneck because scan-specific dictionaries are necessary 

for accurate myocardial T1 and T2 quantification, as the subject’s heart influences the MRF 

signal evolutions.

Advances in machine learning in the coming years will likely have a large impact on the 

growing field of MRF. Machine learning can promote the scalability of MRF to quantify a 

larger number of tissue properties simultaneously. Dictionary sizes and computation times 

increase exponentially with the number of tissue properties (or dimensions) in the dictionary. 

For MRF techniques that aim to quantify many properties at once, it can be infeasible to 

store the dictionary in memory or search for signal matches, even using state-of-the-art 

hardware. Machine learning techniques may liberate MRF from the curse of dimensionality. 

In addition, they may facilitate the use of more complex physical models in MRF, such as 

multi-compartment models for subvoxel tissue characterization [40], [45].

Another emerging area that may profit from machine learning is MRF pulse sequence 

optimization. Many MRF sequences have been designed empirically. However, optimized 

sequences promise a host of benefits, including shortened scan times, higher SNR, and 

improved quantification accuracy. Machine learning technology could automate the selection 

of flip angles, TRs, TEs, and preparation pulses in MRF sequences, as well as inform the 

selection of an optimal k-space trajectory. Optimized MRF sequences could potentially be 

made for specific organs, MRI scan protocols, or even tailored for individual patients.

Image reconstruction for MRF will continue to be an important application for machine 

learning. Novel reconstruction methods can help achieve targets of higher resolution, shorter 

scan times, and improved volumetric coverage. Complex-valued neural networks may gain 

more interest in the future since MRI data are inherently complex, and results suggest that 

complex networks may outperform real-valued networks [66]. There may also be work using 

machine learning to exploit the relationship between different tissue properties—for 

example, by using the correlation between T1 and T2 values in the body, rather than 

estimating each property individually. Finally, machine learning approaches may be 

developed that combine prior information in the form of previous MRI scans, scans from 

other imaging modalities, or even a patient’s medical history to glean more information from 

MRF data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Representative MRF pulse sequence and signal evolutions. The example shown is taken 

from MRF with a FISP readout. In general, the FISP signal is influenced by the flip angle, 

repetition time, T1, and T2 [77]. (a) Varying the flip angles and repetition times sensitizes 

the MRI signal to both T1 and T2. (b) Simulated signal evolutions are stored in a dictionary. 

The top panel shows signals where T2 is fixed at 50ms while T1 is varied from 500ms to 

2000ms. The bottom panel shows signals with T1 fixed at 1000ms while T2 is varied from 

25ms to 100ms.
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Fig. 2. 
(a) MRF data are typically sampled in k-space with a variable density spiral trajectory. The 

trajectory rotates every TR to sample different parts of k-space, as indicated by the solid and 

dotted lines. (b) Each image frame is highly undersampled and corrupted by aliasing 

artifacts. (c) A measured signal evolution from a region in white matter, indicated by the red 

square in (b) and (d), is plotted in red. The signal is corrupted by noise-like interference due 

to the undersampling in k-space. The closest matching fingerprint in the dictionary found by 

dot product matching is plotted in black. (d) Quantitative maps of T1, T2, and M0 are 

obtained by matching the signal evolution at each pixel to the dictionary.
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Fig. 3. 
Schematic of the DRONE network for MRF pattern recognition. The network takes the 

magnitude of a measured MRF signal evolution as input. The data are processed by two 

fully-connected layers with 300 neurons, and it outputs the estimated T1 and T2 values.
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Fig. 4. 
Diagram of a convolutional neural network (CNN) proposed for MRF pattern recognition. 

The CNN takes a measured signal evolution from an undersampled MRF scan as input. 

Although not shown here, the signal is divided into two channels for the real and imaginary 

parts. Next there are 4-6 convolutional layers (note that only one layer is shown for clarity), 

an average pooling layer, and 4-6 fully-connected layers (again, only one layer is shown for 

clarity). The output is an estimate for the T1 and T2 value at the target pixel.
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Fig. 5. 
Schematic of the spatially-constrained tissue quantification (SCQ) network. First, a 

measured signal evolution is input to a feature extraction subnetwork. The network consists 

of 4 fully-connected layers, and it outputs a low-dimensional feature vector. This calculation 

is repeated for each pixel to generate feature maps, which have a lower dimension than the 

undersampled MRF image series. Next, a block of pixels is input to the spatially constrained 

quantification subnetwork. This subnetwork is implemented with a U-net, and it uses blocks 

of data from the feature maps to estimate T1 or T2 at a target pixel. Note that a separate SCQ 

network is trained for each tissue property.
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Fig. 6. 
Schematic of the cardiac MRF pulse sequence (only the first four out of sixteen heartbeats 

are shown for clarity). Each heartbeat consists of a fixed trigger delay (TD). This is followed 

by an inversion pulse (INV) or T2 preparation (T2P) for some heartbeats. Next imaging data 

are collected with variable flip angles during a 255ms acquisition window (ACQ), which is 

placed near the end of the cardiac cycle. The time between two successive acquisition 

windows is denoted by the RR interval.
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Fig. 7. 
Diagram of the proposed neural network architecture. The input to the neural network is a 

17-element vector containing a T1 value, a T2 value, and fifteen RR intervals. Next the input 

passes through two fully-connected layers with 300 neurons per layer. The output has 1536 

nodes corresponding to the real and imaginary parts of the signal evolution at 768 time 

points. Examples of four representative MRF signal evolutions are plotted in the output 

panel.
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Fig. 8. 
Monte Carlo simulation results showing MRF accuracy for myocardial (a) T1 and (b) T2 

under variable heart rate conditions. Results are shown for average heart rates of 40, 60, 80, 

100, and 120bpm. The x-axis shows the amount of random Gaussian noise that was added to 

the RR interval timings as a percentage of the average RR interval, and the y-axis shows the 

normalized RMSE.
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Fig. 9. 
Monte Carlo simulation results showing MRF accuracy for myocardial (a) T1 and (b) T2 

under conditions mimicking missed ECG triggering. Results are shown for average heart 

rates of 40, 60, 80, 100, and 120bpm. The x-axis shows the total number of missed ECG 

triggers during the scan, and the y-axis shows the normalized RMSE.
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Fig. 10. 
cMRF neural net results in the ISMRM/NIST system phantom at 3T with different simulated 

cardiac rhythms. (a, b) cMRF T1 and T2 measurements using a dictionary output by the 

neural net are shown for constant heart rates from 40-120bpm. (c, d) Measurements are also 

shown for cases where the heart rate abruptly changed from 60 to 80bpm (and from 80 to 

60bpm) halfway during the scan.
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Fig. 11. 
Representative short-axis cMRF T1 and T2 maps from a volunteer at 3T. Maps were 

calculated by matching the measured signals to a dictionary derived from a Bloch equation 

simulation, as well as a dictionary output by the neural net. Difference maps are also 

presented (Neural Net – Bloch Equations).

Hamilton and Seiberlich Page 33

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
Bland-Altman analysis comparing myocardial (a) T1 and (b) T2 derived from dictionaries 

using a Bloch equation simulation and dictionaries generated by the neural net. Each data 

point corresponds to the average T1 or T2 measurement calculated within an ROI on a 

volunteer dataset.

Hamilton and Seiberlich Page 34

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hamilton and Seiberlich Page 35

TA
B

L
E

 I

Su
m

m
ar

y 
of

 r
ec

en
t m

ac
hi

ne
 le

ar
ni

ng
 a

pp
ro

ac
he

s 
fo

r 
M

R
F.

 F
or

 e
ac

h 
m

et
ho

d,
 th

e 
ta

bl
e 

pr
ov

id
es

 th
e 

M
R

F 
ap

pl
ic

at
io

n 
(d

ic
tio

na
ry

 g
en

er
at

io
n 

or
 s

ig
na

l 

m
at

ch
in

g)
, n

et
w

or
k 

ar
ch

ite
ct

ur
e,

 th
e 

ty
pe

 o
f 

da
ta

 u
se

d 
fo

r 
tr

ai
ni

ng
 a

nd
 te

st
in

g 
th

e 
ne

tw
or

k,
 th

e 
k-

sp
ac

e 
sa

m
pl

in
g 

us
ed

 to
 a

cq
ui

re
 o

r 
si

m
ul

at
e 

th
e 

tr
ai

ni
ng

 

an
d 

te
st

in
g 

da
ta

, a
nd

 k
ey

 r
es

ul
ts

 r
ep

or
te

d 
in

 th
e 

lit
er

at
ur

e.

M
et

ho
d

M
R

F
A

pp
lic

at
io

n
N

et
w

or
k

A
rc

hi
te

ct
ur

e
T

ra
in

in
g 

D
at

a
Te

st
in

g 
D

at
a

k-
sp

ac
e

Sa
m

pl
in

g
K

ey
 R

es
ul

ts
O

th
er

 N
ot

es

M
R

F-
G

A
N

 [
56

]
D

ic
tio

na
ry

 
ge

ne
ra

tio
n

G
en

er
at

iv
e 

ad
ve

rs
ar

ia
l n

et
w

or
k 

(G
A

N
) 

[5
5]

Si
m

ul
at

ed
 s

ig
na

ls
In

 v
iv

o 
(b

ra
in

)
U

nd
er

sa
m

pl
ed

 
sp

ir
al

~1
00

0x
 f

as
te

r 
th

an
 B

lo
ch

 e
qu

at
io

n 
si

m
ul

at
io

n 
(7

s 
vs

 2
hr

)
D

ic
tio

na
ry

 
in

cl
ud

ed
 s

lic
e 

pr
of

ile
 

co
rr

ec
tio

n

N
eu

ra
l N

et
w

or
k 

fo
r 

C
ar

di
ac

 M
R

F
D

ic
tio

na
ry

 
ge

ne
ra

tio
n

Fu
lly

-c
on

ne
ct

ed
 

fe
ed

fo
rw

ar
d

Si
m

ul
at

ed
 s

ig
na

ls
 

w
ith

 d
if

fe
re

nt
 

ca
rd

ia
c 

rh
yt

hm
s

Si
m

ul
at

io
ns

, 
ph

an
to

m
, a

nd
 in

 v
iv

o 
(c

ar
di

ac
)

U
nd

er
sa

m
pl

ed
 

sp
ir

al
19

7x
 f

as
te

r 
th

an
 B

lo
ch

 e
qu

at
io

n 
si

m
ul

at
io

n 
(0

.8
s 

vs
 1

58
s)

D
ic

tio
na

ry
 

in
cl

ud
ed

 
co

rr
ec

tio
ns

 f
or

 
sl

ic
e 

pr
of

ile
 

an
d 

pr
ep

ar
at

io
n 

pu
ls

e 
ef

fi
ci

en
cy

D
R

O
N

E
 [

60
]

Si
gn

al
 m

at
ch

in
g

Fu
lly

-c
on

ne
ct

ed
Si

m
ul

at
ed

 s
ig

na
ls

 
w

ith
 a

dd
ed

 G
au

ss
ia

n 
no

is
e

Si
m

ul
at

io
ns

, 
ph

an
to

m
, a

nd
 in

 v
iv

o 
(b

ra
in

)

E
PI

 a
nd

 
un

de
rs

am
pl

ed
 

sp
ir

al

Fa
st

er
 th

an
 d

ot
 p

ro
du

ct
 m

at
ch

in
g 

(1
0m

s 
vs

 3
s 

fo
r 

E
PI

; 7
6m

s 
vs

 3
80

s 
fo

r 
sp

ir
al

);
 M

or
e 

ro
bu

st
 to

 n
oi

se
 th

an
 

do
t p

ro
du

ct
 m

at
ch

in
g

E
m

pi
ri

ca
l A

rt
if

ac
t 

N
oi

se
 M

od
el

 [
65

]
Si

gn
al

 m
at

ch
in

g
Fu

lly
-c

on
ne

ct
ed

Si
m

ul
at

ed
 s

ig
na

ls
, 

w
ith

 a
dd

ed
 a

lia
si

ng
 

“n
oi

se
” 

fr
om

 in
 v

iv
o 

sc
an

s

In
 v

iv
o 

(b
ra

in
)

U
nd

er
sa

m
pl

ed
 

sp
ir

al
R

ob
us

t t
o 

al
ia

si
ng

 a
rt

if
ac

ts
; C

an
 

di
re

ct
ly

 o
ut

pu
t c

on
tr

as
t-

w
ei

gh
te

d 
im

ag
es

C
om

pl
ex

-V
al

ue
d 

N
eu

ra
l N

et
s 

[6
6]

Si
gn

al
 m

at
ch

in
g

Fu
lly

-c
on

ne
ct

ed
Si

m
ul

at
ed

 s
ig

na
ls

 
w

ith
 a

dd
ed

 G
au

ss
ia

n 
no

is
e

Si
m

ul
at

ed
 s

ig
na

ls
 

w
ith

 a
dd

ed
 G

au
ss

ia
n 

no
is

e

N
/A

M
or

e 
ac

cu
ra

te
 s

ig
na

l m
at

ch
in

g 
th

an
 

re
al

-v
al

ue
d 

ne
tw

or
k

D
ee

p 
L

ea
rn

in
g 

fo
r 

M
R

F 
[6

2]
Si

gn
al

 m
at

ch
in

g
C

on
vo

lu
tio

na
l n

eu
ra

l 
ne

tw
or

k 
(C

N
N

)
Ph

an
to

m
 a

nd
 in

 v
iv

o 
(b

ra
in

)
Ph

an
to

m
 a

nd
 in

 v
iv

o 
(b

ra
in

)
U

nd
er

sa
m

pl
ed

 
sp

ir
al

Fa
st

er
 th

an
 d

ot
 p

ro
du

ct
 m

at
ch

in
g 

(7
-1

0x
 u

si
ng

 C
PU

, 4
7x

 u
si

ng
 G

PU
)

M
R

F-
C

N
N

 [
68

]
Si

gn
al

 m
at

ch
in

g
C

on
vo

lu
tio

na
l n

eu
ra

l 
ne

tw
or

k 
(C

N
N

)
Si

m
ul

at
ed

 s
ig

na
ls

 
w

ith
 a

dd
ed

 G
au

ss
ia

n 
no

is
e

Si
m

ul
at

ed
 s

ig
na

ls
 

w
ith

 a
dd

ed
 G

au
ss

ia
n 

no
is

e

N
/A

M
or

e 
ac

cu
ra

te
 th

an
 d

ot
 p

ro
du

ct
 

m
at

ch
in

g,
 e

sp
ec

ia
lly

 f
or

 T
2

Sp
at

ia
lly

-C
on

st
ra

in
ed

 
Q

ua
nt

if
ic

at
io

n 
[6

1]
Si

gn
al

 m
at

ch
in

g
Fu

lly
-c

on
ne

ct
ed

 
la

ye
rs

 f
ol

lo
w

ed
 b

y 
U

-n
et

 [
78

]

In
 v

iv
o 

(b
ra

in
)

In
 v

iv
o 

(b
ra

in
)

U
nd

er
sa

m
pl

ed
 

sp
ir

al
Sh

or
te

n 
sc

an
 ti

m
e 

4x
 (

23
s 

to
 6

s)
 w

ith
 

co
m

pa
ra

bl
e 

m
ap

 q
ua

lit
y;

 6
x 

fa
st

er
 

re
co

ns
tr

uc
tio

n 
th

an
 d

ot
 p

ro
du

ct
 

m
at

ch
in

g 
(2

.3
s 

vs
 1

4.
2s

)

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 January 01.


	Abstract
	Introduction
	Traditional Methods for Quantitative MRI
	Overview of Magnetic Resonance Fingerprinting
	MRF Pulse Sequence
	Data Sampling
	MRF Dictionary
	Pattern Recognition
	Potential Benefits of MRF over Conventional Quantitative Approaches

	Machine Learning and MRF Dictionary Generation
	Practical Challenges
	Dictionary Simulation Time and Size:
	Corrections for System Imperfections:
	Applications Requiring Frequent Dictionary Generation:

	Machine Learning Approaches for MRF Dictionary Generation
	Generative Adversarial Network for MRF:
	Neural Network for Cardiac MRF Dictionary Generation:


	Machine Learning and MRF Pattern Recognition
	Practical Challenges
	Machine Learning Approaches for Pattern Recognition
	Fully-Connected Neural Networks:
	Convolutional Neural Networks:
	Spatially-Constrained Tissue Quantification:


	A Neural Network for Rapid Cardiac MRF Dictionary Generation for Arbitrary Heart Rhythms
	Introduction
	Materials and Methods
	Neural Network Architecture:
	Network Training:
	Numerical Simulations:
	Phantom Validation:
	Cardiac Mapping in Volunteers:

	Results
	Computation Time and Memory:
	Numerical Simulations:
	Phantom Validation:
	Cardiac Mapping in Volunteers:

	Discussion

	Conclusions and Future Directions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	TABLE I

