
RESEARCH ARTICLE

PyOIF: Computational tool for modelling of

multi-cell flows in complex geometries

Iveta JančigováID
1, Kristı́na Kovalčı́kováID

1, Rudolf WeeberID
2, Ivan CimrákID

1*

1 Cell-in-fluid Biomedical Modelling and Computation Group, University of Žilina, Žilina, Slovakia, 2 Institute

for Computational Physics, University of Stuttgart, Stuttgart, Germany

* ivan.cimrak@fri.uniza.sk

Abstract

A user ready, well documented software package PyOIF contains an implementation of a

robust validated computational model for cell flow modelling. The software is capable of simu-

lating processes involving biological cells immersed in a fluid. The examples of such pro-

cesses are flows in microfluidic channels with numerous applications such as cell sorting,

rare cell isolation or flow fractionation. Besides the typical usage of such computational model

in the design process of microfluidic devices, PyOIF has been used in the computer-aided

discovery involving mechanical properties of cell membranes. With this software, single cell,

many cell, as well as dense cell suspensions can be simulated. Many cell simulations include

cell-cell interactions and analyse their effect on the cells. PyOIF can be used to test the influ-

ence of mechanical properties of the membrane in flows and in membrane-membrane inter-

actions. Dense suspensions may be used to study the effect of cell volume fraction on

macroscopic phenomena such as cell-free layer, apparent suspension viscosity or cell degra-

dation. The PyOIF module is based on the official ESPResSo distribution with few modifica-

tions and is available under the terms of the GNU General Public Licence. PyOIF is based on

Python objects representing the cells and on the C++ computational core for fluid and interac-

tion dynamics. The source code is freely available at GitHub repository, runs natively under

Linux and MacOS and can be used in Windows Subsystem for Linux. The communication

among PyOIF users and developers is maintained using active mailing lists. This work pro-

vides a basic background to the underlying computational models and to the implementation

of interactions within this framework. We provide the prospective PyOIF users with a practical

example of simulation script with reference to our publicly available User Guide.

This is a PLOS Computational Biology Software paper.

Introduction

Computational problem description

Microfluidics has been widely adopted by biological and biomedical research fields including

(but not limited to) lateral flow tests [1], mixing [2] or cell sorting [3]. Due to the very nature

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jančigová I, Kovalčı́ková K, Weeber R,

Cimrák I (2020) PyOIF: Computational tool for

modelling of multi-cell flows in complex

geometries. PLoS Comput Biol 16(10): e1008249.

https://doi.org/10.1371/journal.pcbi.1008249

Editor: Dina Schneidman-Duhovny, Hebrew

University of Jerusalem, ISRAEL

Received: March 8, 2020

Accepted: August 14, 2020

Published: October 19, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1008249

Copyright: © 2020 Jančigová et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: KK and IJ were supported by the Slovak

Research and Development Agency (contract

https://orcid.org/0000-0002-0928-6354
https://orcid.org/0000-0002-1308-0068
https://orcid.org/0000-0003-1128-2093
https://orcid.org/0000-0002-0389-7891
https://doi.org/10.1371/journal.pcbi.1008249
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008249&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008249&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008249&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008249&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008249&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008249&domain=pdf&date_stamp=2020-10-29
https://doi.org/10.1371/journal.pcbi.1008249
https://doi.org/10.1371/journal.pcbi.1008249
http://creativecommons.org/licenses/by/4.0/


of the problems, in the design phase, the microfluidic applications may greatly benefit from

simulations. Also, computational models of fluidic systems involving flow of cells and their

manipulation may lead to computer-aided discovery in biology as demonstrated in [4] and the

references therein.

Computational models serve a wide variety of roles, including hypothesis testing, generat-

ing new insights, deepening understanding, suggesting and interpreting experiments, tracing

chains of causation or performing sensitivity analyses. Models cannot replace experiments but

they can demonstrate whether or not a proposed mechanism is sufficient to produce an

observed phenomenon.

To make it easier for people with biological or biomedical background who typically do not

have extensive computational experience to actually use the computational models for these

purposes the usage should be relatively easy. To the best of our knowledge, there is no such

case among the available computer implementations of cell flow models.

With our work we aim to fulfill two goals: 1. We provide a robust and validated computa-

tional model for cell flow modelling. 2. We keep the usage of the implementation easy enough

for non-experts on cell modelling. We make the computer implementation available under

GPL.

Similar methods and tools

There are numerous computational models that govern flow of cells inside microchannels.

Continuum models treat the membrane as a thin shell and track its deformations in time [5,

6]. The fine network-based models look in detail at the membrane as a lipid bilayer with the

underlying spectrin filament network [7–9]. Coarse-grained models enable simulations of

many cell applications [10, 11]. Mesh-based models study the biomechanical properties of the

cell membrane by means of a triangular network coupled to a lattice-Boltzmann (or any other

fluid solver) representation of the fluid [12–16].

The actual computer implementation of the computational model makes the model use-

ful for the potential user. In-house codes typically have very few users, e.g. in [17], the

authors develop a multiscale and multiphysics computational method to investigate the

transport of magnetic particles as drug carriers in blood flow. The method is implemented

on top of the open-source molecular dynamics simulator LAMMPS [18], however, the code

for the method itself is not available. Some computational methods are published with open

access. An example of such code [19] is a parallel fluid-solid coupling model using the exist-

ing code of LAMMPS for particle propagation of the deformable solids and Palabos [20] for

the simulation of fluid using lattice-Boltzmann method. Other examples include immersed

boundary lattice-Boltzmann finite element method for modelling deformable objects in a

fluid [14, 21] and the work [22] that uses LAMMPS code with GPU accelerated package

using dissipative particle dynamics to implement the model of red blood cell introduced in

[23]. Generally, the usage of computational models is limited only to those experts that

have day-to-day experience with them and these codes have a very long learning curve for

new users. The advantage of PyOIF is the Python interface, which makes the setup relatively

easy.

Several other software tools attempt to provide an easy-to-use interface together with a

well-written documentation. The OpenRBC project [24] aims at modelling of red blood cells

at protein resolution, using multiple millions of mesoscopic particles, thus unsuitable for simu-

lating larger number of cells. Therefore, case studies involving analysis of mesoscopic phenom-

ena, like cell free layer or rheological properties of blood, are impossible to perform using

OpenRBC. Another tool, Hemocell [25], provides implementation of computational model of

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 2 / 21

number APVV-15-0751, www.apvv.sk). IC was

supported by the Ministry of Education, Science,

Research and Sport of the Slovak Republic

(contract number VEGA 1/0643/17, https://www.

minedu.sk/vedecka-grantova-agentura-msvvas-sr-

a-sav-vega/). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008249
https://www.apvv.sk
https://www.minedu.sk/vedecka-grantova-agentura-msvvas-sr-a-sav-vega/
https://www.minedu.sk/vedecka-grantova-agentura-msvvas-sr-a-sav-vega/
https://www.minedu.sk/vedecka-grantova-agentura-msvvas-sr-a-sav-vega/


red blood cell presented in [26]. The implementation allows simulations of many cells thus,

unlike the previous tool, enables analysis of mesoscopic phenomena. The installation of

Hemocell requires installation of an external software Palabos.

Extensible user-friendly tool for computational cell modelling

The PyOIF module fills a niche among the coarse-grained simulation tools. It is open-source,

efficiently handles both single and many-cell simulations, requires only simple user input and

lightweight scripting in Python and is easily extensible.

Design and implementation

Underlying computational model

The PyOIF module is based on two-component model of fluid and immersed objects. The

fluid dynamics is governed by the lattice-Boltzmann method (LBM) [27] while the deformable

surface is represented by tracking particles propagated with molecular dynamics. Both compo-

nents are linked via a two-way momentum conserving force interaction. A simplified version

of this model was introduced in our earlier work [28].

Fluid component. LBM uses probability distribution functions that propagate and

collide over a fixed three-dimensional discrete lattice. We use the existing D3Q19 LBM

implementation in ESPResSo that defines 19 discrete directions along the edges and diago-

nals of the lattice. The particle density functions are defined for each of these directions at

every lattice position and time. The propagation is performed using the velocity Verlet

scheme and the collision operator satisfies the constraints of mass and momentum

conservation.

Coupling of the model components. The fluid is coupled to mesh points by forces. In

this coupling, opposite forces exerted on the mesh points and fluid nodes penalize the differ-

ence between the local fluid velocity~u and mesh points velocities~v

~F ¼ gð~u � ~vÞ: ð1Þ

This way, we approximate the no-slip condition.

Immersed objects component. Besides the fluid force, elastic forces are exerted on mesh

points that are evaluated from the deformation of the cell. The resultant force~Ftot is the driv-

ing force according which the mesh points are propagated in space following Newton’s equa-

tion:

m
@

2
~xðtÞ
@t2

¼ ~Ftot; ð2Þ

where m is the mass of the mesh points. The sources of~Ftot are the elasto-mechanical prop-

erties of the cell membrane, the fluid-structure interaction or possibly other external

stimuli.

Elastic membrane. Next we briefly describe the elastic components of the spring network

that is formed by mesh points linked together by elastic forces. A more detailed discussion and

comparison to similar approaches that use these types of elastic forces, e.g. [16, 29], can be

found in [30].

The spring network is a physical model that consists of mesh points located on the surface

of the immersed object connected by generalised springs. Part of such spring network is

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 3 / 21

https://doi.org/10.1371/journal.pcbi.1008249


depicted in the left bottom part of Fig 1. To capture the membrane properties, we use the fol-

lowing moduli acting in the network.

Stretching modulus generates a nonlinear stretching force between two mesh points A and

B connected with an edge in the mesh. This force is symmetrically applied at both mesh points

and for point A it is defined as

~FsðAÞ ¼ kskðlÞDlAB~pAB; ð3Þ

where ks is the stretching coefficient,~pAB is a unit vector pointing from A to B, κ represents

the neo-Hookean nonlinearity κ(λ) = (λ0.5 + λ−2.5)/(λ + λ−3), λ = lAB/lAB0, lAB0 is the relaxed

length of the edge AB, lAB is the current length, ΔlAB = lAB − lAB0 is the prolongation of this

edge.

Bending modulus is derived from the Helfrich energy [31]. It is a potential linked to four

mesh points belonging to two neighbouring triangles in a mesh. This energy acts to preserve

the angle between the triangles. The expressions for bending force calculations involve posi-

tion vectors A, B, C and D of two triangles ABC and ABD that share a common edge AB and

Fig 1. Left bottom: Part of the triangular mesh. Geometric entities used to define the elasticity are highlighted: four points (bold dots), three edges (full

bold lines), two triangles (dotted lines) and two angles between neighbouring triangles (dashed lines and an arc). Right: Scheme of basic PyOIF classes.

Linking of classes and geometrical entities (depicted in the left part of the figure) is emphasized by bold dots (mesh points), full bold lines (edges),

dotted lines (triangles), dashed lines (angles) and bold grey lines (mesh).

https://doi.org/10.1371/journal.pcbi.1008249.g001

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 4 / 21

https://doi.org/10.1371/journal.pcbi.1008249.g001
https://doi.org/10.1371/journal.pcbi.1008249


current angle θ, see also left bottom part of Fig 1:

~FbðAÞ ¼ � kbDy
~NC

j~NCj
2

ðA � B;C � BÞ
jB � Aj

þ
~ND

j~NDj
2

ðA � B;D � BÞ
jB � Aj

 !

;

~FbðBÞ ¼ � kbDy
~NC

j~NCj
2

ðA � B;A � CÞ
jB � Aj

þ
~ND

j~NDj
2

ðA � B;A � DÞ
jB � Aj

 !

;

~FbðCÞ ¼ kbDyjB � Aj
~NC

j~NCj
2
;

~FbðDÞ ¼ kbDyjB � Aj
~ND

j~NDj
2
;

ð4Þ

where kb is the bending coefficient, Δθ is the difference between θ and θ0, the angle between

these triangles in relaxed state. The vector ~NC ¼ ðA � CÞ � ðB � CÞ is the normal vector to

triangle ABC and ~ND ¼ ðB � DÞ � ðA � DÞ is the normal vector to triangle ABD. ð~a;~bÞ
denotes the dot product.

The local area modulus generates forces corresponding to one triangle. The force applied at

vertex A of triangle ABC with area SABC and centroid T is

~FalðAÞ ¼ kal
DSABC

t2
a þ t2

b þ t2
c

~AT ; ð5Þ

where kal is the local area coefficient, ΔSABC is the difference between current SABC and area

SABC0 of the triangle in the relaxed state and ta, tb, tc are the distances from points A, B, C to

centroid T. It has been shown in [32] that this approach is force- and torque-free. Analogous

forces are assigned to vertices B and C.

The global area modulus ensures that the surface area of the cell remains fairly constant.

The application of this force is similar to the local area: we have the proportional distribution

according to the distance of vertices from centroid ta, tb, tc. In addition to that we have a weight

that takes into account the area of the triangle with respect to the total surface area of the cell:

~FagðAÞ ¼ kagDScell
SABC
Scell0

~AT
t2
a þ t2

b þ t2
c

; ð6Þ

where kag is the global area coefficient, ΔScell is the difference between the current Scell and area

Scell0 in relaxed state. The global area contribution described by this formula is due to the trian-

gle ABC with area SABC and vector ~AT . There are other contributions of this kind from other

triangles in which A is a vertex.

The volume modulus ensures that the volume of the cell remains fairly constant. Thus, it is

also a global modulus, similar to global area. The force as described here, corresponds to trian-

gle ABC and in practice is divided by three and then applied at vertices of the triangle:

~FvðABCÞ ¼ � kv
DVcell

Vcell0
SABC~nABC; ð7Þ

where kv is the volume coefficient, ΔVcell is the difference between the current volume Vcell and

volume Vcell0 in relaxed state. The vector~nABC is the unit normal vector to the plane ABC, thus

the direction of the force is along the triangle’s normal pointing inside the cell. The forces are

scaled by the triangle area so that the triangle annihilation does not occur.

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 5 / 21

https://doi.org/10.1371/journal.pcbi.1008249


Interactions. In addition to the fluid-object coupling, there are three more types of

interactions.

One of them addresses the object-wall encounters. A natural approach in the spring net-

work models is to transform the object-wall interaction into a set of particle-wall interactions.

A repulsive force is then applied at the particles when they get too close to the wall. The forces

correspond to the soft-sphere potential:

VðdÞ ¼ ad� n; d < dcut; ð8Þ

where d is the distance between the particle and the wall, dcut is the threshold at which this

potential starts acting (for larger distances, no force is applied), a is a scaling parameter and n
(typically greater than 1) determines how steep the response gets as particles get close to the

wall.

The second type of coupling pertains to the object-object interactions, which are trans-

formed into a set of particle-particle interactions. These work similarly to the soft-sphere

potential, but take into account not only the distance of the two points but also the normal vec-

tors of the two corresponding objects at these two points. Based on these two vectors, we deter-

mine whether the two membranes have crossed each other and apply the membrane collision

repulsive forces in the proper direction,

VðdÞ ¼ a
1

1þ end
d < dcut; ð9Þ

where d is the distance between the two particles, dcut is the threshold, at which this potential

starts acting, a is a scaling parameter and n determines how steep the response gets as particles

approach one another.

Finally, in very confined flows, it is useful to consider also self-cell interactions that ensure

that the membrane does not self-overlap. To this end we can again use the particle-based soft-

sphere potential.

Model calibration and validation

The model of cell flow has been validated in terms of comparison to analytical and experimen-

tal data.

The calibration of RBC elastic parameters was done using the cell stretching experiment

described in [33]. The detailed procedure of calibration and discussion about suitable values of

parameters are available in [34].

The fluid-structure interaction in the numerical model is represented by a dissipative cou-

pling parameter. The calibration of this numerical parameter was done in [35].

Red blood cells exhibit rich behavioral patterns in a shear flow. Under certain flow condi-

tions, a red blood cell in shear flow may tumble or exhibit a tank-treading motion of the mem-

brane, depending on the shear rate [36]. We have investigated the inclination angle in [39] and

confirmed that our model corresponds to the experimental measurements of the inclination

angle reported in [40]. Further, in [34] we performed computational experiments of tank-

treading frequency also reproducing the experimental results and thus validating the model.

Design principles

The model is implemented in the open source software ESPResSo [41] as a module called

PyOIF [42]. The computational core of ESPResSo and PyOIF is written in C++ and provides

efficient calculations of fluid flow and deformations of elastic objects on both desktop

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 6 / 21

https://doi.org/10.1371/journal.pcbi.1008249


machines and high performance clusters. The users write simulation scripts in Python, which

gives them great flexibility while keeping the code clean and simple.

ESPResSo is a widely used simulation package for research on soft matter, originally devel-

oped in 2004 [43] for coarse-grained simulations of charged systems based on particle formu-

lation. Later in 2006 it was extended with lattice-Boltzmann solver for hydrodynamic

problems [44] and over the years, functionality such as rigid body mechanics and a lattice-

Boltzmann solver running on graphics processors have been added [45]. This setting was ideal

for the next step: Grouping particles into objects representing e.g. cells immersed in a fluid,

thus creating PyOIF.

The predecessor of PyOIF was OIF framework [46] implemented in Tcl scripting language.

OIF was an implementation of a simplified computational model of red blood cells [28]. This

model has some modelling issues such as triangle annihilation and non-force-free and non-

torque-free calculation of elastic forces. Since its introduction, the model has evolved and

these issues have been thoroughly discussed and solved in [30, 32] and the force calculations

for three out of five elastic moduli have been changed.

During the year 2018, the ESPResSo package itself underwent a significant transition from

Tcl scripting interface to Python. The main changes have been reported in [41]. This was not a

merely a translation from one computer language to another, but rather a comprehensive

refactoring and restructuring of the whole code base. We followed this transition and we

restructured the underlying computational model for cells accordingly. This work resulted in

the new Python module PyOIF and involved a completely new object-oriented design that also

brought greater memory and computational efficiency.

The best features of the module are its flexibility, extensibility, documentation and simplic-

ity of user input.

Flexibility lies in the possibility of setting various computational geometries (including flat

or rough walls, periodic obstacle arrays, different cross-sections of microchannels, narrow

constrictions). Further, different types of deformable objects (e.g. cells) can be modelled by

adapting the elasticity parameters.

Extensibility of the module manifests in at several levels. For example, new deformable

objects can be introduced by defining their surface triangulation and their elastic or rigid prop-

erties. Another example could include more advanced models of cells including their inner

structure. Also, the existing classes may be easily extended with further functionality involving

analysis of the object’s deformation. An advanced user may consider the development of new

concepts covering e.g. cell adhesion to surfaces or creation of cell clusters.

Documentation provides detailed description of the underlying classes as well as case studies

of the module usage. The project webpage features examples of different cell types, different

geometries, etc. The book [30] uses the PyOIF module to illustrate various concepts and while

it cannot directly serve as a documentation material, it contains detailed explanations and deri-

vation of the underlying model.

Simplicity of user input is documented by commented python script available as supple-

mentary material S1 Script.

General workflow

When performing a simulation, we need to first prepare the surface triangulations of all types

of objects that enter the simulation. These can be prepared using various software packages,

e.g. Gmsh [47].

In the simulation script we specify the geometry of the domain (size of the simulation box,

walls, obstacles), flow conditions (fluid density, viscosity, flow direction, flow velocity), cell

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 7 / 21

https://doi.org/10.1371/journal.pcbi.1008249


types of all objects (e.g. red blood cells, larger spherical cells with their size, relaxed shape, elas-

ticity), individual cells (position, rotation), their interactions (cell-fluid, cell-wall, cell-cell, self-

cell if needed).

Then follows the integration loop, which in addition to the propagation of cells typically

includes data output both for visualisation and subsequent analysis.

The simulation script is run by calling the pypresso binary with the script as an argument

and may take user defined optional parameters as further input. These parameters are typically

the variables of the performed simulation study. During the execution of the python script,

the individual commands are parsed and call the corresponding C++ methods. This combina-

tion of languages provides user-friendly python interface together with efficient computational

C++ core.

Development, preparation and testing of simulation scripts is done on a desktop machine

or a laptop, but larger simulation studies are typically performed using HPC clusters. The

PyOIF implementation relies on mpi framework for parallelisation. Proper parallelisation can

significantly decrease the computational time. For more information and practical usage we

refer the user to the documentation [48].

Classes and architecture

The elastic forces that govern the behavior of the cell membrane imply the basic elements of

the computational representation of the cell model, depicted in left bottom part of Fig 1:

nodes, edges, triangles and angles. Each of these elements is described by a class, depicted in

the right part of Fig 1.

The class Angle represents two triangles that share an edge, i.e. it carries information

about four nodes. This is useful for two reasons. Firstly, one of the five elastic moduli that we

use—the bending force—preserves the angle between two neighboring triangles and thus can

use instances of this class to calculate the acting bending forces. And secondly, in order to

reduce the number of loops necessary to evaluate the elastic forces, we combine the calculation

of all the local forces into one loop over the angles. When looking at a particular angle, besides

the bending, the stretching force is calculated for the edge shared by the two triangles and local

area forces are calculated for the triangles themselves.

The implementation includes two different types of nodes: FixedPoint and Part-
Point. This allows us to create first an abstract Mesh (using instances of FixedPoint),

which carries information about the object geometry and properties in relaxed state and is

represented by OifCellType. This information can then be shared by all instances of

OifCell that have the same properties, but differ in current positions and deformations.

Their Meshes are then created as modified copies of the pre-calculated OifCellType mesh,

but this time with instances of PartPoint that have mass and can move in the computa-

tional domain.

All interactions happen point-wise. These include cell-wall interactions modeled using the

built-in soft-sphere potentials at points that get closer to boundaries than a pre-defined

threshold.

For cell-cell interactions we developed the membrane-collision potential [49]. These

interactions calculate the current outer normals for pairs of nodes that belong to two cells that

are close to each other. Depending on the relative orientation of the two normals a phenome-

nological repulsive forces are applied to the nodes. The calibration of this interaction is

described in [50].

In confined flows or in other situations when the cells undergo very large deformations, dif-

ferent parts of membrane might get close or in extreme cases even intersect due to the local

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 8 / 21

https://doi.org/10.1371/journal.pcbi.1008249


nature of the model. To prevent such unphysical behavior, it is possible to include the self-cell

interactions as repulsive soft-sphere potentials. The OifCell class then allows specifica-

tion of neighbor exclusions so that the potential is not applied to the nearest points on the

mesh.

Input-output

The initial geometry including the shape and size in the relaxed state of one cell (or another

object) is specified by two input files: nodes.dat and triangles.dat. The first file con-

tains triplets of floats (one triplet per line), where each triplet represents the x, y and z coordi-

nates of one node of the surface triangulation. The order of the triplets defines IDs of the mesh

points. The second file contains triplets of numbers, this time integers. These refer to the IDs

of the nodes in nodes.dat file and specify which three nodes form a triangle together. The

documentation available at [42] contains further information on how the OifCellType
ensures that the triangles are properly oriented.

The typical output are user-defined data files (.txt, .dat) that contain information about

positions, velocities and other properties of cells that can be post-processed and analyzed.

The second type of output, using the method cell.output_vtk_pos, is a .vtk file for

visualisation. The PyOIF module allows the user to perform mesh analysis of any elastic object

during the simulation. It includes information about acting forces or other local properties,

which can also be included in the .vtk output files. Boundaries, walls and fluid can also be

saved in .vtk files.

Units scaling

In ESPResSo, no units are predefined. The user needs to choose a scaling (for example time,

length and energy scale) and all other remaining units are derived from these primary choices.

For further details on units in ESPResSo we refer to [48], Section Introduction.

Since PyOIF is built upon the core of ESPResSo, we adopt this notion and define the time

scale in microseconds, the length scale in microns and the mass scale in 10−15 kg. The units of

other physical quantities used in simulations, such as pressure or force, can be derived as

proper combinations of the time, length and mass units. In the following, we refer to all these

scaled physical quantities as lattice units. Also the numerical values of parameters in the exam-

ple script are listed in the lattice unit system. We use the SI unit system when referring to the

values of parameters measured in biomedical experiments.

With the lattice unit system, the order of magnitude of relevant parameters in our simula-

tions is generally from 10−3 to 103. However, this is not the only correct way how to set the

unit system, and it depends strongly on dimensions and the nature of the simulated phenome-

non. Other examples of the unit systems can be found in [30].

Analysis and visualisation

There are two basic types of output from PyOIF. One serves for visualisation and typically con-

sists of .vtk files that can be visualised using the software ParaView [51]. If the data is in the

form of a time series, it can also be exported as a video.

The second type involves quantitative data that is post-processed and analysed. The

PyOIF module offers various methods to provide this data. Some of them describe the

current geometry of the cell, such as min_edge_length(), max_edge_length(),

aver_edge_length(), surface(), volume(), diameter(). Others are related to

the cell location and dynamics, such as get_origin(), get_approx_origin(),

get_velocity(), pos_bounds(). And yet another provides information about local

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 9 / 21

https://doi.org/10.1371/journal.pcbi.1008249


stresses: elastic_forces(parameters). User can easily add new methods to access

cell-related information.

Geometry considerations

The default configuration of the simulation domain is a box with periodic boundary condi-

tions in all three dimensions. Obstacles are typically simple geometric shapes, e.g. 3-dimen-

sional rhomboids or cylinders. The combination of the periodic boundary conditions of the

box and the immersed obstacles allows us to model microfluidic devices with infinite periodic

arrays of obstacles. More complex obstacle structures can be modeled by superposition of sim-

pler shapes that may also overlap.

In principle, it is possible to simulate domains that are not periodic, but it requires further

thought. In non-periodic domains it might be necessary to re-seed the cells that exit the

computational domain and place them at another location (possibly rotated) so that they can

enter the domain again as in e.g. [52]. This can be done by the built-in methods for saving the

mesh nodes and then using the saved nodes to recreate the cells.

Extensibility

To demonstrate how a new feature may be implemented in PyOIF, let us assume that we need

to identify a location on a cell’s surface where the membrane is currently bent the most. Such

feature is not included in PyOIF at this time. In geometric terms, this means that the angle

between two neighbouring triangles in such spot is an outlier from the relaxed state. In the

relaxed state, most angles are close to π radians. Therefore, the outliers will be either close to

zero or close to 2π radians. In the former case, the membrane is bent in such a way that it is

locally convex, while in the latter case it is locally concave. In what follows, we consider the

locally convex case identifying the minimal angle in the mesh. The other case could be imple-

mented in a similar manner.

To demonstrate the simplicity of the needed code, let us implement a new method min_-
angle for the class Mesh. The loop over the angles gives us the minimal angle and the IDs of

four points forming the two neighbouring triangles. Then the minimal angle is returned

together with the IDs.

class Mesh(object):
def min_angle(self):
min_angle = 2�numpy.pi
ids = []
for angle in self.angles:
alpha = angle.size()
if (alpha < min_angle):
min_angle = alpha
ids = [angle.A.get_part_id(),angle.B.get_part_id(),

angle.C.get_part_id(),angle.D.get_part_id()]
return [min_angle,ids]

Results

To demonstrate the PyOIF capabilities, we present an illustrative case—a simulation of cell

flow in bifurcations. It includes a study of cell distribution in the channel. We focus on the

explicit details of the simulation script to highlight the connection between the scripting com-

mands and physical setting, as well as on demonstrating how the model can be used to analyse

the behavior of many cells in flow.

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 10 / 21

https://doi.org/10.1371/journal.pcbi.1008249


Besides this case, the PyOIF module has already been used in several application areas. In

[53] we have modelled the flow of blood with circulating tumor cells in periodic obstacle

arrays. We stated how the density of red cells influences the probability of tumor cell capture.

Recently, we have analysed blood cell damage in specific geometries and we developed an indi-

cator for it—the cell damage index [52].

The PyOIF has been further used by external research groups for evaluation of VAD rota-

tory blood pumps [54], for analysis of micro-roughness and its consequences for platelets acti-

vation and platelet catching [55, 56], for simulation of magnetic active polymers for versatile

microfluidic devices [57]. Recently, the PyOIF module has been used to investigate the equilib-

rium structure and quasi-static deformational response of a magnetic polymersome, a hollow

object whose magnetoactive part is its shell [58].

Cell flow in a bifurcation

There are two basic types of bifurcations: a partition of a single flow channel into two daughter

branches or a confluence of two flow channels into one.

The diverging bifurcations are responsible for non-uniform partitioning of red blood cells

within the network [61]. While there are quantitative data available on the RBC velocity and

flux in the daughter branches and it is known that the RBCs have the tendency to enter the

daughter branch with the higher flow rate (Zweifach-Fung effect), in some cases an inversion

of this effect was observed [62], so further investigation is needed.

The converging bifurcations are helpful in controlling the concentration of cells at a given

position across the width of a channel and thus also need to be considered in the process of

design of microfluidic devices.

The PyOIF module allows us to include different types of cells in a single simulation. In

[67] we modeled a channel that included both a diverging and a converging bifurcation, see

Fig 2, and observed the effect of a single larger stiffer cell (e.g. a white blood cell or a circulating

tumor cell) on the RBC flow. The commented script cell_flow_in_bifurcation.py
is provided as part of the supplementary material S1 Script.

Simulation parameters. The simulated domain was a periodic channel with bifurcation

into two daughter branches that later converge together. The width of the primary channel

was wp = 30μm. For the two daughter branches (denoted upper and lower), we considered a

symmetric case (C: wu = wl = 15μm) and two asymmetric cases. In one of them the ratio of

sizes of daughter branches was 1:2 (A: wu = 10μm, wl = 20μm) and in the other 2:3 (B: wu =

12μm, wl = 18μm).

The RBCs in this simulation have a discocyte shape. They are represented by their mem-

branes. The membrane of red blood cell is characterized by its shear modulus, area compres-

sion modulus and bending modulus. For the shear modulus we used the value μ0 = 5.5μNm−1

from the review paper [59]. For the area expansion modulus we worked with K = 0.025mNm−1

obtained by dynamic membrane fluctuations [60]. The value of bending modulus was calcu-

lated using the biological value kc = 1.15 × 10−19 Nm from [59]. The simulation parameters cor-

responding to μ0, K and kc are k_s, k_b, k_al. The correspondence is however not

direct. The linking of PyOIF elastic parameters to the mechanical properties of cell membrane

is described in detail in [34]. We use values (in lattice units)

k s ¼ 0:005;k b ¼ 0:02;k al ¼ 0:007:

To ensure that surface and volume of the simulated red blood cell remains fairly constant,

we use k_ag = 0.7, k_v = 0.9 (in lattice units). For the physical quantities we use stan-

dard scaling described in Section Design and implementation.

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 11 / 21

https://doi.org/10.1371/journal.pcbi.1008249


The definition of CellType is done using the oif.OifCellType command which takes

several parameters, e.g. the mesh files and the size and elastic parameters of the cell. The cell

can be scaled in each of the three dimensions using the parameter resize.

To set the correct interaction between the fluid and the particles (forming the spring net-

work) we have to set the frictional coupling parameter γ. In case we only have one type of cells

in the simulation, we can use the suggest_LBgamma method of the oif.OifCell class

that returns the value of γ linked to the specific cell based on the analysis from [35]. All types

of cells we might want to add to the simulation need to conform to the same γ setting. The way

to do that is to discretise all new cell types in such a way that the meshes have similar density.

The main integration loop contains outputs for the cell and fluid visualization, integration

command containing number of timesteps performed on the C++ level without coming back

to the Python level, and the necessary calculations and outputs for the post-processing.

In this simulation, the radius of red blood cells was 3.91μm and they were represented by

meshes with 374 nodes.

In the following we discuss simulations with 40 cells (Ht� 4%) and with 60 cells (Ht�
6%). Each of these was repeated 10 times with a different random initial seeding of cells. The

results are aggregated into six cases by geometry and hematocrit: A40, A60, B40, B60, C40,

C60.

The stiffer larger cell was spherical with radius 7.5μm and in all cases, it was seeded at the

center of the parent channel. From the analysis of the dissipative coupling parameter γ, the dis-

cretisation of this cell resulted in 642 mesh nodes.

Fig 2. Distribution of red blood cells in daughter branches and after the confluence. The histograms indicate y-coordinates of RBC centers as the

cells crossed the x = 75μm and x = 130μm positions. The ratio of sizes of daughter branches is 1:2 in case A and 2:3 in case B. In the two cases on the left,

there were 40 red blood cells (Ht� 4%) and in the two cases on the right, there were 60 red blood cells (Ht� 6%). The indicated dimensions are in

micrometers. The height of the channel was h = 20μm.

https://doi.org/10.1371/journal.pcbi.1008249.g002

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 12 / 21

https://doi.org/10.1371/journal.pcbi.1008249.g002
https://doi.org/10.1371/journal.pcbi.1008249


The dynamic viscosity of the fluid was 1.5mPa s, the density 1000kgm−3. The stabilized fluid

velocity at the center of the parent channel was 1.3 × 10−3 ms−1 similar to the value reported in

[65].

Observations. We can observe the distribution of red blood cells in the daughter

branches.

As expected, the wider branches receive a larger proportion of red blood cells and we

observe a fairly equal split when the daughter branches have the same width, Fig 3. We com-

pare the situations when the rare cell is in the parent branch to the situation when it is inside

the daughter branch. In the latter case, for larger hematocrit, the narrow/wider split is more

pronounced. For smaller hematocrit values, we see a slight shift both ways, which may indicate

that the random seeding influences the split more than the flow itself.

When looking at red blood cells in the asymmetric bifurcations, we observe that they tend

to travel closer to the wall towards the wider branch, see Fig 2. The histograms of y-coordinates

of cell centers shown at x = 75μm (middle of the daughter branch) indicate that the cells are

the closer to the right wall (with respect to the direction of the flow). The double peak distribu-

tion in the wider branch is due to the presence of the spherical rare cell. While it travels

through the branch, the red blood cells try to squeeze past it on the sides.

In addition to local elastic stresses, it is possible to calculate an approximation of fluid force

acting on a single red blood cell as a difference between the mesh node velocity and fluid veloc-

ity at the mesh node position, summed over all mesh nodes.

Besides quantitative observation, visual inspection of the cell flow may bring additional

insights. We present a video of the cell flow as supplementary material S1 Video.

During the simulation, OifCell class offers numerous observables such as cell’s surface,

volume, diameter, different stresses on the surface etc. For a complete list we refer to the

PyOIF User Guide. Such data may give valuable insight into the studied problem. To demon-

strate this, in Fig 4 we present plots from one particular simulation representing the time

Fig 3. Percentage split of RBCs as they enter the daughter branches. (a) The out column shows the situation when

the rare cell is in the parent channel and the in column when the rare cell is in the daughter channel. (b) Comparison

of geometries and hematocrits. In the C cases, where both daughter branches have equal width, the one reported as

wider is the one the rare cell entered.

https://doi.org/10.1371/journal.pcbi.1008249.g003

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 13 / 21

https://doi.org/10.1371/journal.pcbi.1008249.g003
https://doi.org/10.1371/journal.pcbi.1008249


evolution of the cell’s data. From this kind of quantitative output we can for example notice

the following interesting observation:

A red blood cell in the narrower branch is less deformed than the one in the wider branch.

Indeed, the surface, diameter and volume for the top branch cell oscillates less than for the cell

in the bottom branch. This could be counter-intuitive, since the wider branch suggests lower

deformation. The explanation lies in the velocity difference: The fluid flows more slowly in top

branch than in the bottom branch. This results in lower shear flow in the top branch and thus

lower deformation.

We can also observe bulk properties of simulated cells, such as hematocrit shown in Fig 5

and compare different initial conditions. In this case we looked at uniform seeding of 100 red

blood cells in which the elastic properties of all cells corresponded to those calibrated by the

stretching experiment and at mixed seeding, in which half of the cells were significantly stiffer.

The stiffer cells may represent those affected by disease, e.g. malaria.

In both cases, the cells were seeded at the same positions, but the seeding was not spatially-

homogeneous, i.e. there was a cell-free spherical area in the main channel that gradually dissi-

pated. In the uniform seeding chart we can observe the complementary oscillations of hemato-

crit values in the parent channel and the wider lower branch, as the cell-free area moves with

the flow until it dissipates.

Interestingly, with the mixed seeding the hematocrit values stabilize sooner than with the

uniform seeding. Observations such as this one can serve as a starting point for further investi-

gation of how blood properties influence flow in various geometries.

Fig 4. Quantitative characteristics of cells in bifurcation. The horizontal axis shows the x-coordinate of the cell’s center of mass. The cell’s surface,

diameter and rotation angle during the first pass (purple line), the second pass (green line) and the third pass (blue line) through the bifurcation are

shown on the y-axis. First row: data for the red blood cell passing through the narrower top branch, second row: data for the red blood cell passing

through the wider bottom branch. The bifurcation depicted as a background image helps to link the data to the spatial location of the cell inside the

channel.

https://doi.org/10.1371/journal.pcbi.1008249.g004

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 14 / 21

https://doi.org/10.1371/journal.pcbi.1008249.g004
https://doi.org/10.1371/journal.pcbi.1008249


Time complexity. In this section we present an overview of the CPU time for this simula-

tion. All the simulations were run on CPUs of a Threadripper 2950X machine with 16 cores

and 32 logical processors with 32 GB RAM and 1x Samsung 970 Evo NVME SSD.

To show the scalability of the computations, we performed test simulations with various

numbers of cells on various numbers of computational cores. We used 0, 5, 10, 20, 40 and 60

cells and we parallelized the computation onto 1, 3, 5, 6, and 10 cores by splitting the simula-

tion box in x or in both x and y directions. Table 1 shows the CPU time in seconds for simulat-

ing 0.1 ms of the cell flow averaged over 2ms. The data in the parentheses show the CPU time

devoted to one blood cell. It was computed by subtracting the CPU time for fluid only from

the respective CPU time for n cells and fluid, divided by n. In this simulation, the fluid was dis-

cretized with spatial grid of 1μm and each RBC had 374 mesh nodes.

From the table we can clearly see that increasing the number of processors decreases the

CPU time and increasing the number of cells increases the CPU time. We calculated the paral-

lel efficiency E and in Fig 6 we depict the values E = S/N, where S is the speed-up ratio S = T1/

TN, N is the number of computational cores and TN is the CPU time for simulation with N
computational cores. We can see that parallel efficiency drops with the increasing number of

cores to around 60% with 10 cores.

To provide the reference time consumption, we measured the time needed to simulate one

pass of the rare cell through the bifurcation channel which amounts to approximately 138ms

Fig 5. Hematocrit in the main parent channel and two daughter branches averaged over 10ms. In the uniform seeding, all red blood cells had the

same elastic properties as calibrated using the stretching experiment. In the mixed seeding, the cells were placed at the same starting positions, but

randomly selected half of them were significantly stiffer.

https://doi.org/10.1371/journal.pcbi.1008249.g005

Table 1. CPU times in seconds for different number of cores and number of cells for 1000 simulation time steps which correspond to 0.1ms of cell flow. The corre-

sponding time per one blood cell is given in parentheses. The reference simulation is in bold.

n_cells

n_proc 0 5 10 20 40 60

1 48.14 55.90 (1.55) 62.68 (1.45) 84.37 (1.81) 145.00 (2.42) 242.47 (3.23)

3 17.40 21.27 (0.77) 22.70 (0.53) 32.14 (0.74) 53.56 (0.90) 93.56 (1.26)

5 12.79 16.88 (0.81) 19.13 (0.63) 23.78 (0.55) 37.35 (0.61) 58.97 (0.76)

6 11.02 14.82 (0.76) 15.98 (0.49) 22.90 (0.0.59) 36.04 (0.62) 53.31 (0.70)

10 8.31 11.61 (0.66) 13.96 (0.56) 18.31 (0.50) 26.67 (0.45) 40.22 (0.53)

https://doi.org/10.1371/journal.pcbi.1008249.t001

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 15 / 21

https://doi.org/10.1371/journal.pcbi.1008249.g005
https://doi.org/10.1371/journal.pcbi.1008249.t001
https://doi.org/10.1371/journal.pcbi.1008249


of flow. With the x-distance 150μm traveled by the rare cell, this leads to the average velocity of

1.085mm/s. The reference simulation was parallelized onto 6 cores and took 16 hours.

Availability and future directions

Since the PyOIF module is part of the ESPResSo package, it is available from the github reposi-

tory [71] forked from the main ESPResSo branch [72] and it is distributed under the terms of

the GNU General Public Licence. The ESPResSo code is developed and maintained primarily

at the Institute for Computational Physics of the University of Stuttgart, Germany, but has

contributors from all over the world. The PyOIF is developed and maintained at Cell-in-fluid

Biomedical Modelling and Computations Group [73] at University of Zilina, Slovakia. We are

open to cooperation with other contributors who would like to add new features to the PyOIF

module. Their work would be integrated into the main package using the same processes as

the current developers use, i.e. pull requests to review new features and bug fixes.

The community actively uses two mailinglists: espressomd-devel@nongnu.org for develop-

ers and espressomd-users@nongnu.org for users. Both work on a subscription basis, are

archived and are a good starting point and resource for anybody who wants to actively use or

develop this computational tool. The questions related to PyOIF module are typically

answered by its developers who are actively using it. There has also been development of new

features per users’ requests.

The source code available at the repository contains sample examples with simple simula-

tions of cells. More advanced examples involving cell random seeding, testing of cell-wall

interactions, stretching tests of red blood cells are available at PyOIF webpage [42]. We

strongly recommend following the steps in the user guide to install PyOIF. And as any scien-

tific software, this module should not be used as a black box. The users should be familiar with

the underlying model and meaning of the parameters they use.

Currently, there are two features under development:

• Inclusion of the cell nucleus: While not applicable to red blood cells which do not posses

one, this will allow us to model other type of cells. Two different approaches are being evalu-

ated, one using bonded and one using non-bonded potentials [74].

• Variable viscosity: Currently, both the fluid and the inside of immersed objects have the

same (constant) viscosity. In blood, this is not the case. The blood plasma has about five

Fig 6. Parallel efficiency of the code.

https://doi.org/10.1371/journal.pcbi.1008249.g006

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 16 / 21

https://doi.org/10.1371/journal.pcbi.1008249.g006
https://doi.org/10.1371/journal.pcbi.1008249


times lower viscosity than the fluid inside the red blood cells. We are implementing an

option that would allow setting a different viscosity inside the immersed objects [75].

The near-future plans include the development of a checkpointing system that would allow

saving the the complete state of an elastic object. Currently, we can save and reconstruct the

geometry, but not the acting forces, which introduces certain inaccuracy when re-seeding

cells.

To conclude, PyOIF is a user-friendly powerful computational tool that has already been

successfully used for simulations of blood flow in microfluidic devices and can be used for pre-

dictive simulations of elastic objects in flow. We hope that it will become a valuable resource

both for computational and experimental biomedical community.

Supporting information

S1 Script. Commented simulation script, including input files.

(ZIP)

S1 Video. Video of cell flow through bifurcation.

(MP4)

Acknowledgments

We thank Martin Slavı́k for his contribution to the rewriting of the Tcl code into Python and

all the members of the Cif-BMCG research group for extensive testing of PyOIF.

Author Contributions

Conceptualization: Iveta Jančigová, Rudolf Weeber, Ivan Cimrák.

Formal analysis: Rudolf Weeber, Ivan Cimrák.

Funding acquisition: Ivan Cimrák.

Investigation: Iveta Jančigová, Kristı́na Kovalčı́ková, Ivan Cimrák.

Methodology: Iveta Jančigová, Kristı́na Kovalčı́ková, Ivan Cimrák.

Software: Iveta Jančigová, Ivan Cimrák.

Supervision: Ivan Cimrák.

Validation: Iveta Jančigová, Kristı́na Kovalčı́ková, Ivan Cimrák.

Visualization: Iveta Jančigová, Ivan Cimrák.

Writing – original draft: Iveta Jančigová, Kristı́na Kovalčı́ková, Ivan Cimrák.

Writing – review & editing: Iveta Jančigová, Kristı́na Kovalčı́ková, Rudolf Weeber, Ivan

Cimrák.

References
1. Vernekar R, Krueger T, Loutherback K, Morton K, Inglis D. Anisotropic permeability in deterministic lat-

eral displacement arrays. Lab on a Chip. 2017; 17:3318–3330. https://doi.org/10.1039/C7LC00785J

PMID: 28861573

2. Zhai Y, Wang A, Koh D, Schneidera P, Oh KW. A robust, portable and backflow-free micromixing

device based on both capillary- and vacuum-driven flow. Lab on a Chip. 2018; 18(2):276–284. https://

doi.org/10.1039/C7LC01077J PMID: 29199733

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 17 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008249.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008249.s002
https://doi.org/10.1039/C7LC00785J
http://www.ncbi.nlm.nih.gov/pubmed/28861573
https://doi.org/10.1039/C7LC01077J
https://doi.org/10.1039/C7LC01077J
http://www.ncbi.nlm.nih.gov/pubmed/29199733
https://doi.org/10.1371/journal.pcbi.1008249


3. Pamme N. Continuous flow separations in microfluidic devices. Lab on a Chip. 2007; 7:1644–1659.

https://doi.org/10.1039/b712784g

4. Brodland G. Computational modeling of cell sorting, tissue engulfment, and related phenomena: A

review. Applied Mechanics Reviews. 2004; 57(1):47–76. https://doi.org/10.1115/1.1583758

5. Gompper G, Schick M. Soft matter: Lipid bilayers and red blood cells. Wiley; 2008.

6. Pozrikidis C. Effect of membrane bending stiffness on the deformation of capsules in simple shear flow.

Journal of Fluid Mechanics. 2001; 440:269–291. https://doi.org/10.1017/S0022112001004657

7. Li H, Lykotrafitis G. Erythrocyte membrane model with explicit description of the lipid bilayer and the

spectrin network. Biophysical Journal. 2014; 107(3):642–653. https://doi.org/10.1016/j.bpj.2014.06.031

PMID: 25099803

8. Li J, Dao M, Lim CT, Suresh S. Spectrin-level modeling of the cytoskeleton and optical tweezers stretch-

ing of the erythrocyte. Biophysical Journal. 2005; 88:3707–3719. https://doi.org/10.1529/biophysj.104.

047332 PMID: 15749778

9. Saiz L, Bandyopadhyay S, Klein ML. Towards an understanding of complex biological membranes from

atomistic molecular dynamics simulations. Bioscience Reports. 2002; 22:151–173. https://doi.org/10.

1023/A:1020130420869 PMID: 12428899

10. Fedosov DA, Caswell B, Karniadakis GE. A multiscale red blood cell model with accurate mechanics,

rheology and dynamics. Biophysical Journal. 2010; 98(10):2215–2225. https://doi.org/10.1016/j.bpj.

2010.02.002 PMID: 20483330

11. Pivkin IV, Karniadakis GE. Accurate coarse-grained modeling of red blood cells. Physical Review Let-

ters. 2008; 101. https://doi.org/10.1103/PhysRevLett.101.118105 PMID: 18851338

12. Zhang J. Lattice Boltzmann method for microfluidics: Models and applications. Microfluidics and Nano-

fluidics. 2011; 10:1–28. https://doi.org/10.1007/s10404-010-0624-1

13. Peskin CS. Numerical analysis of blood flow in the heart. Journal of Computational Physics. 1977;

25:220–252. https://doi.org/10.1016/0021-9991(77)90100-0

14. Krueger T, Varnik F, Raabe D. Efficient and accurate simulations of deformable particles immersed

in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Computers

and Mathematics with Applications. 2011; 61:3485–3505. https://doi.org/10.1016/j.camwa.2010.03.

057

15. Tsubota K, Wada S. Elastic force of red blood cell membrane during tank-treading motion: Consider-

ation of the membrane’s natural state. International Journal of Mechanical Sciences. 2010; 52:356–

364. https://doi.org/10.1016/j.ijmecsci.2009.10.007

16. Gekle S. Strongly accelerated margination of active particles in blood flow. Biophysical Journal. 2016;

110:514–520. https://doi.org/10.1016/j.bpj.2015.12.005 PMID: 26789773

17. Ye H, Shen Z, Li Y. Computational modeling of magnetic particle margination within blood flow through

LAMMPS. Computational Mechanics. 2018; 62(3):457–476.

18. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational

Physics. 1995; 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

19. Tan J, Sinno TR, Diamond SL. A parallel fluid-solid coupling model using LAMMPS and Palabos based

on the immersed boundary method. Journal of Computational Science. 2018; 25:89–100. https://doi.

org/10.1016/j.jocs.2018.02.006 PMID: 30220942

20. Latt J. Palabos, parallel lattice Boltzmann solver; 2019. Available from: http://www.palabos.org.

21. Krueger T. Personal website; 2019. Available from: http://www.timm-krueger.de/downloads.html.

22. Blumers AL, Tang YH, Li Z, Li XJ, Karniadakis GE. GPU-accelerated red blood cells simulations with

transport dissipative particle dynamics. Computer Physics Communications. 2017; 217:171–179.

https://doi.org/10.1016/j.cpc.2017.03.016 PMID: 29104303

23. Fedosov DA, Caswell B, Karniadakis GE. Wall shear stress-based model for adhesive dynamics of red

blood cells in malaria. Biophysical Journal. 2011; 100:2084–2093. https://doi.org/10.1016/j.bpj.2011.

03.027 PMID: 21539775

24. Tang YH, Lu L, Li H, Evangelinos C, Grinberg L, Sachdeva V, et al. OpenRBC: A fast simulator of red

blood cells at protein resolution. Biophysical Journal. 2017; 112:2030–2037. https://doi.org/10.1016/j.

bpj.2017.04.020 PMID: 28538143

25. Zavodszky G, van Rooij B, Azizi V, Alowayyed S, Hoekstra A. Hemocell: A high-performance micro-

scopic cellular library. In: Procedia Computer Science 108C, International Conference on Computa-

tional Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland; 2017. p. 159–165.

26. Mountrakis L, Lorenz E, Malaspinas O, Alowayyed S, Chopard B, Hoekstra AG. Parallel performance of

an IB-LBM suspension simulation framework. Journal of Computational Science. 2015; 9:45–50.

https://doi.org/10.1016/j.jocs.2015.04.006

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 18 / 21

https://doi.org/10.1039/b712784g
https://doi.org/10.1115/1.1583758
https://doi.org/10.1017/S0022112001004657
https://doi.org/10.1016/j.bpj.2014.06.031
http://www.ncbi.nlm.nih.gov/pubmed/25099803
https://doi.org/10.1529/biophysj.104.047332
https://doi.org/10.1529/biophysj.104.047332
http://www.ncbi.nlm.nih.gov/pubmed/15749778
https://doi.org/10.1023/A:1020130420869
https://doi.org/10.1023/A:1020130420869
http://www.ncbi.nlm.nih.gov/pubmed/12428899
https://doi.org/10.1016/j.bpj.2010.02.002
https://doi.org/10.1016/j.bpj.2010.02.002
http://www.ncbi.nlm.nih.gov/pubmed/20483330
https://doi.org/10.1103/PhysRevLett.101.118105
http://www.ncbi.nlm.nih.gov/pubmed/18851338
https://doi.org/10.1007/s10404-010-0624-1
https://doi.org/10.1016/0021-9991(77)90100-0
https://doi.org/10.1016/j.camwa.2010.03.057
https://doi.org/10.1016/j.camwa.2010.03.057
https://doi.org/10.1016/j.ijmecsci.2009.10.007
https://doi.org/10.1016/j.bpj.2015.12.005
http://www.ncbi.nlm.nih.gov/pubmed/26789773
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.jocs.2018.02.006
https://doi.org/10.1016/j.jocs.2018.02.006
http://www.ncbi.nlm.nih.gov/pubmed/30220942
http://www.palabos.org
http://www.timm-krueger.de/downloads.html
https://doi.org/10.1016/j.cpc.2017.03.016
http://www.ncbi.nlm.nih.gov/pubmed/29104303
https://doi.org/10.1016/j.bpj.2011.03.027
https://doi.org/10.1016/j.bpj.2011.03.027
http://www.ncbi.nlm.nih.gov/pubmed/21539775
https://doi.org/10.1016/j.bpj.2017.04.020
https://doi.org/10.1016/j.bpj.2017.04.020
http://www.ncbi.nlm.nih.gov/pubmed/28538143
https://doi.org/10.1016/j.jocs.2015.04.006
https://doi.org/10.1371/journal.pcbi.1008249


27. Ahlrichs P, Dunweg B. Lattice-Boltzmann simulation of polymer-solvent systems. International Journal

of Modern Physics C. 1998; 8:1429–1438. https://doi.org/10.1142/S0129183198001291

28. Cimrák I, Gusenbauer M, Schrefl T. Modelling and simulation of processes in microfluidic devices for

biomedical applications. Computers and Mathematics with Applications. 2012; 64(3):278–288. https://

doi.org/10.1016/j.camwa.2012.01.062

29. Krueger T, Holmes D, Coveney PV. Deformability-based red blood cell separation in deterministic lat-

eral displacement devices—A simulation study. Biomicrofluidics. 2014; 8(5):054114. https://doi.org/10.

1063/1.4897913

30. Cimrák I, Jančigová I. Computational Blood Cell Mechanics. 1st ed. CRC Press; 2018.

31. Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift f ur Natur-

forschung C. 1973; 28:693–703. https://doi.org/10.1515/znc-1973-11-1209

32. Jančigová I, Cimrák I. Non-uniform force allocation for area preservation in spring network models.

International Journal for Numerical Methods in Biomedical Engineering. 2016; 32(10):e02757. https://

doi.org/10.1002/cnm.2757

33. Dao M, Li J, Suresh S. Molecularly based analysis of deformation of spectrin network and human eryth-

rocyte. Materials Science and Engineering C. 2006; 26:1232–1244. https://doi.org/10.1016/j.msec.

2005.08.020

34. Jančigová I, Kovalčı́ková K, Bohiniková A, Cimrák I. Spring-network model of red blood cell: From mem-

brane mechanics to validation. International Journal for Numerical Methods in Fluids. 2020; 2020; 92

(10):1368–1393. https://doi.org/10.1002/fld.4832

35. Bušı́k M, Slavı́k M, Cimrák I. Dissipative coupling of fluid and immersed objects for modelling of cells in

flow. Computational and Mathematical Methods in Medicine. 2018; 2018:7842857. https://doi.org/10.

1155/2018/7842857 PMID: 30363716

36. Nakamura M, Bessho S, Wada S. Spring network based model of a red blood cell for simulating meso-

scopic blood flow. International Journal for Numerical Methods in Biomedical Engineering. 2013; 29

(1):114–128. https://doi.org/10.1002/cnm.2501 PMID: 23293072

37. Fischer TM. Tank-tread frequency of the red cell membrane: Dependence on the viscosity of the sus-

pending medium. Biophysics Journal. 2007; 93:2553–2561. https://doi.org/10.1529/biophysj.107.

104505

38. Tran-Son-Tay R, Sutera SP, Rao PR. Determination of red blood cell membrane viscosity from rheo-

scopic observations of tank-treading motion. Biophysical Journal. 1984; 46(1):65–72. https://doi.org/10.

1016/S0006-3495(84)83999-5 PMID: 6743758

39. Cimrák I. Effect of dissipative coupling parameter in a computational model on the inclination angle of

red blood cells in a shear flow. In: Proceedings of the 9th International Conference on Computational

Systems-Biology and Bioinformatics. CSBio 2018. KMUTT. New York, NY, USA: ACM; 2018. p. 11:1–

11:5.

40. Fischer T, Korzeniewski R. Angle of inclination of tank-treading red cells: Dependence on shear rate

and suspending medium. Biophysical Journal. 2015; 108(6):1352–1360. https://doi.org/10.1016/j.bpj.

2015.01.028 PMID: 25809249

41. Weik F, Weeber R, Szuttor K, Breitsprecher K, de Graaf J, Kuron M, et al. ESPResSo 4.0—An extensi-

ble software package for simulating soft matter systems. The European Physical Journal Special Top-

ics. 2019; 227(14):1789–1816. https://doi.org/10.1140/epjst/e2019-800186-9

42. PyOIF: Computational tool for modelling of multi-cell flows in complex geometries. Resources webpage

for PyOIF; January, 2020, http://www.pyoif.eu.

43. Arnold A, Mann BA, Limbach HJ, Holm C. ESPResSo—An extensible simulation package for research

on soft matter systems. In: Kremer K, Macho V, editors. Forschung und wissenschaftliches, Rechnen

2003, GWDG-Bericht, vol. 63, Gesellschaft fur wissenschaftliche Datenverarbeitung mbh, Gottingen,

Germany. vol. 63; 2004. p. 43–59.

44. Limbach HJ, Arnold A, Mann BA, Holm C. ESPResSo—An extensible simulation package for research

on soft matter systems. Computer Physics Communications. 2006; 174(9):704–727. https://doi.org/10.

1016/j.cpc.2005.10.005

45. Arnold A, Lenz O, Kesselheim S, Weeber R, Fahrenberger F, Roehm D, et al. ESPResSo 3.1—Molecu-

lar dynamics software for coarse–grained models. In: Griebel M, Schweitzer MA, editors. Meshfree

Methods for Partial Differential Equations VI, Lecture Notes in Computational Science and Engineering.

vol. 89; 2013. p. 1–23.

46. Cimrák I, Gusenbauer M, Jančigová I. An ESPResSo implementation of elastic objects immersed in a

fluid. Computer Physics Communications. 2014; 185(3):900–907. https://doi.org/10.1016/j.cpc.2013.

12.013

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 19 / 21

https://doi.org/10.1142/S0129183198001291
https://doi.org/10.1016/j.camwa.2012.01.062
https://doi.org/10.1016/j.camwa.2012.01.062
https://doi.org/10.1063/1.4897913
https://doi.org/10.1063/1.4897913
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1002/cnm.2757
https://doi.org/10.1002/cnm.2757
https://doi.org/10.1016/j.msec.2005.08.020
https://doi.org/10.1016/j.msec.2005.08.020
https://doi.org/10.1002/fld.4832
https://doi.org/10.1155/2018/7842857
https://doi.org/10.1155/2018/7842857
http://www.ncbi.nlm.nih.gov/pubmed/30363716
https://doi.org/10.1002/cnm.2501
http://www.ncbi.nlm.nih.gov/pubmed/23293072
https://doi.org/10.1529/biophysj.107.104505
https://doi.org/10.1529/biophysj.107.104505
https://doi.org/10.1016/S0006-3495(84)83999-5
https://doi.org/10.1016/S0006-3495(84)83999-5
http://www.ncbi.nlm.nih.gov/pubmed/6743758
https://doi.org/10.1016/j.bpj.2015.01.028
https://doi.org/10.1016/j.bpj.2015.01.028
http://www.ncbi.nlm.nih.gov/pubmed/25809249
https://doi.org/10.1140/epjst/e2019-800186-9
http://www.pyoif.eu
https://doi.org/10.1016/j.cpc.2005.10.005
https://doi.org/10.1016/j.cpc.2005.10.005
https://doi.org/10.1016/j.cpc.2013.12.013
https://doi.org/10.1016/j.cpc.2013.12.013
https://doi.org/10.1371/journal.pcbi.1008249


47. Geuzaine C, Remacle JF. Gmsh: a three-dimensional finite element mesh generator with built-in pre-

and post-processing facilities. International Journal for Numerical Methods in Engineering. 2009; 79

(11):1309–1331. https://doi.org/10.1002/nme.2579

48. Holm C, Arnold A, Lenz O, Kesselheim S. ESPResSo documentation; 2018.

49. Jančigová I. Modeling elastic objects in fluid flow with biomedical applications. University of Žilina; 2015.

50. Smiešková M, Bachratá K, Guimaraes IM. Calibration of cell-cell interactions in fluid flow for the simula-

tion model. Proceedings of Experimental fluid mechanics 2019. preprint.

51. Henderson A. ParaView guide, A parallel visualization application. Kitware Inc.; 2007.

52. Gusenbauer M, Tóthová R, Mazza G, Brandl M, Schrefl T, Jančigová I, et al. Cell damage index as

computational indicator for blood cell activation and damage. Artificial Organs. 2018; 42(7):746–755.

https://doi.org/10.1111/aor.13111 PMID: 29608016

53. Bušı́k M, Jančigová I, Tóthová R, Cimrák I. Simulation study of rare cell trajectories and capture rate in

periodic obstacle arrays. Journal of Computational Science. 2016; 17(2):370–376.

54. Studer A. Modeling red blood cell deformation in a rotary blood pump. ETH Zurich; 2016.

55. Belyaev AV. Hydrodynamic repulsion of spheroidal microparticles from micro-rough surfaces. PLoS

ONE. 2017; 12(8):e0183093. https://doi.org/10.1371/journal.pone.0183093 PMID: 28806767

56. Belyaev AV. Catching platelets from the bloodflow: the role of the conformation of von Willebrand factor.

Mathematical Modelling of Natural Phenomena. 2017; 13(8):ID 44.

57. Gusenbauer M, Ozelt H, Fischbacher J, Reichel F, Exl L, Bance S, et al. Simulation of magnetic active

polymers for versatile microfluidic devices. EPJ Web of Conferences. 2013;40:ID 02001.

58. Ryzhkov A, Raikher Y. Coarse-grained molecular dynamics modelling of a magnetic polymersome.

Nanomaterials. 2018; 8(10). https://doi.org/10.3390/nano8100763 PMID: 30261672

59. Tomaiuolo G. Biomechanical properties of red blood cells in health and disease towards microfluidics.

Biomicrofluidics. 2014; 8:051501. https://doi.org/10.1063/1.4895755 PMID: 25332724

60. Park Y, Best CA, Kuriabova T, Henle ML, Feld MS, Levine AJ, et al. Measurement of the nonlinear elas-

ticity of red blood cell membranes. Physical Review E, Statistical, nonlinear, and soft matter physics.

2011; 83(5). https://doi.org/10.1103/PhysRevE.83.051925

61. Medhi B, Agrawal V, Singh A. Experimental investigation of particle migration in suspension flow

through bifurcating microchannels. American Institute of Chemical Engineers Journal. 2018; 64. https://

doi.org/10.1002/aic.16084

62. Clavica F, Homsy A, Jeandupeux L, Obrist D. Red blood cell phase separation in symmetric and asym-

metric microchannel networks: effect of capillary dilation and inflow velocity. Nature Scientific Report.

2016; 6:36763. https://doi.org/10.1038/srep36763

63. Chuang C, Kikuchi K, Ueno H. Collective spreading of red blood cells flowing in a microchannel. Journal

of Biomechanics. 2018; 69:64–69. https://doi.org/10.1016/j.jbiomech.2018.01.009 PMID: 29397999

64. Wang T, Rongin U, Xing Z. A micro-scale simulation of red blood cell passage through symmetric and

asymmetric bifurcated vessels. Nature Scientific Reports. 2016; 6:20262. https://doi.org/10.1038/

srep20262 PMID: 26830454

65. Ye T, Peng L, Li Y. Three-dimensional motion and deformation of a red blood cell in bifurcated micro-

vessels. Journal of Applied Physics. 2018; 123:064701. https://doi.org/10.1063/1.5013174

66. Balogh P, Bagchi P. Analysis of red blood cell partitioning at bifurcations in simulated microvascular net-

works. Physics of Fluids. 2018; 30:051902. https://doi.org/10.1063/1.5024783

67. Jančigová I. Computational modeling of blood flow with rare cell in a microbifurcation. In: Computer

Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering. Taylor and Francis;

2020. p. 518–525.

68. Krueger T, Holmes D, Coveney PV. Deformability-based red blood cell separation in deterministic lat-

eral displacement devices—A simulation study. Biomicrofluidics. 2014; 8(5).

69. Gleghorn JP, Smith JP, Kirby BJ. Transport and collision dynamics in periodic asymmetric obstacle

arrays: Rational design of microfluidic rare-cell immunocapture devices. Physical Review E. 2013;

88:032136. https://doi.org/10.1103/PhysRevE.88.032136

70. Cimrák I. Collision rates for rare cell capture in periodic obstacle arrays strongly depend on density of

cell suspension. Computer Methods in Biomechanics and Biomedical Engineering. 2016; 19(14):1525–

1530. https://doi.org/10.1080/10255842.2016.1165806 PMID: 27023645

71. Cimrák I. PyOIF release; 2020. https://github.com/icimrak/espresso/releases/tag/pyoif-v2.0.

72. Weik F, Weeber R, Szuttor K, Breitsprecher K, de Graaf J, Kuron M, et al. ESPResSo 4.1—An extensi-

ble software package for simulating soft matter systems; 2020. https://github.com/espressomd/

espresso/tree/4.1.

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 20 / 21

https://doi.org/10.1002/nme.2579
https://doi.org/10.1111/aor.13111
http://www.ncbi.nlm.nih.gov/pubmed/29608016
https://doi.org/10.1371/journal.pone.0183093
http://www.ncbi.nlm.nih.gov/pubmed/28806767
https://doi.org/10.3390/nano8100763
http://www.ncbi.nlm.nih.gov/pubmed/30261672
https://doi.org/10.1063/1.4895755
http://www.ncbi.nlm.nih.gov/pubmed/25332724
https://doi.org/10.1103/PhysRevE.83.051925
https://doi.org/10.1002/aic.16084
https://doi.org/10.1002/aic.16084
https://doi.org/10.1038/srep36763
https://doi.org/10.1016/j.jbiomech.2018.01.009
http://www.ncbi.nlm.nih.gov/pubmed/29397999
https://doi.org/10.1038/srep20262
https://doi.org/10.1038/srep20262
http://www.ncbi.nlm.nih.gov/pubmed/26830454
https://doi.org/10.1063/1.5013174
https://doi.org/10.1063/1.5024783
https://doi.org/10.1103/PhysRevE.88.032136
https://doi.org/10.1080/10255842.2016.1165806
http://www.ncbi.nlm.nih.gov/pubmed/27023645
https://github.com/icimrak/espresso/releases/tag/pyoif-v2.0
https://github.com/espressomd/espresso/tree/4.1
https://github.com/espressomd/espresso/tree/4.1
https://doi.org/10.1371/journal.pcbi.1008249


73. Cell-in-fluid Biomedical Modelling and Computation Group. Research group webpage; January, 2020,

http://cellinfluid.fri.uniza.sk.

74. Bohiniková A. Computational modelling of elastic cells with nucleus. In: Proceedings of 6th International

conference on Computational and mathematical biomedical engineering; 2019. p. 622–625.

75. Poštek T. Fluid dynamics model of cells with variable inner and outer fluid viscosity. In: Mathematics in

science and technologies: Proceedings of the MIST conference 2019; 2019. p. 65–72.

PLOS COMPUTATIONAL BIOLOGY PyOIF: Computational tool for modelling of multi-cell flows

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008249 October 19, 2020 21 / 21

http://cellinfluid.fri.uniza.sk
https://doi.org/10.1371/journal.pcbi.1008249

