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Abstract

Single-cell next-generation sequencing assays are powerful tools to understand the nature of 

immune cells that drive disease pathogenesis. In this brief review, we explain the value of 

performing assays at single-cell resolution to better understand the pathogenesis of allergy, asthma 

and other lung diseases. We explain the challenges in performing single-cell studies of airways and 

lung samples from patients with lung diseases. A major limitation comes from the amount of 

diseased tissue that can be utilized for research purposes. Finally, we discuss which sequencing 

strategies can be utilized for successfully investigate airway and lung diseases at single-cell 

resolution.

Keywords

Single-cell RNA-seq; airway disease; smart-seq2

Genetic variants associated with risk of many lung diseases affect gene expression in a 

context-dependent manner in a specific subset of immune cell types in the human body1-7. 

The immune system contains diverse cell types required to defend from infectious agents. At 

the same time, immune cells can over-respond, resulting in allergy, asthma, autoimmune and 

inflammatory diseases. There is probably no other organ system that has a broader influence 

on human health. However, a complete understanding of the diversity of immune cell types 

and their properties that help drive disease pathogenesis is still lacking.

Next-generation sequencing (NGS) is one of the newest and most powerful tools to 

understand biological processes in health and disease. The study of genomes, epigenomes 

and transcriptomes provide unbiased information on how genetic variations and 

environmental signals perturb gene expression and chromatin structure in specific cell types 

to drive disease pathogenesis5, 8-14. Genomic assays like RNA-seq and microarrays are 

routinely performed on a population of cells under the assumption that cells of a particular 
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type are highly similar. However, recent evidences from studies of single cells reveals that 

this assumption is incorrect; individual cells within the same population may differ 

dramatically, and these differences may have important consequences for the function of the 

entire cell population15-22. The application of NGS to the analysis of single-cell 

transcriptomes and epigenomes has enabled biologists to collect an unprecedented amount 

of information from each and every cell present in healthy and diseased tissues. The study of 

individual immune cells in blood, airways and lung samples from patients with lung diseases 

(e.g. allergy, asthma, COPD, pulmonary fibrosis, tuberculosis, bronchiectasis Figure 1) will 

lead to a better definition of the immune cell types driving disease pathogenesis, and also 

help understand the extent of cellular heterogeneity and molecular plasticity in a “hypothesis 

free” manner 12, 17, 18, 20, 21, 23-27. These approaches can address significant challenges that 

currently exist with regard to systematically describing the “molecular status” of 

pathological or protective cell populations.

Is dysregulate immune response in disease associated with the development of new cell 

subset with pathogenic properties or a preferential expansion/contraction of pre-existing 

subsets of immune cells, already physiologically present in blood/lung tissue (Figure 2)? 

Several studies of chronic diseases in humans and in model organisms have reported the 

existence of immune cells that acquire a mixed phenotypes. For instance, in patients with 

latent tuberculosis, T cells responding specifically to mycobacterium tuberculosis antigens 

display both TH1 and TH17 features8, 28. Similarly, TH2 cells with pathogenic properties 

have been identified from patients with allergy and asthma 29-33. However, only studies 

performed at single-cell resolution will enable scientists to determine if those “disease-

specific” functional features are the result of an expansion of a pre-existing population of 

cells or the result of differentiation in response to environmental signals34, 35.

The power of single-cell omics analysis as a discovery tool has been well illustrated in the 

setting of cancer immunology. Just in the past 2 years, many studies have reported on single-

cell omics analysis of the tumor microenvironment in several human cancer types. These 

studies have led to the identification of new immune cell subsets, new immune evasion and 

effector mechanisms, and potentially important molecular targets for cancer 

immunotherapy24, 36-44. For example, our recent single-cell study in lung cancer has led to 

the identification of a highly functional subset of tissue-resident memory T cells, which is 

likely to be the key cellular target of anti-PD1 therapy. Furthermore, it has defined a number 

of novel molecules that are likely to be important for modulating the function of this subset 

to achieve better anti-tumor immune responses45, 46. Single-cell analysis of tumor samples 

before and after anti-PD1 treatment have yielded insights into potential mechanisms and 

biomarkers that can distinguish responders from non-responders to immunotherapy45, 47. 

The studies in the cancer field highlight that single-cell analyses of diseased tissue samples 

can provide information relating to key pathogenic mechanisms driving disease as well as 

help understand mechanisms of action of novel interventions.

The relatively easy access to excess tumor tissue samples from standard diagnostic or 

therapeutic procedures has enabled researches to rapidly conduct these single-cell studies in 

large numbers of cells and patient samples. However, for lung diseases such as asthma and 

COPD it is not routine clinical practice to obtain airway tissue samples. This issue coupled 
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with the limited amount of tissue that can be obtained for research purposes may explain the 

relative paucity of single-cell studies in lung diseases. One way to address this limitation is 

to study lung diseases in model organisms. For instance, single-cell analysis of the 

development of tracheal epithelial cells in vivo has led to the identification of new cell types 

and a better understanding of cell lineages in the context of pulmonary fibrosis48. More 

recently, in a mouse model of asthma driven by house dust mite allergen exposure, Tibitt et 
al. showed that the repertoire of T helper cell in the inflamed lung tissue is much more 

heterogeneous than usually accepted49. However, airway and lung disease are long-lasting 

diseases and mouse models are, by definition, only capturing part of the complex human 

biology. Thus, human studies are likely to provide deeper insights into disease pathology.

An important technical limitation for studying human tissue samples with low cell numbers 

is that the most commonly used high-throughput platforms for single-cell analysis requires 

several thousand cells as input material. Sample with just tens to hundreds of cells would 

require a different approach that relies on single-cell sorting by flow-cytometry into 96-well 

plate following by single-cell library preparation (Figure 1, upper panel). By far the most 

successful method is the optimized single-cell RNA-seq library preparation adapted from the 

Smart-seq2 protocol 50-53 (also commercially developed by Takara, ICell8). When combined 

with index-sorting, high-dimensional protein expression data also can be obtained in 

parallel54. This method, although laborious when prepared manually, allows researchers to 

review the complete surface phenotype of every single cell sorted into a plate and associate 

that event with its transcriptome. The other method is the new generation of droplet-based 

single-cell RNA-seq assay55, 56, commercialized by 10X Genomics. As shown by a 

comparative study57, Drop-seq assays generate lower resolution dataset, making 

computational analysis difficult, especially when analyzing highly similar cell subsets such 

as T cell subsets, as opposed to more diverse cell types such as peripheral blood 

mononuclear cells (Figure 1, lower panel). Our analysis showed that smart-Seq2 assay 

detected twice the number of genes compared to commercial Drop-Seq assay (10X 

Genomics)58. At the level of individual genes, the sensitivity of both assays was similar for 

highly-expressed genes such as B2M. However, for several genes of interest, only 30-40% of 

the cells showed expression using 10X Genomics whereas 85-95% of the cells showed 

expression when using Smart-seq2 assay58. This contrast is more important when working 

with resting immune cells, such as T cells, that contain a much lesser amount of RNA. In 

early 2019, 10X Genomics has released a newer version with a higher rate of mRNA capture 

(resolution). This assay when coupled with sample multiplexing using DNA oligo-barcoded-

antibodies59 or DNA oligo-barcoded-lipid anchoring in cell membrane60 will enable the 

study of airway and lung samples at much higher resolution in a cost-effective manner.

Recently, NGS assays that profile the epigenetic state of cells are also available for studying 

clinical samples with limited cell numbers. Such single-cell epigenetic methods include, 

histone modification profiling by immunoprecipitation followed by sequencing (sc-ChIP-

seq)61, 62 or the more accessible and cost-effective profiling of Transposase Accessible 

Chromatin with high-throughput sequencing (sc-ATAC-seq)63. These assays will complete 

the arsenal of tools required for understanding cellular heterogeneity and the mechanisms of 

cellular differentiation or activation in response to pathogenic perturbations64.
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In summary, single-cell high-dimensional immune-phenotyping, RNA-sequencing, and 

chromatin accessibility profiling analyses of immune cells isolated from blood, airway and 

lung tissue samples from patients with lung diseases will provide insights into the molecular 

and cellular mechanisms that are driving health and diseased states. These approaches are 

likely to constitute the cardinal measures for the future development of diagnostic tools, 

novel biomarkers and therapeutic interventions in the emerging field of precision genomic 

medicine.
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Figure 1. Single-cell next-generation sequencing in airway and lung diseases.
Top panel provides an overview of the processes the clinical samples can go through. Patient 

samples will be processed by isolating cells and staining with both a mix of antibodies 

recognizing cell surface markers conjugated with fluorochrome (for flow cytometry 

analysis) and/or with DNA-barcoded-oligos (for immunophenotyping analysis by 

sequencing). Depending on the number of cells and output dataset requested, stained cells 

will be sorted and processed through two single-cell sequencing platforms: the PCR plate-

based sorted cells with Smart-seq2 library preparations or the droplet-based 10X platform. 

The lower panel shows the importance to select the single-cell sequencing methodology that 

provides the highest resolution. If working with a limited number of cells, higher is the 

number of genes detected per cell, higher will be clustering resolution and the possibility to 

separate cells with new molecular features.
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Figure 2. Schematic representation of the information provided by single-cell analysis.
Top panel shows the distribution of four immune cell subsets in a healthy individual. The 

bottom panel illustrates the possibilities that can happen in diseased states: either the relative 

proportion of one cell subset is increased without changes in their molecular program 

(quantitative change) and/or cells in one subset change their molecular program (qualitative 

change); such differences can be captured by single-cell analyses.
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