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Quantitative analysis of subcellular distributions with
an open-source, object-based tool
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ABSTRACT

The subcellular localization of objects, such as organelles, proteins, or
other molecules, instructs cellular form and function. Understanding the
underlying spatial relationships between objects through colocalization
analysis of microscopy images is a fundamental approach used to inform
biological mechanisms. We generated an automated and customizable
computational tool, the SubcellularDistribution pipeline, to facilitate
object-based image analysis from three-dimensional (3D) fluorescence
microcopy images. To test the utility of the SubcellularDistribution
pipeline, we examined the subcellular distribution of MRNA relative to
centrosomes within syncytial Drosophila embryos. Centrosomes are
microtubule-organizing centers, and RNA enrichments at centrosomes
are of emerging importance. Our open-source and freely available
software detected RNA distributions comparably to commercially
available image analysis software. The SubcellularDistribution pipeline
is designed to guide the user through the complete process of preparing
image analysis data for publication, from image segmentation and data
processing to visualization.

This article has an associated First Person interview with the first author
of the paper.
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INTRODUCTION

Microscopy imaging is a foundational technique for cell biology, as it
allows for the interrogation of spatial relationships between cellular
and tissue components and reveals previously unrecognized aspects
of biological function (Thorn, 2016). As a general principle, the
subcellular localization of biological components to specific domains
is a crucial determinant of function, as spatial proximity allows for
interactions among molecules, proteins, and organelles (Yang, 2013).
Thus, researchers commonly investigate the localization of cellular
components relative to each other using microscopy imaging to gain
insights into biological function (Lagache et al., 2015). Multiple
techniques detect interactions between molecules on the nanometer
scale, including fluorescent resonance energy transfer (Zadran et al.,
2012), fluorescence cross-correlation spectroscopy (Fitzpatrick and
Lillemeier, 2011), bimolecular protein complementation (Kodama
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and Hu, 2012), and the proximity ligation assay (Soderberg et al.,
2006). While powerful, these techniques often require specialized
reagents and/or analysis and cannot detect other biologically relevant
phenomena, such as indirect interactions within macromolecular
complexes and direct interactions between large molecules (Lagache
et al.,, 2015). For these reasons, investigation of the relationship
between fluorescence signals remains an informative approach to
infer biologically relevant interactions in fixed or live samples (Aaron
et al., 2018).

An important challenge for microscopists is to extract meaningful
quantitative  information from data-rich images. Manual
quantification of images is prone to user bias, time-intensive, may
require specialized training, and may be less reproducible (Sbalzarini,
2016). Automated image analysis approaches are favored due to their
reduced user bias, increased reproducibility, and ability to detect low
frequency or subtle changes (Wiesmann et al., 2015).

Quantification of the relationship between fluorescence signals is
referred to as colocalization analysis (Aaron et al., 2018).
Colocalization analysis tests the hypothesis that two fluorescently
labelled objects localize in a biological specimen within the
resolution limit of the optical system (Cordeli¢res and Bolte, 2014).
In general, there are two approaches to test colocalization: methods
based on the relationship between pixel intensities and methods
based on the relationship between groups of pixels termed objects
(Cordelieres and Bolte, 2014). Pixel-based methods test for
correlation between pixel intensities or spatial overlap of non-
background pixels and report the degree of signal coincidence
using numerical values termed colocalization coefficients (Bolte
and Cordelicres, 2006). However, pixel-based approaches to
quantify colocalization are unable to detect signals in close
physical proximity that do not overlap. Object-based approaches,
on the other hand, detect the distances between objects and can
reveal biologically relevant distinctions between biological
conditions that may be missed by pixel-based techniques
(Cordelieres and Bolte, 2014).

Despite the sensitivity of object-based methods, most image
analysis software platforms focus on pixel-based methods for
colocalization analysis, including CellProfiler and ImageJ (McQuin
et al., 2018; Schindelin et al., 2015). The JaCOP plugin for Image]
includes object-based colocalization, but distance measurements can
only be made between the centers of objects (Cordeli¢res and Bolte,
2014). Distances between objects can be measured using CellProfiler,
but the software does not provide tools to visualize the data (McQuin
etal., 2018). Similarly, the Distance Transformation feature of Imaris
Image Analysis Software (Imaris; Bitplane, Inc.) is a popular tool to
measure distances between objects in three-dimensions (x, y, z; 3D),
but this commercial software is cost prohibitive for some users. In
addition, tools to visualize the resultant measurements are not
included. Thus, the cell biology community currently lacks an open-
source, customizable, and user-friendly tool to assess the distance
between objects detected by fluorescence microscopy.
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Fig. 1. Overview of the SubcellularDistribution pipeline. (A) The SubcellularDistribution pipeline analyzes two or more user-provided single channel
fluorescence images. Sample raw data shows cen mRNA (magenta; smFISH; ‘Structure 1’ in tutorial) and centrosomes labeled with GFP-Cnn (green;
‘Structure 2’ in tutorial) within a syncytial Drosophila embryo. (B) Images are first segmented using batch processing. Binary representations of segmented
data are displayed, where foreground pixels are white and background pixels are black and excluded from further analysis. Yellow box shows region enlarged
in C. (C) The segmented pixels are then grouped into individual objects. Boxed region shows inset of a single RNA object, enlarged to the right. Although
segmented images of centrosomes are similarly processed, they are not shown here. (D) Next, object features are extracted. Box lists the features extracted
using the SubcellularDistribution program. (E) The object feature data are stored in a PostgreSQL database. (F) Next, the distances between objects in an
image are measured pairwise; open arrowheads show overlap (0 pm distance) between two objects (e.g. green centrosome versus several magenta RNA
molecules), closed arrowheads show distances measured between objects. (G) An optional module is included for single molecule data to estimate the
number of molecules per object using fluorescence intensity-based normalization. Image shows segmented single molecule RNA signals. (H) Finally, tools
are provided to visualize data. Graph shows fictional data comparing two biological conditions (control versus test), where each dot shows the averaged
measurement from a single image and a box-and-whisker plot is superimposed with midline showing the median and whiskers showing the upper and lower
values. Significance was determined by a t-test. Scale bars: (A,B) 5 ym, (C) 2.5 ym, and (C’,G) 0.5 pm.
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Fig. 2. The SubcellularDistribution pipeline is comparable to
commercial software. Images show mRNA detected by smFISH (magenta)
in NC 12 embryos expressing GFP-Cnn (green). Representative images
show raw data of (A) gapdh mRNA and (B) cen mRNA. In parallel analyses,
raw data were segmented using (C) the Surfaces tool within Imaris software,
or (D) the SubcellularDistribution pipeline. While both gapdh and cen
mRNAs were processed in parallel, only cen is shown here. Graphs show
the mean cumulative percentage of (E) cen mRNA and (F) gapdh mRNA in
interphase or metaphase NC 12 embryos, where mean (dark line)ts.d.
(shading) are shown relative to the distance from a centrosome. Graphs
show the percent of (G) cen mRNA and (H) gapdh mRNA in interphase or
metaphase NC 12 embryos localized within 1 pm of a centrosome as
measured using Imaris (teal circles) or the SubcellularDistribution pipeline
(orange circles), where each dot represents a measurement from one
embryo and a box-and-whisker plot is superimposed. Statistical significance
was tested by paired t-test. Scale bars: 5 ym.

Here, we present the SubcellularDistribution pipeline, an
automated and generalizable method to assess relationships between
fluorescently labeled subcellular structures based on distance
measurements between objects in 3D. This pipeline includes a
single molecule normalization module that can be used to estimate the
number of molecules per object for single molecule data, including
single molecule RNA fluorescence in situ hybridization (smFISH)
data. In addition, the SubcellularDistribution pipeline includes tools
for data visualization. We compare our method to commercially
available image analysis software and demonstrate its utility in
analyzing the distribution of smFISH signals relative to two
subcellular compartments, the centrosome and the nucleus. We
share the SubcellularDistribution pipeline as free and open-source
software with the cell biology community to facilitate robust, object-
based quantification of colocalization in fluorescence microscopy
images.

RESULTS AND DISCUSSION

Overview of the SubcellularDistribution pipeline

The SubcellularDistribution pipeline is written in Python and
implemented using Jupyter notebooks and freely accessible on github
(https:/github.com/pearlryder/subcellular-distribution-pipeline). A
detailed tutorial and a reference data set are provided to make the
pipeline accessible for users who are less familiar with code-based
image analysis. First, users provide single channel z-stack images of
fluorescently labeled subcellular structures of interest (Fig. 1A).
Analysis via the SubcellularDistribution pipeline is scalable and users
can analyze as many subcellular structures as their imaging and post-
processing setup can spectrally unmix. Next, images are segmented in
3D using batch processing with code adapted from the Allen Institute
for Cell Science Cell Segmenter (Fig. 1B) (Chen et al., 2018
preprint). Briefly, image segmentation separates pixels into two
groups: foreground pixels that are part of the structure of interest and
background pixels that are not included in the analysis (Wiesmann
et al., 2015). Next, groups of neighboring foreground pixels are
automatically clustered into individual objects (Fig. 1C). For analysis,
the SubcellularDistribution pipeline extracts the following features
for each object: total pixel intensity in the original image, volume in
pixels, the x, y, z coordinates of the centroid and the surface of the
object, and the raw fluorescence image (Fig. 1D). These data are
stored in a PostgreSQL relational database, which provides powerful
features for parsing and analyzing the data (Fig. 1E). After object
features are extracted, object coordinates are used to measure the
pairwise closest distances between subcellular structures (closed
arrow; Fig. 1F). Overlapping objects are assigned a distance of 0 um
(open arrows; Fig. 1F). The SubcellularDistribution pipeline includes
an optional method to normalize single molecule fluorescence data

(Fig. 1G). For single molecule normalization, users must predetermine
the pixel volume of a single object. Finally, methods are included for
visualization of the distribution of subcellular structures relative to
each other (Fig. 1H). Taken together, the SubcellularDistribution
pipeline offers users an open-source platform to detect, measure, and
visualize distances between subcellular objects.

The SubcellularDistribution pipeline distance

measurements are comparable to commercial methods

To confirm that our image analysis pipeline was able to similarly
detect the distance between subcellular structures compared to more
established methods, we used our pipeline and Imaris software to
analyze images of mRNA detected by smFISH and centrosomes
labeled with GFP-Centrosomin in Drosophila embryos (GFP-Cnn;
Lerit et al., 2015).

Centrosomes function as microtubule organizing centers and
ensure error-free cell division and cellular organization in animal
cells (Conduit et al., 2015). Centrosomes are essential for
Drosophila  embryogenesis, where thousands of centrosomes
reside close to the embryonic surface amenable to a variety of
imaging approaches. During the first 2 h of Drosophila embryo
development, the syncytial nuclei undergo 13 rounds of rapid and
synchronized abridged S-to-M nuclear division cycles prior to
somatic cellularization at nuclear cycle (NC) 14 (Foe and Alberts,
1983). For simplicity, we will refer to M-phase embryos within
metaphase as ‘metaphase’ and embryos captured pre-prophase as
‘interphase.’

Localized RNA has long been implicated as a potential regulator of
the centrosome, yet remains a relatively underexplored phenomenon
(Marshall and Rosenbaum, 2000; Ryder and Lerit, 2018). Work from
our lab and others recently showed that centrocortin (cen) mRNA
forms local enrichments near centrosomes, unlike the metabolic
enzyme gapdh (Fig. 2A,B) (Bergalet et al., 2020; Lécuyer et al.,
2007; Ryder et al., 2020 preprint).

To compare the SubcellularDistribution pipeline with Imaris, we
analyzed images of cen and gapdh mRNAs from Drosophila NC 12
embryos. In Imaris, we segmented images of centrosomes and RNA
using the Surfaces tool and measured distances using the Distance
Transform tool (Fig. 2C). In parallel, we compared these reference
results to measurements obtained with the SubcellularDistribution
pipeline (Fig. 2D). Both methods demonstrated that cen mRNA is
more abundant near centrosomes in interphase and metaphase
embryos than gapdh (Fig. 2E,F). To compare results from both
platforms, distance measurements were plotted by calculating the
cumulative percentage of total RNA that localized up to 5 um from a
centrosome (Fig. 2E,F). We found that the mean distance (dark line)
and standard deviation (lighter shading) of cen and gapdh mRNAs
derived from the two methods overlapped substantially,
demonstrating that these approaches generate comparable results
(Fig. 2E,F). Using a paired #-test to statistically compare the percent
of RNA residing within 1 um of a centrosome confirmed equivalent
levels of cen or gapdh RNA (no significant difference; P>0.05,
Fig. 2G,H). We conclude that the SubcellularDistribution pipeline
generates object-to-object measurements comparable to Imaris,
with the advantages of being free and readily customizable. Imaris
also offers a batch mode to reduce active user-time, although we
found that optimal segmentation was obtained by adjusting
segmentation thresholds manually for each image. In contrast,
image segmentation is run in batch in the SubcellularDistribution
pipeline, reducing processing time and increasing reproducibility.
For reference, we processed 24 images using Imaris for the analysis
presented in Fig. 2, requiring approximately 6 h of active user-time.
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Fig. 3. Using the SubcellularDistribution pipeline for batch processing
larger data sets. Images show maximum intensity projections of mMRNA
(magenta) and centrosomes (GFP-Cnn; green) within interphase Drosophila
embryos. The non-localizing control gapdh mRNA was detected in (A) NC
10, (B) NC 12, and (C) NC 14 embryos. In parallel, sov mRNA was detected
in (D) NC 10, (E) NC 12, and (F) NC 14 embryos. (G) Graphs show the
percent of RNA overlapping with centrosomes and (H) the percentage of
RNA in granules overlapping with centrosomes for the indicated NC stages.
Note that the axes are scaled differently for NC 14 to highlight the
differences between sov and gapdh. Each dot represents a single
measurement from one image, and a box-and-whiskers plot is
superimposed. Significance was determined by unpaired t-test or the Mann—
Whitney U-test for non-parametric data; n.s., not significant. Scale bars:
5pm and 1 ym (insets).

By contrast, the same images were processed with less than 1 h of
active input using the SubcellularDistribution pipeline. Actual
processing times will vary depending upon the subcellular surface
area and computational setup. Finally, unlike Imaris, the
SubcellularDistribution pipeline includes data visualization tools,
further reducing data processing time.

Batch processing with the SubcellularDistribution pipeline
using scalable datasets

Our pipeline operates via batch processing of images, which
facilitates processing of large imaging datasets. We took advantage
of'this feature to process 81 images to investigate the distribution of
another model transcript, small ovary (sov) mRNA, relative to
centrosomes across multiple embryonic NCs. This analysis required
less than 1 h of active user-time.

Sov facilitates heterochromatin stabilization and is required for
embryonic viability (Benner et al., 2019; Jankovics et al., 2018).
Although Sov protein resides within the nucleus (Benner et al.,
2019), sov mRNA localizes near centrosomes (Lécuyer et al.,
2007; Ryder et al., 2020 preprint). However, the patterns of sov
mRNA localization across different syncytial blastoderm NCs
have not been closely examined. Within interphase NC 10-14
embryos, gapdh mRNA remained dispersed throughout the
cytoplasm (Fig. 3A—C). Similarly, in NC 10 embryos, sov
smFISH also appeared predominantly cytoplasmic (Fig. 3D).
By NC 12, however, more sov mRNA overlapped with
centrosomes (Fig. 3E). Further enrichment of sov was observed
at centrosomes in NC 14 embryos (Fig. 3F). Analysis using the
SubcellularDistribution pipeline revealed significantly more sov
overlapping with the centrosome relative to gapdh in interphase
NC 10-14 embryos (Fig. 3G). In NC 12 and NC 14 embryos, sov
was also significantly enriched in higher-order RNA granules,
defined as RNA objects estimated to contain greater than four
individual mRNA molecules (Fig. 3H) (Little et al., 2015). Within
NC 14 embryos, 28.3£11.3% of sov mRNA was enriched at
centrosomes (P<0.0001; Fig. 3G), and nearly 20% of sov was
contained within pericentrosomal granules (P<0.0001; Fig. 3H).
These findings reveal that the localization of sov mRNA to
centrosomes is a developmentally regulated process and may be
correlated with RNA granule formation. We note peak sov mRNA
enrichment at centrosomes during NC 14 coincides with the onset
of heterochromatin formation, hinting that aspects of sov mRNA
localization may contribute to local Sov functions (Rudolph et al.,
2007; Yuan and O’Farrell, 2016). Collectively, these data
demonstrate that the SubcellularDistribution pipeline facilitates
investigation of the relationship between subcellular structures
across scalable datasets, such as multiple developmental stages or
biological conditions.

Measuring distances between diverse subcellular structures
using the SubcellularDistribution pipeline

Having established the utility of the SubcellularDistribution
pipeline for measuring the distance between mRNAs and
centrosomes, we next assayed its ability to detect other organelles,
such as the nucleus. We examined the distribution of Bsg25D/ninein
(nin) mRNA with smFISH. Nin is a pericentrosomal protein
(Kowanda et al., 2016; Zheng et al., 2016) and nin mRNA localizes
near centrosomes in syncytial embryos (Lécuyer et al., 2007). In NC
11 and NC 12 embryos, nin mRNA appeared evenly dispersed
within the cytosol, similar to gapdh (Fig. 4A,B show representative
images from NC 11 embryos; N=11 and N=12 embryos labeled for
gapdh and nin mRNAs, respectively). Unexpectedly, we noted a
marked enrichment of nin mRNA localized near nuclei in NC 13
and NC 14 embryos (Fig. 4C shows a representative image from an
NC 14 embryo; N=12), while gapdh mRNA remained dispersed at
this stage (Fig. 4D shows a representative image from an NC 14
embryo; N=11). We used the SubcellularDistribution pipeline to
measure the distances between nin or gapdh mRNAs and nuclei
using pooled datasets comprising images of early (NC 11 and 12) or
late (NC 13 and 14) stage syncytial embryos. While NC 11-12
embryos showed no significant difference between nin and gapdh
distributions, NC 13—14 embryos showed nin enriched near nuclei
(Fig. 4E). These differences were readily detected within 1 um of a
nucleus (Fig. 4E"). We examined the relative levels of RNA residing
0 um from a nucleus and found that 26.3+3.9% of nin mRNA
overlaps with a nucleus, as compared to 15.5£2.6% for gapdh
mRNA (P<0.0001 by unpaired #test). Our data uncover an
intriguing and previously unrecognized localization of nin mRNA
within Drosophila embryos and reveal that nin mRNA redistributes
to the perinuclear region during late-stage syncytial development.
While the biological significance of nin mRNA localization to
nuclei is currently unknown, Nin protein plays a key role in
regulating nuclear position in Drosophila muscle cells (Rosen et al.,
2019). Whether local nin mRNA resides near nuclei within muscle
cells or otherwise contributes to Nin function warrants further study.
Nevertheless, these findings highlight the utility of our pipeline to
detect unique localization patterns between different subcellular
structures. In principle, the relationship between any two or more
fluorescently labelled subcellular structures may be interrogated
using the SubcellularDistribution pipeline.

Summary

The SubcellularDistribution pipeline is an open-source and freely
available software designed to analyze the distribution of
subcellular structures from multichannel fluorescence microscopy
images. This pipeline is designed to comprehensively guide the user
through the complete process of preparing data for publication, from
image segmentation and data processing to visualization. As an
open-source tool, users can adapt the SubcellularDistribution
pipeline to their own needs. In principle, the pipeline could be
used to assess the distribution of a subcellular structure relative to
multiple other subcellular structures. For example, organelle—
organelle contacts could be analyzed using this tool. In addition,
while we have built the pipeline to focus on the distribution of
fluorescence intensity between two structures, the underlying
Python framework is highly adaptable. The coding savvy user
could investigate other object features, such as volume or shape,
relative to their distance from a subcellular structure. The pipeline
also enables biologists to learn basic coding skills in Python and
SQL through the reference data set and tutorial. These skills are
powerful and of high value, especially for trainees approaching the
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Fig. 4. The SubcellularDistribution pipeline detects unique subcellular
localization patterns. Images show single optical sections of MRNA
(magenta) in embryos stained with DAPI to label nuclei (blue). (A) nin and
(B) gapdh mRNAs appear dispersed in the cytoplasm of NC 11 embryos.
Later in development, in NC 14, (C) nin appears concentrated in perinuclear
puncta, while (D) gapdh remains dispersed. (E) Graphs show the cumulative
distribution of RNA relative to the nuclear surface in early (NC 11 and NC
12) versus later (NC 13 and NC 14) syncytial stages from N=11 NC 11-12
and N=11 NC 13-14 embryos labeled for gapdh and N=12 NC 11-12 and
N=12 NC 13-14 embryos labeled for nin mRNA. (E’) Inset of graphs
highlighting differences in gapdh versus nin distribution within 1 pm of the
nuclear surface. Data are plotted as mean (dark line)+s.d. (shading). Scale
bars: 5 ym and 1 ym (insets).

job market. Ultimately, the SubcellularDistribution pipeline is a
new tool to promote biological discovery by providing a framework
to rigorously test the relationship between subcellular structures.

MATERIALS AND METHODS

Fly stocks

Ppc-GFP-Cnn flies express cnn tagged at the N-terminus with GFP under
endogenous regulatory elements (Lerit et al., 2015). Flies were fed cornmeal
molasses medium and maintained at 25°C in a light and temperature-
controlled incubator.

smFISH

Aged embryos (0.5-3 h) were collected on grape agar plates, and prepared
for smFISH as described in Ryder et al. (2020 preprint). Briefly, embryos
were fixed in a 1:4 solution of 4% paraformaldehyde:heptane for 20 min,
devitellinized in methanol, and stored at —20°C or rehydrated using a
stepwise series of methanol:PBST [PBS with 0.1% Tween-20), washed in
wash buffer (WB: 10% formamide in 2x SSC supplemented with 0.1%
Tween and 2 pg/ml nuclease-free BSA (VWR; #0332-25G)], and
incubated in hybridization buffer (HB: 100 mg/ml dextran sulfate with
10% formamide in 2x SSC supplemented with 0.1% Tween, 2 pg/ml BSA,
and 10 mM ribonucleoside vanadyl complex (RVC; New England Biolabs
#S1402S) for 10-20 min at 37°C. Embryos were incubated overnight with
Stellaris smFISH probes conjugated with either Quasar 570 or Quasar 670
dyes (Table S1) diluted 1:50 in HB, washed extensively in WB warmed to
37°C, stained with DAPI at 10 ng/ml (Thermo Fisher Scientific) in WB for
1 h, washed with PBST, and then mounted in Vectashield (Vector
Laboratories; H-1000). Slides were stored at 4°C and imaged within
1 week.

Microscopy

Images were acquired on a Nikon Ti-E system fitted with a Yokogawa
CSU-X1 spinning disk head, Hamamatsu Orca Flash 4.0 v2 digital CMOS
camera, Perfect Focus system, and a Nikon LU-N4 solid state laser launch
(15 mW 405, 488, 561, and 647 nm) using a 100x1.49 NA Apo TIRF
oil-immersion objective. This microscope was controlled through Nikon
Elements AR software on a 64-bit HP Z440 workstation.

Software installation

The use of a Docker container system to run the SubcellularDistribution
pipeline facilitates the installation of the necessary software packages and
avoids potential package conflicts that may arise during Python installations.
Software may be accessed here: (https:/hub.docker.com/t/pearlryder/
subcellular-distribution-pipeline). Users are provided with detailed
instructions to install Docker and download the SubcellularDistribution
Pipeline: (https:/github.com/pearlryder/subcellular-distribution-pipeline). A
preconfigured Docker image includes the necessary software packages to run
the SubcellularDistribution pipeline, including: Psycopg 2, PostgreSQL
(version 11.2), Seaborn (Waskom et al., 2020), Matplotlib (Hunter, 2007),
NumPy (van der Walt et al., 2011), SciPy (Virtanen et al., 2020), and pandas
(McKinney, 2010). A sample data set is provided to users on FigShare to
learn the SubcellularDistribution pipeline: (https:/figshare.com/projects/
SubcellularDistribution_pipeline/86732).

Segmentation

Image segmentation is a binary classification of image pixels as either a
component of the structure of interest or background. Our pipeline relies
upon 3D-image segmentation to preserve spatial relationships captured
by 3D imaging. Users may choose to segment their images using the
software of their choice, including CellProfiler or Imaris (Carpenter
et al., 2006). We provide instructions for segmenting images using the
Allen Institute Cell Segmenter, a free and open-source software toolkit
for 3D segmentation of microscopy images (Chen et al., 2018 preprint).
We provide example Jupyter notebooks that are optimized for
segmentation of smFISH and centrosomes. Briefly, this method
prepares images for object detection by normalizing image intensities,
removing background, and smoothing the images using 3D filters.
Objects are identified using the Allen Institute’s 3D spot filter. The
watershed algorithm is applied to separate touching objects and a
minimum volume threshold is applied.

Object extraction and distance measurements

Once images are segmented, Jupyter notebooks are used to identify
individual objects and extract data about each of these objects. Objects are
identified in segmented images using the label method from the SciPy
ndimage package (Virtanen et al., 2020). This method identifies objects as
connected components where adjacent pixels share the same values. The
following object features are then extracted: total pixel intensity in the
original image, volume in pixels, the x, y, z coordinates of the object
centroid and surface, and the raw fluorescence image. These features are
saved in a PostgreSQL database. Distances are measured between user-
specified pairs of subcellular structures, referred to here as Structure 1 and
Structure 2. The pipeline first estimates distances between objects by
measuring distances between the centroid coordinates of the objects. This
procedure allows for a quick estimate of the closest Structure 2 object for
each Structure 1 object. The distances between surface coordinates are
then measured between each Structure 1 object and the three Structure 2
objects that were closest by the centroid measurements. If users are
measuring distances between densely packed structures, they can increase
the number of objects that are measured. This approach decreases
processing time. Parallel processing is included as an option to reduce
processing time.

Single molecule RNA normalization

The SubcellularDistribution pipeline identifies single molecule objects
using volume-based thresholding. For example, to normalize our smFISH
data, we empirically determined that single molecules of RNA imaged with
our optical system contain between 20 and 100 pixels. The pipeline
calculates the average integrated fluorescence intensity of objects within
these parameters, which is the average fluorescence intensity of a single
molecule of RNA. To estimate the number of molecules of RNA per object,
we divide each object’s integrated fluorescence intensity by the average
fluorescence intensity of a single molecule of RNA. This approach is
adapted from Mueller et al. (2013) and Little et al. (2015).

Visualization of RNA localization

The pipeline includes code to calculate the distribution profile of a
subcellular structure relative to the distance from another subcellular
structure. This calculation can be performed as fractions of Structure 1 at
each distance from Structure 2 or as a cumulative distribution, where the
percentage of Structure 1 that localizes within specified distances of
Structure 2 is calculated for each image. For cumulative distributions, users
specify a step size that determines the interval for these calculations (e.g. if
users specify at step size of 0.05 um, then the pipeline calculates the
percentage of RNA localized at 0, 0.05, 0.1 um, etc.). Users can also choose
an upper distance threshold from a target object. These calculations can be
saved as .csv files for plotting and/or statistical analysis. The pipeline
includes code demonstrating how to plot these data using the Seaborn library
(Waskom et al., 2020). Users may choose to analyze entire images or
specific regions of interest, as detailed in the SubcellularDistribution
pipeline github documentation.
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Statistical analysis

Statistical analysis was performed using GraphPad Prism software (version
8.4.3). To calculate significance, the distribution normality was first
assessed with a D’Agnostino and Pearson normality test. Data were then
analyzed by Student’s two-tailed r-test or the appropriate nonparametric
tests and are displayed as mean=s.d.

Data management
Data tables may be exported from the Postgres database as .csv files.
Instructions are also provided for saving database backup files.
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