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As one of the widely occurring RNA modifications, 5-methyl-
uridine (m5U) has recently been shown to play critical roles
in various biological functions and disease pathogenesis, such
as under stress response and during breast cancer development.
Precise identification of m5U sites on RNA is vital for the un-
derstanding of the regulatory mechanisms of RNA life. We
present here m5UPred, the first web server for in silico identi-
fication of m5U sites from the primary sequences of RNA. Built
upon the support vector machine (SVM) algorithm and the
biochemical encoding scheme, m5UPred achieved reasonable
prediction performance with the area under the receiver oper-
ating characteristic curve (AUC) greater than 0.954 by 5-fold
cross-validation and independent testing datasets. To critically
test and validate the performance of our newly proposed pre-
dictor, the experimentally validated m5U sites were further
separated by high-throughput sequencing techniques (mi-
CLIP-Seq and FICC-Seq) and cell types (HEK293 and HAP1).
When tested on cross-technique and cross-cell-type validation
using independent datasets, m5UPred achieved an average
AUC of 0.922 and 0.926 under mature mRNA mode, respec-
tively, showing reasonable accuracy and reliability. The
m5UPred web server is freely accessible now and it should
make a useful tool for the researchers who are interested in
m5U RNA modification.
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INTRODUCTION
The development of high-resolution transcriptome mapping and
quantification technologies has made epigenetic modifications of
RNA one of the fastest-growing fields in biological research in the
past several years. Over 170 post-transcriptional modifications have
been identified, with the majority of them occurred in tRNAs and
rRNAs.1 RNA modifications showed imperative roles in varied bio-
logical functions (e.g., embryonic stem cell development,2 cancer
cell survival, migration,3 and response to environmental exposures4).
Over 100 RNA modification enzyme mutations have been associated
with human diseases.5 Besides the well-known role of fine-tuning
RNA structures and functions to regulate gene expression and protein
synthesis by RNA modifications,6 there are many other functions
associated with RNA modifications. Some post-transcriptional RNA
modifications have shown to be dynamic processes that have regula-
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tory roles similar to post-translational protein modifications in con-
trolling cell-type-specific functions.7

However, as one of the most abundant RNA modifications, the identi-
fication and functional characterization of 5-methyluridine (m5U)
remain extremely limited in the literature. As a pyrimidine modifica-
tion, m5U involves methylation at the 5-carbon position of uridine,
which may be the first pyrimidine methyltransferases evolved to cata-
lyze the pyrimidine-C5 methylation.8 The enzymes catalyzing the
modification ofm5U areTrmA in Escherichia coli,9,10 Trm2p in Saccha-
romyces cerevisiae,11 and TRMT2A and TRMT2B in mammals.12,13

m5U has been reported to participate in the development of breast can-
cer,5 systemic lupus erythematosus,14 and regulation of stress response
and development in plants.15 Accurate identification of m5U sites is
crucial to understanding fundamental biological processes and func-
tions in all species. Some wet-lab experimental methods, such as mi-
CLIP-Seq, iCLIP, and FICC-seq, have been developed to identify m5U
sites.16 However, RNA sequencing could be a high-cost and time-
consuming process, and the specificity of antibodies used for immuno-
precipitation restricts the delivery of accurate sequencing results. Thus,
only very limited data have been generated for m5U sites so far. In this
study, we would like to propose an in silico technique for the identifica-
tion of m5U sites based on sequence-derived information using a sup-
port vector machine (SVM) algorithm.

A number of computational methods have been developed to predict
epigenetic modifications of RNA, including m6A site predictors
WHISTLE,17 SRAMP,18 Gene2vec,19 iRNA-Methyl,20 and
M6AMRFS;21 m5C site predictors RNAm5Cfinder,22 iRNA-m5C,23

and M5C-HPCR;24 pseudouridine site predictors iRNA-PseU,25

PseUI,26 PPUS,27 and PIANO;28 and one-stop platform iMRM for
simultaneously identifying various RNA modifications in multiple
species.29 However, to the best of our knowledge, there is no m5U
site predictor available so far. Thus, in this study we would like to pro-
pose the first prediction framework, m5UPred, which can be utilized
for high-accuracy identification of m5U site from RNA sequences. A
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Table 1. Performance Evaluation of m5UPred by Independent Testing

Dataset

Mode Algorithms Sn (%) Sp (%) ACC (%) MCC AUC

Full transcript

SVM 86.06 84.72 85.39 0.708 0.933a

RF 85.18 83.44 84.31 0.687 0.929

NB 86.06 61.53 73.80 0.491 0.845

GLM 83.03 80.45 81.74 0.635 0.897

Mature mRNA

SVM 86.99 89.07 88.03 0.761 0.951a

RF 81.30 97.56 89.43 0.799 0.951

NB 92.36 46.91 69.63 0.441 0.862

GLM 85.57 81.54 83.56 0.672 0.915

We randomly selected 80% of experimentally validated m5U sites as training dataset
and the performance of predictors was evaluated by the remaining 20% of m5U sites
as independent testing data.
aSVM achieved best performance among all classifier with AUC of 0.933 and 0.951 for
full transcript mode and mature mRNA mode.

Table 2. Prediction Performance Using Cross Validation and Independent

Testing Dataset

Dataset Testing Method Sn (%) Sp (%) ACC (%) MCC AUC

Full transcript
cross validation 87.59 89.04 88.32 0.767 0.956

independent test set 87.90 88.80 88.35 0.767 0.956

Mature mRNA
cross validation 88.64 91.18 89.91 0.798 0.956

independent test set 87.44 91.95 89.70 0.795 0.954

80% of experimentally validated m5U sites were used for training, while its performance
was evaluated by the remaining 20% as independent testing data.
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user-friendly web server has also been developed andmade free access
publicly at https://www.xjtlu.edu.cn/biologicalsciences/m5u. We
anticipate that our newly proposed model, m5UPred, could make
the best use of limited experimentally detected data and facilitate
the research of m5U site modification by providing an alternative
computational approach.

RESULTS
Determine the Best Machine Learning Algorithm Used for m5U

Site Prediction

In order to determine the best classifier for constructing m5UPred,
the performances of different classifiers were tested on the indepen-
dent dataset (see Table 1). SVM achieved area under the receiver
operating characteristic curve (AUC) of 0.933 for full transcript
mode and 0.951 for mature mRNA mode, which was the best among
all classifiers and used to build m5UPred.

Performance Evaluation of m5UPred by Benchmark and

Independent Testing Dataset

The prediction performance of m5UPred was evaluated by 5-fold
cross-validation and an independent testing dataset, respectively
(see Table 2). Using SVM as the final classifier, m5UPred was devel-
oped and tested using the same datasets that were previously applied
for algorithm selection. In addition, the tune length of SVM in caret
package was set to 9, with a random grid search for optimization.
When evaluated by the independent testing data, m5UPred showed
good generalization capability and achieved 0.767 Matthews correla-
tion coefficient (MCC) with 88.35% accuracy and 0.956 AUC for full
transcript mode and 0.795 MCC with 89.70% accuracy and 0.954
AUC for mature mRNA mode.

Performance Evaluation of m5UPred by Cross-Technique and

Cross-Cell-Type Validation

It was shown previously that positive samples of RNA modification
captured by different techniques may have different overall pat-
terns.30 To test the performance and robustness of our newly pro-
posed predictor in finding m5U sites generated from different tech-
niques and cell types, we further evaluated the performance of
m5UPred by cross-technique and cross-cell-type validation (Table
3). When tested by the independent dataset generated from another
technique or cell type, m5UPred achieved AUC of 0.882 and 0.922
for cross-technique validation, and AUC of 0.899 and 0.926 for
cross-cell-type validation, under full transcript mode and mature
mRNA mode, respectively. It shows robustness and reliability of
m5UPred.

Web Implementation

To facilitate the access of our model by experimental researchers, a
web server has been developed using Hyper Text Markup Lan-
guage (HTML), Cascading Style Sheets (CSS), and Hypertext Pre-
processor (PHP) and is accessible at https://www.xjtlu.edu.cn/
biologicalsciences/m5u. It allows users to submit query RNA se-
quences in FASTA format with over 41 nt in length and a uridine
in the center for analysis. The web server will evaluate the possi-
bility of m5U modification in the given sequences, which return
all putative m5U sites with download function (Figure 1).

DISCUSSION
In this study, we extracted m5U modification sites from a data source
generated by two sequencing methods and two cell types. A high-ac-
curacy predictor was built by using a SVM model to predict the m5U
modification sites. Satisfactory prediction performance was observed,
with an average AUC of 0.956 for full transcript and 0.954 for mature
mRNA when it was evaluated by an independent test set with 20%
randomly selected sites from the dataset. The model was further
tested by cross-technique and cross-cell-type validation. The results
show that the positive m5U sites generated from different techniques
and cell types share some common features, and these features can be
captured by our m5UPred by extracting sequence-derived informa-
tion. To help understand the sequence composition, we analyzed
full transcript sequences from different cell types and sequencing
methods by DREME31 motif discovery tool. The motifs identified
are provided in Figure S1 and are consistent with the tRNA T-loop
motif of GTTCG/AA proposed by the data source paper.16 A web
server was developed based on our model and made available to the
public to assist the prediction of m5U sites by other researchers.
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Table 3. Cross-Technique and Cross-Cell-Type Validation

Mode Testing Method Evaluation Metric

Cross-Technique Validation Cross-Cell-Type Validation

miCLIP-Seq FICC-Seq Average HEK293 HAP1 Average

Full transcript

cross validation

Sn (%) 86.70 89.80 88.25 86.26 89.67 87.96

Sp (%) 86.83 91.37 89.10 87.19 90.48 88.84

ACC (%) 86.76 90.58 88.67 86.72 80.15 83.44

MCC 0.735 0.812 0.773 0.735 0.901 0.818

AUC 0.946 0.966 0.956 0.942 0.969 0.955

independent dataset

Sn (%) 75.36 56.48 65.92 82.79 57.77 70.28

Sp (%) 89.23 90.10 89.67 89.62 90.21 89.92

ACC (%) 82.29 73.29 77.79 86.20 73.99 80.10

MCC 0.652 0.495 0.574 0.726 0.507 0.617

AUC 0.910 0.853 0.882 0.941 0.857 0.899

Mature mRNA

cross validation

Sn (%) 88.34 94.14 91.24 89.86 95.32 92.59

Sp (%) 90.52 98.04 94.28 91.13 96.71 93.92

ACC (%) 89.43 96.09 92.76 90.50 96.02 93.26

MCC 0.789 0.922 0.856 0.810 0.920 0.865

AUC 0.962 0.992 0.977 0.964 0.987 0.975

independent dataset

Sn (%) 90.07 38.81 64.44 95.41 39.01 67.21

Sp (%) 90.86 97.51 94.19 88.93 98.12 93.53

ACC (%) 90.46 68.16 79.31 92.17 68.57 80.37

MCC 0.809 0.449 0.629 0.845 0.461 0.653

AUC 0.970 0.873 0.922 0.981 0.871 0.926

As previously shown in Table 2, the experimentally validated m5U sites were further separated by high-throughput sequencing techniques and cell types, under full transcript and
mature mRNA mode, respectively. Independent tests by the other technique or cell type are employed to evaluate the performance additional to 5-fold cross validation. When dataset
miCLIP_F was used for training, its performance was tested by 5-fold cross-validation and an independent dataset of FICC_F. Similarly, while dataset FICC_F was used for training,
miCLIP_F served as an independent test set. The same testing scheme was used for datasets separated by cell types as well. The performance of different sequencing techniques and cell
types are then averaged. The performance evaluation of m5UPred by cross-technique and cross-cell-type validation using different machine learning classifiers is listed in Table S1.
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It is worth noting that although m5U sites were generated under
different conditions, they are still from a single source; this may
pose an over-fitting problem, and the performance of the model
may be over-estimated. We calculated the false discovery rate
(FDR) and false omission rate (FOR) at different thresholds
and the true positive rate (TPR). The result confirmed our pre-
vious statement about over-estimation, and the result is provided
in the Supplemental Information. We will keep updating our
model when more data are available. When comparing the cross-
link peaks from two sequencing methods of the raw data, only
around 35% of sites with over 5 crosslink peaks are identified
by both methods;16 therefore, the true-positive m5U sites will
need to be further confirmed by more experimental data. We
noticed that tRNA modifications take the dominant position in
the dataset we used for training, which was also confirmed by
the data source paper. Considering the biological structures and
functional difference of varied RNA molecules, further study
will need to be performed to optimize the model using optimized
window size, secondary structures, modification motif, and
genome information to further improve the model robustness
and generalization ability.
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MATERIALS AND METHODS
Training and Testing Datasets

Benchmark and Independent Testing Dataset Used for m5U Site

Prediction

The positive samples (m5U sites) were obtained from the recently
published single-nucleotide resolution m5U sequencing data,16 and
the sequencing results were generated by FICC-seq and miCLIP-
seq technologies on two cell lines, HEK293 and HAP1 (Table 4).
Data were downloaded from Gene Expression Omnibus (GEO),
with the GEO accession number GEO: GSE109183. Previous
studies32,33 showed RNA sequence 41 nt in length with an RNA
modification site in middle provided the most promising prediction
result. Thus, we adopt this formula and designed our positive data-
set by generating 41 nt sequences with experimental identified U
sites in the center. Unmodified uridine sites located on the same
transcripts of the positive m5U sites were randomly selected, and
10 negative datasets were generated. By combining each of these
10 negative sets with the positive data, 10 separate datasets were
constructed with a 1:1 positive-to-negative ratio. Their prediction
performances were averaged during the evaluation to reduce batch
variance.



Figure 1. Input and Output of m5UPred Web Server

The input of m5UPred is FASTA sequences. The user can paste the sequences into

a text box or provide a FASTA file. m5UPredwill predict them5U site possibility using

our m5UPred model and returns predicted m5U sites. Results can be downloaded

in table format.

Table 4. Base-Resolution Dataset Used for m5U Site Prediction

GEO Accession Technique Cell Line

No. of Sites

SourceFull Mature

GSE109183
miCLIP-Seq HEK293 3,696 1,232 15

FICC-Seq HAP1

80% of the data were randomly selected for training, while the remaining 20% were re-
tained as an independent testing dataset for performance evaluation. All positive and
negative sequences used in this project can be freely downloaded from https://www.
xjtlu.edu.cn/biologicalsciences/m5u. and are provided in the Supplemental Information.

Table 5. Dataset Separated by Sequencing Techniques and Cell Types

Separation Method Mode Condition Site No. Dataset Total No.

Technique

full
miCLIP-Seq 2,225 miCLIP_F

3,696
FICC-Seq 1,471 FICC_F

mature
miCLIP-Seq 823 miCLIP_M

1,232
FICC-Seq 409 FICC_M

Cell type

full
HEK293 2,467 HEK293_F

3,696
HAP1 1,229 HAP1_F

mature
HEK293 868 HEK293_M

1,232
HAP1 364 HAP1_M

www.moleculartherapy.org
The performance of our predictor was evaluated under two
modes, namely full transcript mode and mature mRNA mode.
For the full transcript mode, the positive and negative m5U sites
located in both exonic and intronic regions are all considered to
generate the data, whereas, in the mature mRNA mode, only pos-
itive and negative m5U sites located on mature mRNA transcripts
are employed. Positive m5U sites in different RNA families are
listed in the Supplemental Information. For performance evalua-
tion, 80% of the dataset was randomly selected as a benchmark
training dataset, while the remaining 20% was used as indepen-
dent testing data.

Dataset Separated by High-Throughput Sequencing

Techniques and Cell Types

Besides randomly selected training and testing data from experi-
mentally validated m5U sites, we applied two more strictly
evaluation methods to validate the performance of the proposed
predictor. The experimentally validated m5U sites were further
divided by high-throughput sequencing technique and cell type
(Table 5), from which the cross-technique and cross-cell-type
testing were applied for performance evaluation under full tran-
script and mature mRNA modes, respectively. The performance
was also evaluated by 5-fold cross-validation and an independent
test set. But rather than randomly selecting 20% of the total data
as a test set, we generated test sets by different techniques and
cell types. Concretely, for cross-technique validation, when dataset
miCLIP_F or miCLIP_M were used for training, their performance
was tested by an independent dataset of FICC_F or FICC_M.
Then, we switched the train and test set and used dataset FICC_F
or FICC_M for training and miCLIP_F or miCLIP_M for indepen-
dent testing. The validation scheme was applied for the dataset
separated by cell types as well.
Feature Extraction

High classification accuracy of many machine learning algorithms
largely relies on sequence encoding strategies for feature extraction
of RNA sequences. To achieve the best performance, the chemical
properties of nucleotides and their distribution information are em-
ployed for sequence feature extraction in this study. This strategy
was adapted from previous work by Bari et al.,34 which was originally
used for splicing site prediction from DNA sequence and lately is be-
ing widely used in encoding RNA sequences for RNA modification
prediction.35–37

Nucleotide Density

The nucleotide density represents the distribution and frequency in-
formation of nucleotides at each position. The density (di) of a nucle-
otide N at ith position can be calculated by the number (n) of N
occurred before ði+ 1Þth position divided by i : di = n=i. So, for a
sequence “AUAGUCAUAA,” the density of A is 1, 0.67, 0.43, 0.44,
and 0.50 at the 1st, 3rd, 7th, 9th, and 10th positions, respectively. Simi-
larly, U is 0.50, 0.40, and 0.38 at positions 2, 5, and 8; C is 0.17 at po-
sition 6; and G is 0.25 at position 4 (Table 6).

Nucleotide Chemical Property

The encoding scheme of nucleotide chemical property was designed
based on different chemical structures of four RNA nucleotides.
Four building blocks of RNA, namely adenosine (A), uridine (U),
guanosine (G), and cytosine (C), are categorized into different groups
depending on the number of ring structures (two for A and G and one
for C and T), existence of an amino group (A and C) or keto group (G
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 745
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Table 6. Calculation of Nucleotide Density for a Sample Sequence

Sequence A U A G U C A U A A

No. of same nucleotide accumulated 1 1 2 1 2 1 3 3 4 5

Position 1 2 3 4 5 6 7 8 9 10

Nucleotide density 1 0.5 0.67 0.25 0.4 0.17 0.43 0.38 0.44 0.5
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and T), and strong (C and G) or weak (A and T) hydrogen bonds.
Based on this information, together with the nucleotide density infor-
mation, nucleotide N at ith position from sequence S (with length lÞ
can be represented by the formula Ni= fxi; yi; zi; digði = 1; 2; 3;.lÞ
which satisfies the following equations:

xi =

�
1 if si˛fA;Gg
0 if si˛fC;Ug; yi =

�
1 if si˛fA;Cg
0 if si˛fG;Ug ; zi =

�
1 if si˛fA;Ug
0 if si˛fC; Gg

(1)

Concretely, A, C, G, and U can be encoded as vectors (1,1,1, di),
(0,1,0, di), (1,0,0, di), and (0,0,1, di), respectively. So, each of the nu-
cleotides in the RNA sequences will be transferred into four numeric
values; thus, each of our 41 nt RNA sequences will be encoded into a
164-dimension vector.
Evaluation Matric

Five metrics were employed to evaluate the performance our model,
namely Sn (Sensitivity), Sp (Specificity), MCC, ACC (overall accu-
racy), and AUC, with the equations below:

Sn =
TP

TP + FN
(2)

Sp =
TN

TN + FP
(3)

MCC =
TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞ � ðTP + FNÞ � ðTN + FPÞ � ðTN + FNÞp (4)

ACC =
TP +TN

TP +TN + FP + FN
; (5)

in which TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives, and false negatives, respectively. A
threshold of 0.5 was applied to calculate Sn and Sp. R package
ROCR38 was used to evaluate the performance of the model.
Choice of Machine Learning Classifier

SVM, random forest (RF), generalized linear model (GLM), and
Naive Bayes (NB) are the most popular machine learning classifiers
in RNA modification prediction and have been widely used for
different site predictions.24,27,35 We evaluated the performance of
these algorithms by an independent testing dataset, since the evalua-
tion by cross-validation may over-estimate the performance of
models.39 The R package caret was used to construct machine
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learning models, and all parameters were set by default for primitive
evaluation. The results are shown in Table 1. SVM achieved the best
results among all four algorithms, which was selected as our final al-
gorithm to build our m5U site prediction model.

SVM

SVM is one of the most powerful yet flexible algorithms in bioinfor-
matics research and has been used for many applications (e.g.,
mammalian microRNA target prediction,40 predicting the subcellular
location of proteins,41 and RNA modification site prediction17,42).
The final decision of SVM is determined by a representation of
different classes in a hyperplane, which can be used for varied classi-
fication and regression tasks. In this study, we used the R package
caret to construct our SVMmodel with a non-linear radial basis func-
tion. The prediction performance was evaluated by 5-fold cross-vali-
dation and an independent test set. Initially, all parameters were set by
default to test the performance of the model, and then tune length was
set to 9, with a random grid search for optimization. Random grid
search has been proved by a previous study with better efficiency
than manually set grid searches.43
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Supplemental Information can be found online at https://doi.org/10.
1016/j.omtn.2020.09.031.
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