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Abstract
Cell therapy, i.e., the use of cells to repair an affected tissue or organ, is at the 
forefront of regenerative and personalized medicine. Among the multiple cell 
types that have been used for this purpose [including adult stem cells such as 
mesenchymal stem cells or pluripotent stem cells], urine-derived stem cells 
(USCs) have aroused interest in the past years. USCs display classical features of 
mesenchymal stem cells such as differentiation capacity and immunomodulation. 
Importantly, they have the main advantage of being isolable from one sample of 
voided urine with a cheap and unpainful procedure, which is broadly applicable, 
whereas most adult stem cell types require invasive procedure. Moreover, USCs 
can be differentiated into renal cell types. This is of high interest for renal cell 
therapy-based regenerative approaches. This review will firstly describe the 
isolation and characterization of USCs. We will specifically present USC 
phenotype, which is not an object of consensus in the literature, as well as detail 
their differentiation capacity. In the second part of this review, we will present 
and discuss the main applications of USCs. These include use as a substrate to 
generate human induced pluripotent stem cells, but we will deeply focus on the 
use of USCs for cell therapy approaches with a detailed analysis depending on the 
targeted organ or system. Importantly, we will also focus on the applications that 
rely on the use of USC-derived products such as microvesicles including 
exosomes, which is a strategy being increasingly employed. In the last section, we 
will discuss the remaining barriers and challenges in the field of USC-based 
regenerative medicine.
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Core Tip: Urine-derived stem cells (USCs) display classical features of mesenchymal 
stem cells such as differentiation capacity and immunomodulation. Importantly, they 
are easily isolated from voided urine. Moreover, USCs can be differentiated into many 
cell types including renal cells. This review will describe the isolation and 
characterization of USCs and detail their differentiation capacity. Then, we will present 
the main applications of USCs, from reprogramming into human induced pluripotent 
stem cells to their use for cell therapy approaches (either directly or via their 
exosomes). Finally, the remaining barriers and challenges in the field of USC-based 
regenerative medicine will be discussed.
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INTRODUCTION
The quest for the optimal cellular product to use for cell therapy strategies has always 
been challenging for many reasons. First, candidates are numerous and include not 
only somatic cells but mostly stem cells from adult stem cells to pluripotent ones 
(either embryonic or induced) in distinct differentiation steps. Moreover, the suitable 
cell population depends on the targeted organ and its affection. In addition, despite a 
huge amount of in vivo works (mostly on rodents but some preclinical works have 
been published[1,2]), the scientific community may not have the necessary hindsight 
regarding long-term clinical effects (except for procedures already used in clinical 
routine especially in the hematologic field).

By definition, stem cells are cells able to self-renew and to differentiate into another 
cell type. Multipotency is defined as the potential to differentiate into more than one 
cell type. This review focuses on one adult multipotent stem cell type that has aroused 
interest in the past years especially for their huge advantage of being isolable from one 
sample of voided urine. Whereas most isolation of adult stem cell types require an 
invasive procedure [such as mesenchymal stem cells (MSCs) from adipose tissue or 
bone marrow][3], urine-derived stem cells (USCs) can be isolated and amplified from a 
noninvasive, unpainful and cheap procedure, applicable to every patient, including 
children, without specific care issues and facilities.

While USCs display stem cell properties and a variety of markers, their phenotype 
is not an object of consensus in the literature. They have been used for cell-based 
strategies in many rodent models of tissue regeneration and display strong beneficial 
effects[4,5]. They have also been used in indirect approaches, employing their secretome 
instead of the cells themselves[6,7]. The aim of this review is to list, discuss and propose 
a summary of USC characterization and applications.

ISOLATION AND CHARACTERIZATION OF URINE STEM CELLS
Isolation
The presence of cells in an adult urine sample was described for the first time in 
1976[8]. Since then, many studies reported the presence of epithelial cells in children 
and/or adult urine samples[9,10]. However, the presence of cells in urine that display 
stem cell properties was described in 2008 by Zhang et al[11].

USCs are isolated either from voided urine[11] or upper urinary tract collection[12]. 
Urine is collected into a sterile 50 mL tube with antibiotic and then centrifuged at 
approximately 400 g for 10 min[13,14]. This first step allows elimination of urinary debris 
such as dead squamous cells regularly present in urine or potential contamination 
depending on the collection method. Pellets are usually washed with phosphate 
buffered saline (PBS) and re-suspended in a specific culture medium (described later) 
on 6, 12 or 24 well plates, with or without precoating with collagen or 0.1% gelatin[15,16]. 

https://www.wjgnet.com/1948-0210/full/v12/i10/1080.htm
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From day 1 to day 3, culture supernatant contains a lot of dead and blood cells. The 
medium is changed every day and then every other day.

First, colonies usually appear around 3 d to 9 d after isolation with zero to several 
colonies independent of the age or the sex of the donor[15-18]. The overall success rate 
(being defined by the apparition of at least one colony) is about 50%[16]. Two types of 
USC colony have been reported: Spindle-shaped USCs and rice-shaped USCs[12,13,15,19-21]. 
Different USC types can be present in a single urine sample or in one dish. For the first 
passaging, USCs are detached enzymatically (either clonally or by pooling the colonies 
together) and amplified until their cryopreservation. It should be noted that after urine 
sample conservation at 4°C for 24 h, it remains possible to isolate USCs that keep their 
proliferation capacity and telomerase activity[19].

While different culture media have been described to culture these cells, they 
usually rely on a mixture of basal medium (either Dulbecco’s modified Eagle’s 
medium or keratinocyte-serum-Free medium) containing 0.5% to 10% of fetal bovine 
serum with another medium that is supplemented with growth factors including 
epidermal growth factor such as the renal epithelial growth medium (Lon-
za)[13,15,16,18,22,23].

USC doubling time varies according to passages, ranging from 20 h at P1 to 28 h at 
P5. These results could be variable according to donor or culture medium[12,19,24]. With 
passages, cells adopt an elongated “spindle-shaped” fibroblast-like morphology[22].

USCs can be expanded both in normoxia (21% O2) or hypoxia with hypoxia being 
shown to induce higher proliferation rate but also to increase the USC potential for 
angiogenesis in a wound healing model[25,26].

USC phenotype
Human USCs expressed a variety of markers, and their proposed phenotypes vary 
according to studies, urine sample and likewise between single colonies appearing in a 
single urine sample[20,27,28].

A detailed analysis of the USC phenotype is described in Table 1. There are some 
concordant results in the literature showing that USCs express some MSC markers 
(CD44, CD73 and VIM) and do not express the pan-hematopoietic marker CD45 or 
other hematopoietic-derived cell lineage markers (CD11b, CD14 and CD19). Regarding 
other MSC markers such as CD90, CD105, STRO-1 and other hematopoietic markers 
such as CD34, the expression level is variable among studies, analysis methods or USC 
donors. USCs express some markers linked with stemness and pluripotency (such as 
the embryonic stem cells markers POU5F1, SSEA4 and TRA-1-81) as well as CD117 (c-
kit) marker. Regarding their origin, USCs express adhesion markers such as CD29 
and/or CD166 but not CD31. They also express some renal specific transporters such 
as AQP1 and/or AQP2[20]. Importantly, some studies show that at least a 
subpopulation of USC doubly express CD24/CD133. This combination as well as the 
transcription factor SIX2 indicates a population of renal progenitor cells, which is 
crucial for kidney embryonic development[14].

Origin of USCs
USCs originate from the kidney. Indeed, one study showed that after a kidney 
transplant from a male to a female, isolated USCs were carrying the Y chromosome 
(PCR and FISH analysis) confirming their renal origin[23]. In addition, USCs isolated 
from voided urine display the same characteristics and proprieties as USCs isolated 
specifically from the upper urinary tract. As USCs also meet the criteria of stem cells, 
these cells are therefore called either USCs, urine progenitor cells or renal progenitor 
cells depending on the studies and the isolation protocol, which can include a step of 
cell sorting and may therefore modify the cell phenotype and the characterization 
proposed.

Regarding stem cell properties, even though telomerase activity varies according to 
urine sample, USCs display a normal karyotype irrespective of passages[19,22-24,28] and a 
high telomerase activity, likely excluding contamination of epithelial cells in urine. 
However, despite high activity of telomerase, USCs did not form teratomas when 
injected into immunodeficient mice, highlighting the absence of a tumorigenesis 
phenotype[23,28-35].

As has been repeatedly described for MSCs, USCs also display immunomodulatory 
properties. Despite their higher MHC-I expression, after a few days in coculture, USCs 
inhibit lymphocyte proliferation in vitro[15,24]. This potential effect and their low MHC-II 
expression is of high interest for use of USCs in cell therapy approaches.
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Table 1 Summary of human urine-derived stem cell phenotype

Marker Percentage of expression, % Ref.

Embryonic stem cell markers

c-Myc [+] [23]

[+++] [24,29]SSEA4

[++++] [12,23,27,28,30,31]

[-] [23]TRA-1-60

[+] [27]

TRA-1-81 [+] [23,27,29]

Hematopoietic stem cell markers

CD11b [-] [23]

CD14 [-] [15,23,27,29]

CD19 [-] [23,29]

CD34 [-] [12,13,15,18-20,22-24,28,29,32,33]

CD45 [-] [12,13,18,19,22-24,28,29,31,33]

[-] [12,15,19,24,28]CD117

[++++] [27]

Mesenchymal stem cell markers

[+++] [27]CD24

[++++] [20,27,30-32]

CD44 [++++] [12,13,15,19,20,22-24,28-33]

CD73 [++++] [12,13,15,19,20,22-24,27-33]

[+] [18,27]

[++] [12,29]

[+++] [19,23,24,28]

CD90

[++++] [13,15,20,22,28,30-33]

[-] [27,31]

[+] [22]

[++] [12,24,30]

[+++] [18,23]

CD105

[++++] [15,19,20,28,29,32]

[-] [12,15,20,22,33]

[++] [20]

[+++] [27]

CD133

[++++] [27]

Collagen I [++++] [15]

[-] [12,23,30]SRTO-1

[+] [31]

VIM [++++] [15,20,27]

Endothelial/adhesion markers

CD29 [++++] [13,20,22,23,29-33]

CD31 [-] [12,19,23,29-32,34]

CD166 [++++] [18,23]
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Immunogen markers

[+] [28]

[+++] [29]

CMH-I

[++++] [23]

CMH-II [-] [18,22-24,28,29,33]

Kidney markers

AQP1 [++++] [20]

[-] [20]AQP2

[++] [20]

CD13 [++++] [18,23,29]

[+++] [18]CD54

[++++] [23]

CD224 [++++] [23]

Pax8 [-] [23]

[-] [20]NPHS1

[++] [20]

NR3C2 [++++] [23]

[-] [20]SLC12A1

[++] [20]

[-] [20]UMOD

[++] [20]

Pericyte markers

[-] [19,23]CD140b

[+] [32]

CD146 [++++] [12,19,23,29-32]

NG2 [-] [19,23,32]

Other markers

[-] [20]KRT18

[++] [20]

[-]: 0-10%; [+]: 10%-30%; [++]: 30%-50%; [+++]: 50%-80%; [++++]: 80%-100% of expression.

Differentiation capacity
One of the advantages of stem cells in cell therapy or regenerative medicine is their 
multipotential of differentiation. USCs have been reported to be differentiable into a 
huge variety of cells types, which are summarized in Table 2.

First, it has been shown that USCs can be differentiated towards the osteogenic, 
chondrogenic and adipogenic lineage (this feature being characteristics of MSCs)[12,34]. 
Xu et al[36] described USC differentiation into other lineages, such as urothelial cells and 
smooth myogenic cells, which respectively expressed uroplakin III, AE1/AE3 and 
desmin, myosin after implantation on 3-D porous small intestinal scaffold. Other 
reports described the differentiation of USCs into endothelial cells[23,24,31,32,35], neuronal 
cells[22-24,37] or skeletal myogenic cells[24,35]. Finally, USCs have been differentiated into 
renal cells, podocytes and tubular epithelial cells[14]; this feature being of great 
importance in USC potential for renal repair.

Despite the fact that using a variety of protocols, different laboratories have shown 
the multidifferentiation potential of USCs, it is important to note that: (1) The quality 
of differentiated cell characterization may vary between laboratories, ranging from 
expression change using qPCR to in vivo proofs; (2) USC multidifferentiation potential 
may also depend on the USC isolation technique, culture routine and developed 
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Table 2 Summary of urine-derived stem cell differentiation reports

Cell type Medium Supplements Initial density Protocol 
duration Note Ref.

“MSC-like” differentiated cell types

DMEM Dexamethasone 1 µmol/L, isobutyl-1 
methylxanthine 500 µmol/L, 
indomethacin 66 µmol/L, 
hydrocortisone 500 µmol/L

14000 cells/cm² 24 d 2 d in DMEM without 
supplement before 
differentiation

[15]

DMEM low glucose Dexamethasone 1 µmol/L, isobutyl-1 
methylxanthine 500 µmol/L, 
indomethacin 100 µmol/L, insulin 10 
µg/mL

20000 cells/cm² 28 d / [30]

Specific adipogenic 
medium

FBS (optional) 1000 to 5000 
cells/cm²

14 d /
[13,22,23,
33,39]

Adipogenic cells

Specific adipogenic 
medium

NA 80% of 
confluency

14 d / [24]

DMEM/Ham's F12 Fetal calf serum 10%, insulin 6 µg/mL, 
ascorbic acid 2P 0.2 mmol/L, TGF-b1 
10 ng/mL

1500 cells/cm² 28 d / [15]

Specific chondrogenic 
medium

NA 50000 cells/cm² 28 d / [22,24]

Chondrogenic 
cells

Specific chondrogenic 
medium

NA 300000 cells to 
1000000 cells

28 d Cell aggregation in 
conical polypropylene 
tube before 
differentiation

[23]

DMEM low glucose Dexamethasone 10-100 nmol/L, 
ascorbate2-phosphate 50-1500 µmol/L, 
glycerophosphate 10 mmol/L, FCS 
10%, Vit D3 10 nmol/L (optional)

1500 to 4000 
cells/cm²

28 d / [15,30]

DMEM low glucose FBS + osteogenic supplement 4000 cells/cm² 28 d / [23]

Specific osteogenic 
medium

NA 1000 cells/ cm² 28 d / [39]

Osteogenic cells

Specific osteogenic 
medium

NA 80% 
confluency at 
P4

14 d to 21 d / [22,24,33]

Other cell types

EBM-2 VEGF 50 ng/mL + FBS (optional) 3000 to 5000 
cells/cm²

9 d to 14 d Coating with fibronectin 
+ 2 d of preculture

[23,31,32]Endothelial cells

Microbeads VEGF 1000 cells/cm² 14 d MD [35]

Specific nerve induction 
medium

NA 6000 cells/cm² 2 d Pre-culture with DMEM 
+ 20% FBS + 10 ng/mL 
bFGF 24 h

[23]

DMEM F12 hEGF 20 ng/mL, bFGF 40 ng/mL, B27 
2%, NEAA 1%, l-glutamine 1%, 
insulin-transferrin-selenite 1%.

20%-30% of 
confluency

12 d Coating: Polystyrene [22]

NeuroCult NS-A 
differentiation kit

NA 100000 
cells/cm²

7 d Preculture [24]

Neuronal cells

NM3 basic neuronal 
induction medium

Y27632 10 μmol/L, A8301 5 μmol/L, 
CHIR99021 3 μmol/L, TTNPB 1 
μmol/L, forskolin5 μmol/L, valproic 
acid 0.5 mmol/L, sodium butyrate 0.1 
mmol/L

MD MD Coating with Matrigel 
and preculture (2 d)

[37]

DMEM Skeletal supplement + SVF 10%, Horse 
serum 5%, hydrocortisone 50 µmol/L, 
dexamethasone 0,1 µmol/L

MD 28 d / [23]

Conditioned medium NA MD 28 d 12 h of culture of 
medium with skeletal 
myogenic cells

[23]

Skeletal 
myogenic cells

Conditioned medium NA 80% 
confluency

14 d Culture of medium with 
skeletal myogenic cells

[24]
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Smooth muscle 
cells

DMEM + EFM (1:1) FBS, TGF-β1 (2.5 ng/mL), PDG-BB (2.5 
to 5 ng/mL)

1000 to 2000 
cells/cm²

14 d /
[12,19,23,
34,36]

Renal differentiation

Podocytes VRAD: DMEMF12 FBS 10%, vitamin D3 100 nmol/L, 
retinoic acid 100 µmol/L

MD 48 h MD [14]

Tubular cells REGM Hepatocyte growth factor 50 ng/mL MD 21 d MD [14]

KFSM + EFM (1:1) FBS 2%, EGF 30 ng/mL 3000 cell/cm² 14 d MD [36]

KFSM FBS 2%, EGF 30 ng/mL 3000 cell/cm² 14 d MD [34]

KFSM + EFM (4:1) FBS 2%, EGF 30 ng/mL 3000 cells/cm² 14 d / [36]

DMEM + KFSM (4:1) FBS 8%, EGF 30 ng/mL 1,000 cells/cm² 14 d / [19]

Conditioned medium 
from urothelial cells 8 h 
+ EFM + KFSM (1:1)

EGF 30 ng/mL 50000 cells/cm² 7 to 21 d Dynamic culture [21]

Urothelium cells

Conditioned medium of 
smooth muscle cells 12 h 
+ KFSM (1:1)

NA 50000 cells/cm² 7 to 21 d Dynamic culture [21]

bFGF: Basic fibroblastic growth factor; DMEM: Dulbecco’s modified Eagle’s medium; EFM: Embryonic fibroblast medium; EGF: Endothelial growth factor; 
FBS: Fetal bovine serum; FCS: Fetal calf serum; KFSM: Keratinocyte free serum medium; MD: Missing data; MSC: Mesenchymal stem cell; NA: Not 
applicable; NEAA: Non-essential amino acids; PDG-BB: Platelet-derived growth factor BB; SVF: Stromal vascular fraction; TGF: Transforming growth 
factor; VEGF: Vascular endothelial growth factor.

protocols; and (3) A variability of differentiation protocols can exist between different 
USC donors and/or clones as has been shown for other stem cell types[38].

USCs: APPLICATIONS
Substrate for induced pluripotent stem reprogramming
Induced pluripotent stem cells (iPSCs) are artificial cells obtained through the 
reprogramming of a somatic cell towards an undifferentiated phenotype; 
reprogramming is a complex process linked with deep remodeling of the cell’s 
epigenetic and transcriptomic profile. By definition, iPSCs are able to self-renew 
indefinitely and to differentiate into all cell types from the three germ layers. 
Combined or not by the possibility to precisely modify their genome with genome 
editing approaches such as CRISPR/Cas9, iPSCs are a potential tool for many 
applications including personalized cell therapy, disease modeling, toxico-
logy/pharmacology screening, etc.[39-42].

Huge technical progress have been made since the proof-of-concept article in 2006[43] 
including safer reprogramming strategies but also substrates more convenient than 
compared to the skin biopsy mainly used years ago. iPSCs can be derived from 
keratinocytes, lymphocytes and MSCs among other cell types[44]. Zhou et al[17,45] showed 
that iPSCs can be generated from cells present in human urine[46]. This was 
conceptually new and opened the possibility of using a very convenient and accessible 
substrate, applicable to most patients, including children, without pain or specific care 
issues. Urine-derived cells have been reprogrammed through several strategies 
including episomal transfection and mRNA transfection[47] and using feeder-free 
conditions[16,48,49], potentially lowering the risk of genomic integrity failure[50].

The cells have been differentiated into many cell types and used for various 
applications, including (as a nonexhaustive list) differentiation into cardiom-
yocytes[51,52], motor neurons[53], alveolar epithelial  cells[54], hepatocytes[48], retinal  
organoids[55] and kidney organoids[56].

Cell therapy approaches based on USCs
Organ/tissue repair and reconstruction is one of the great challenges for the whole 
scientific and medical community. Cell-based tissue engineering may be an alternative 
for patients suffering from various acute or chronic pathologies linked with tissue 
lesions. Human cell therapy requires millions of cells ready to be injected, and the 
choice of the optimal cell population is a significant challenge[57,58]. As described in the 
first chapter of this review, the proliferation and differentiation capacities combined 
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with the nonteratogenic properties of USCs make these cells or their cellular 
derivatives a great tool for cellular therapy, especially because these cells do not show 
immunoreactivity, potentially facilitating their engraftment without causing 
immunological rejection. Based on their multidifferentiation capacities, USCs can be 
used for endothelial, myogenic, osteocyte, neurocyte or epithelial regeneration[58-60].

Kidney/genitourinary repair: Kidney and genitourinary repair/bioengineering is an 
extensive field of research because acute kidney injury (AKI) and chronic kidney 
disease are major public health issues with high morbidity and mortality. Many 
studies demonstrated the role and benefits of adult stem cells in kidney repair and 
regeneration, especially regarding MSCs[61]. Indeed, MSCs have shown to be efficient 
to reduce renal lesions in many models including rodent models of AKI induced by 
cisplatin[62], gentamicin[63,64] and ischemia reperfusion[65-67] and also in chronic kidney 
disease models[68,69].

Importantly, proofs of concepts were also established in preclinical porcine or 
simian models[70-72]. With this in mind, the use of USCs of urologic origin seems to be a 
judicious strategy based on their extra capacity of renal differentiation compared to 
MSCs. Sun et al[73] showed that human USC injection improved renal function and 
histological damage in cisplatin-induced AKI in rats (injection into the tail vein of 2 × 
106 USCs suspended in 0.2 mL of PBS at day 1 after cisplatin). The authors observed an 
increase of renal tubular epithelial cell proliferation and a parallel decrease of 
inflammatory and apoptosis markers. Interestingly, the GFP-labeled USCs were 
detected at day 2 and day 4 after administration in the kidney tissue, but only a small 
number of these cells was found at day 4[73].

Tian et al[74] demonstrated that administration of USCs to rats with ischemia 
reperfusion-induced AKI improved renal function. Indeed, 1 x 105 USCs mixed with 50 
μL of sucrose solution (10%, w/v), 50 μL hydrogel and 100 μL PBS were injected into 
the upper, middle and lower cortex of the ischemic kidney. Serum creatinine and 
blood urea nitrogen levels were significantly decreased in the USC-treated group at 
day 1, and histological tubular injury score and apoptosis were significantly decreased 
in the USC-treated group at days 7 and 14[74]. In addition, Zhang et al[30] demonstrated 
the nephron-protective effect of USCs (injected into renal parenchyma 8 wk after the 
injury) on renal function via antioxidative stress, anti-inflammatory and antifibrotic 
activity in an athymic rat model of dual-injury chronic kidney disease (ischemia 
reperfusion injury combined with gentamicin injection). These studies demonstrated 
that USC therapy may constitute a new therapeutic intervention for kidney injury and 
its complications.

Regarding genitourinary repair, USCs have been proven to be efficient in treatment 
of bladder dysfunction and in cell-based urological tissue engineering[75-77]. Some teams 
showed that administration of USCs isolated from voided urine was an effective 
treatment for urogenital diseases and a potential source of cells for urological tissue 
reconstruction[12,59].

Diabetes and its complications: Diabetes mellitus is a major public health issue, being 
one of the most lethal noninfectious diseases. USCs have been used as a potential stem 
cell source for the treatment of urologic complications of diabetes mellitus. Ouyang 
et al[31] evaluated the benefits of a human USC treatment in a model of erectile 
dysfunction in type 2 diabetic rats. The authors showed that injection of either USCs or 
USCs transfected with FGF2 (USCs-FGF2) induced a significantly increased rat 
intracavernosal pressure and intracavernosal pressure/mean arterial pressure ratio (P 
< 0.01) 28 d after intracavernous injection (1 mol/L USC/0.2 mL). Although few cells 
were detected within the implanted sites, the paracrine effect of the USCs or USCs-
FGF2 could have induced improvement of erectile function in type 2 diabetic Sprague-
Dawley rats by recruiting resident cells and increasing the endothelial phenotype 
expression (eNOS+) in the smooth muscle.

Moreover, Dong et al[78] evaluated the reparative and protective effects of USCs on 
various organs and tissues affected by diabetes in a type 2 diabetic rat model (induced 
by high fat diet and streptozotocin). The authors demonstrated that USCs injected by 
the tail vein significantly alleviated the histological destruction and functional decline 
of pancreatic islets, myocardic left ventricle, kidney glomerulus and bladder 
micturition. USC treatment did not significantly decrease the fasting blood glucose, 
whereas this treatment reduced the fibrosis and apoptosis of the myocardium, 
glomerulus and detrusor.

Furthermore, Zhao et al[4] evaluated the benefits of a human USC treatment in 
streptozotocin (STZ)-induced diabetic mice. In this study, 1.65 × 106/ 0.2 mL PBS of 
human USCs transplanted into the diabetic mice pancreas prolonged the median 
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animal survival time, improved their blood glucose and the glucose tolerance and 
increased the serum and pancreas insulin content. The authors suggested that the cells 
promoted islet vascular regeneration and pancreatic beta-cell survival.

Zhang et al[79] worked on STZ-diabetic Sprague-Dawley rats that received bilateral 
intracavernous injection of 1 × 106 USCs in 200 μL PBS-1X. The authors showed that 
the injection upregulated autophagic activity in the cavernosal endothelium, 
improving cavernosal endothelial and diabetes-induced erectile function. These 
studies demonstrated that USC therapy may constitute a new therapeutic intervention 
in diabetes and its complications and could be a judicious alternative to current 
diabetes therapies.

Combining USCs and scaffolds: Despite the observed positive paracrine effects, there 
is little or no evidence that the cells can graft into the host tissue after their injection. 
But increasing the time where the USCs are in contact with the tissue to repair may 
also increase their potential. Thus, injecting one scaffold previously seeded with the 
target stem cell type could be one valuable option. Regarding genitourinary repair 
specifically, the significant challenge using USCs in a reconstructive scenario is that 
repair may depend on the capacity of the cells to withstand urinary pressure and 
layered structure while maintaining their properties. Thus, in order to optimize and 
facilitate USC therapy, several works have shown that the use of a scaffold seeded 
with USCs improve their engraftment and their differentiation for urologic tissue 
repair.

Liu et al[5] demonstrated the feasibility of using autologous fluorescent labeled-USCs 
seeded on small intestinal submucosa scaffold to repair a urethral defect in a rabbit 
model. The authors demonstrated the presence of labeled-USCs positive for urothelial 
(AE1/AE3) and smooth muscle (myosin) protein markers 4 wk after engraftment. 
They observed that the urethral caliber, speed of urothelial regeneration, content of 
smooth muscle and vessel density significantly increased in the group with autologous 
USC-seeded small intestinal submucosa without inflammatory cell infiltration and 
fibrosis compared to the control group.

Bodin et al[34] showed that their 3D culture system based on porous bacterial 
cellulose induced favorable conditions for USC differentiation. The authors seeded 
these scaffolds with USC preliminary induced to differentiate into urothelial cells and 
smooth myogenic cells and implanted them subcutaneously into athymic mice. The 
authors observed the presence of both urothelial cells and smooth myogenic cells 1 mo 
after implantation, suggesting that this cell-based tissue engineered conduit may be 
useful for bladder reconstruction.

In another study, Wu et al[80] evaluated the effects of vascular endothelial growth 
factor (VEGF) overexpression on USCs. Human USCs overexpressing the mouse VEGF 
gene were mixed with human umbilical vein endothelial cells (total 5 × 106) in a 
collagen-I gel. These cell-containing gels were subcutaneously implanted along with 
six other controls into 18 athymic mice. The authors demonstrated that cell-containing 
gels enhanced in vivo myogenic differentiation, neovascularization (with expression of 
endothelial markers) and nerve regeneration within the implanted grafts. In addition, 
Liu et al[81] suggested that USCs expressing VEGF-165 loaded in collagen hydrogels 
could be used for the correction of stress urinary incontinence. The authors showed 
that subcutaneous implantation in nude mice induced major vascularization and 
improved the recruitment of resident cells, promoting myogenic phenotype 
differentiation and innervations.

Endothelium repair: The ability of USCs for endothelial, epithelial and myogenic 
differentiation could be useful for reconstruction of tissues that need neo-
vascularization and a repaired vascular network, which is vital for a functional 
circulatory system. Liu et al[32] demonstrated that USCs could differentiate in vivo into 
endothelial cells. USCs incubated in collagen-I gel with or without VEGF-enveloped 
alginate microbeads were subcutaneously injected into nude mice. Four weeks after in 
vivo injection, cells formed CD31+ intricate tubular networks and presented typical 
tight junctions, migration and invasion ability as well as the ability to produce 
endothelial nitric oxide.

In addition, Liu et al[35] used human USCs combined with microbeads of alginate 
(containing VEGF, insulin growth factor 1, fibroblast growth factor 1, platelet-derived 
growth factor, hepatocyte growth factor and neural growth factor), which were mixed 
with the collagen type 1 gel and subcutaneously injected into nude mice. Four weeks 
after injection, the grafted cell survival was improved with more cells expressing 
myogenic and endothelial cell transcripts and markers (CD31 and Von Willebrand 
factor) compared to controls. Neovascularization and innervations (nerve fibers) were 



Burdeyron P et al. Urine stem cells: Characterization and applications

WJSC https://www.wjgnet.com 1089 October 26, 2020 Volume 12 Issue 10

enhanced in USCs combined with alginate microbeads containing the cocktail of six 
growth factors compared to controls. Importantly, the authors suggested that host 
resident stem cells may have migrated into the graft tissue and then differentiated into 
endothelial and myogenic lineage cells induced by the growth factors released by the 
microbeads in particular. They also noted that USCs may possess indirect neurogenic 
and neuron rescue properties[35]. These results are in agreement with Sun et al[82] who 
demonstrated that gene modification of USCs could induce a large-scale capacity of 
differentiation into several lineage cells for tissue repair.

Bone regeneration: Segmental bone/cartilage defects repaired with stem cells is a 
highly active field of research, and USCs could serve as a potential therapy strategy. 
Xing et al[83] suggested that USCs loaded on a surface mineralized biphasic calcium 
phosphate ceramic could represent a new treatment for segmental bone defects. The 
authors showed that biphasic calcium phosphate ceramic loaded with USCs are 
effective due to their osteogenic potential for bone regeneration in repairing critical 
sized segmental bone defects in rabbits.

Moreover, Guan et al[33] used USCs combined with a typical bone tissue engineering 
scaffold, β-tricalcium phosphate, and implanted the structures into a 6-mm critical size 
femoral defect rat model. They demonstrated that USCs in the scaffolds could enhance 
new bone formation, which spanned bone defects in 5 out of 11 rats while β-tricalcium 
phosphate scaffold alone induced only modest bone formation. Sun et al[39] showed 
that these beneficial effects could be mediated by efficient proliferative and osteogenic 
differentiation capacities as well as secretion of agents such as bone morphogenetic 
protein, which facilitates tissue engineering, in USCs. The authors observed that 
human USCs induced bone formation (with calcium deposits, osteocalcin and 
osteopontin expression) in a rat model with cranial defects. The proposed mechanism 
included the focal adhesion kinase that could mediate bone morphogenetic protein 2-
enhanced osteogenic differentiation of human USCs.

In addition, Chen et al[84] combined human USCs with hyaluronic acid (HA) and 
injected human USCs-HA into a rabbit knee joint with cartilage defect. Twelve weeks 
after the injection, histologic analyses indicated that human USCs-HA induced more 
neocartilage formation compared with human USCs alone or HA alone, which only 
induced modest cartilage regeneration.

Inflammatory diseases: Although the therapies for inflammatory bowel diseases are 
effective in maintaining remission, they also have many side effects[85]. Stem cells, like 
USCs, could be beneficial based on their immunoregulatory effect controlling 
inflammation[86]. Indeed, Zhou et al[87] demonstrated that implantation of USCs in a 
rodent model reduced inflammatory bowel diseases. Systemic administration of USCs 
significantly ameliorated the clinical and histopathological severity of colitis and 
increased the survival rate in both acute and chronic murine colitis models. Indeed, 
implantation of USCs led to immunomodulatory effect via downregulation of the 
Th1/Th17 immune responses in a PGE2-dependent manner.

Therapies based on USC derivatives
Despite some studies showing that USCs are able to graft or even remain in the organ 
after their vascular injection (without long-term evidences), most studies showed that 
their protective effect is primarily mediated by paracrine mechanisms. In this view, 
there is growing use of a cell’s secretome instead of cells themselves. Indeed, the 
systemic injection of a conditioned medium from stem cells offers a significant 
advantage for in vivo survival by preventing the release of biomarkers from tissue 
damage, thereby reducing cell apoptosis and increasing proliferation[88]. These 
paracrine effects could be mediated by extracellular vesicles (exosomes) of cellular 
origin. Exosomes are vesicles of 30 to 120 nm surrounded by a double membrane[13], 
which could be extracted by various methods including the gold-standard ultra-
centrifugation or precipitation[89-91]. They are important in intercellular communication 
due to richly containing miRNA, proteins, lipids, etc. that they could transfer into 
recipient cells[6,7,29]. Often characterized by western blot and transmission electron 
microscopy, exosomes expressed specific markers such as CD9, CD63, CD81 and TSG 
101[13,29]. They have proproliferative properties. Indeed, Chen et al[13] demonstrated a 
higher proliferation of keratinocytes, fibroblasts and endothelial cells in the presence 
of medium supplemented with USC-exosomes compared to medium only. Exosomes 
also have angiogenic properties; it has been shown in a cell monolayer scratch-wound 
assay that USC-exosomes induced cell migration of endothelial cells[13].

Regarding tissue repair, exosomes from USCs have been tested in different clinical 
contexts. For bone regeneration, Chen et al[92] showed that 100 μg of human USC-
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extracellular vesicles (EVs) (obtained from USC-conditioned medium) effectively 
alleviated bone loss and maintained bone strength in osteoporotic mice 
(ovariectomized mice) by enhancing osteoblastic bone formation and suppressing 
osteoclastic bone resorption. Interestingly, the authors demonstrated that the 
antiosteoporotic properties of USC-EVs were not noticeably disturbed by the age, 
gender or health condition (with or without osteoporosis) of the USC donor, as USC-
EVs from a healthy boy, healthy adult man and woman and postmenopausal 
osteoporotic woman could induce notable antiosteoporotic effects. In neurology, Ling 
et al[11] showed that exosomes from USCs promoted endogenous neurogenesis and 
enhanced the repair of neurological functions in post-ischemic stroke rats. Intravenous 
injection of 1011 total particles of USC-exosomes (in 500 µL) 4 h after transient focal 
cerebral ischemia reduced infarct volume and promoted functional recovery in rats 
from 14 d to 28 d after ischemic stroke via promoting neural cell differentiation in the 
subventricular zone. They demonstrated that USC-exosomes increased both 
proliferation and neuronal differentiation of oxygen-glucose deprivation/ 
reoxygenation-stimulated neural stem cells, associated with the repression of histone 
deacetylase 6 expression[7].

Exosomes from USCs were also linked with promising results in the field of 
diabetes. Jiang et al[93] showed that intravenous administration of human USCs-
exosomes in an STZ-induced rat model reduced urine volume and urinary 
microalbumin excretion while inhibiting podocyte and tubular epithelial cell apoptosis 
and promoting angiogenesis of glomerular endothelial cell. In this way, Chen et al[13] 
demonstrated that human USC-derived exosomes accelerated cutaneous wound 
healing in STZ-induced diabetic mice by promoting angiogenesis from 6 d to 12 d after 
the wound. Moreover, Duan et al[29] demonstrated that human USC exosomes 
overexpressing miR-16-5p and injected into diabetic rats via tail vein conferred 
protective effects on podocytes in diabetic rats and tended to enhance renal function 
(with a decrease of circulating glucose, blood urea nitrogen, serum creatinine, 
creatinine clearance rate, urine protein and urine creatinine). The authors showed that 
this effect was mediated by VEGF-1 silencing induced by miR-16-5p overexpression.

In the field of kidney injury, Zhang et al[94] demonstrated in a murine model of 
ischemia reperfusion-induced AKI that extracellular vesicles from MSCs have a 
therapeutic effect, while Oct-4 overexpression enhanced this therapeutic effect. 
Additionally, Grange et al[95] showed in an AKI model that urine-derived EVs 
stimulated tubular cell proliferation, accelerated renal recovery by reducing the 
expression of injury and inflammatory markers. In this view, combining the use of 
USCs and exosomes for kidney repair sounds promising.

What are the remaining challenges for cell therapy using USCs?
Numerous experimental studies have shown that administration of USC therapy 
decreases injury and tissue damage and improves tissue repair and function for many 
organs. Regarding cell behavior, there is little or no proof that cells can indeed graft 
into the tissue and differentiate in vivo. This issue could be challenging to check 
because finding injected labeled cells within one organ may also depend on chance. 
Using biocompatible and biodegradable scaffold may promote cell engraftment; here 
again long-term proof of concepts are necessary. However, even if USCs remain in this 
tissue, their true differentiation capacity still remains to be proven because most 
results showing USC differentiation rely on in vitro work, at times with poor cell 
characterization results such as gene expression modification with no differentiated 
cell functional analysis. USC potential for kidney/genitourinary repair is particularly 
appealing because these stem cells originate from this region and may therefore have 
some intrinsic specific properties compared to other stem cell types or to repair organs 
that are developmentally far from the kidney (for instance not coming from the 
mesoderm such as brain).

Injection timing, cell administration route and dosage are also critical factors that 
may be crucial to cell therapy efficacy[96] and are often considered as decided a priori 
despite a lack of comparative experiments in the literature.

Because urine is a convenient substrate, cell therapy strategies based on USCs could 
be envisaged in an autologous manner. Regarding USC compatibility, their expression 
of MHC type I would lead to alloreactivity if USCs from a donor are injected in a 
different recipient. It is yet not known whether their immunoregulatory profile would 
counteract this effect and promote cell tolerance; facilitating the creation of 
haplocompatible USC cell banking that can be fully characterized and used for cell 
therapy purposes would be needed.

Cell preparation is also a major issue especially because as we highlighted in the 
first part of this review, the precise characterization of USCs is not concordant. 
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Generating a huge amount of USCs under Good Manufacturing Practices guidelines is 
another issue but that should easily be resolved based on the large experience the 
scientific community has with the isolation and expansion under Good Manufacturing 
Practices conditions of other adult stem cell types. In addition, urine cells can serve as 
a replacement for current MSCs (derived through invasive methods such as bone 
marrow harvest and liposuction) to generate a donor biobank using a noninvasive 
procedure for cell gathering. However, this may require further expandability and 
qualitative studies[58].

Using stem cell-derived microvesicles containing genetic and protein materials that 
upon transferring to recipient cells can activate several repair mechanisms has been 
shown to be efficient to repair tissue and enhance organ function.

For both strategies, these experimental studies have been performed only in small 
animals so the clinical pertinence is not established yet. USCs or their secreted 
derivatives must be evaluated in a pertinent preclinical model (pig or monkey) either 
in the context of tissue reconstruction, diabetes, AKI or kidney transplantation.

CONCLUSION
Regarding USC isolation and characterization, careful steps of protocol optimization 
and quality controls will be mandatory. Either used as a substrate to generate iPSCs or 
directly for cell therapy approaches, the potential for USCs is high and applicable for 
different clinical conditions ranging from stroke to diabetes. The USC secretome has 
also been proven to be efficient to trigger tissue repair and immunomodulation 
(Figure 1). Of note, USCs can also be used for disease modeling because the desired 
genotype/patient can be chosen to isolate the cells and based on the numerous cell 
types they can differentiate into. With the major advantage of being isolable from 
voided urine, USCs are one new player to consider for cell therapy strategy 
development.
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Figure 1  Urine-derived stem cell application: Direct strategy (urine-derived stem cell injection), urine-derived stem cell secretome or 
used in combination scaffolds. Images from this figure are provided by Servier Medical Art. USC: Urine-derived stem cell; hUSC: Human urine-derived stem 
cell; hiPSC: Human induced pluripotent stem cell.
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