
Research Article
Prevalence of Depression and Associated Factors among Diabetes
Patients in East Shewa, Ethiopia: Bayesian Approach

Biruk Shalmeno Tusa ,1 Mekuriaw Alemayehu ,2 Adisu Birhanu Weldesenbet ,1

Sewnet Adem Kebede ,3 and Getachew Asfaw Dagne4

1Department of Epidemiology and Biostatistics, College of Health and Medical Sciences, Haramaya University, Haramaya, Ethiopia
2Department of Environmental Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences,
University of Gondar, Gondar, Ethiopia
3Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences,
University of Gondar, Gondar, Ethiopia
4College of Public Health, University of South Florida, Florida, USA

Correspondence should be addressed to Biruk Shalmeno Tusa; birukshalmeno27@gmail.com

Received 28 April 2020; Revised 18 September 2020; Accepted 24 September 2020; Published 21 October 2020

Academic Editor: Janusz K. Rybakowski

Copyright © 2020 Biruk Shalmeno Tusa et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Background. Depression is one of the most pressing public health problems and also highly prevalent comorbid condition among
diabetes mellitus (DM) patients. Depression may impact lifestyle decisions and ability to poorly perform tasks which are risk factors
for DM. For reducing the impact of depression among DM patients in developing countries, it is crucial to identify and assess
associated risk factors of depression among DM patients, thereby designing effective management techniques. In line with this,
the current study applies the Bayesian framework, which pools prior information and current data, to find factors associated
with depression among DM patients. Methods. A hospital-based cross-sectional study was conducted at Adama Hospital and
Medical College (AHMC) from March to April 2019. Data was entered into the Epi-data 3.1 then exported to the R software
3.4.4. Bayesian logistic regression models were fitted to the data using the Markov chain Monte Carlo (MCMC) algorithm.
Estimates of model parameters including adjusted odds ratio (AOR) with 95% credible intervals (CI) were calculated. Results. A
total of 359 adults with DM were included in the analysis. The prevalence of depression among diabetic patients was 9.22%
(95% CI: 6.4% to 12.7%). Higher fasting blood sugar level (AOR = −1:012; HPD CI: (1.0020, 1.025)), having diabetic
complication (AOR = 0:1876; HPD CI: (0.0214, 0.671)), history of hospital admission (AOR = 0:2865; HPD CI: (0.0711,
0.7318)), low medication adherence (AOR = 29:29; HPD CI: (3.383, 92.26)), and taking both insulin and oral antidiabetic
medication (AOR = 24:46; HPD CI: (15.20, 49.37) were significantly and strongly associated with depression among DM
patients. Conclusions. Prevalence of depression among diabetes patients in the catchment area of Adama Hospital, Ethiopia, was
found to be very low. Higher fasting blood sugar level, diabetic complication, history of hospital admission, low medication
adherence, and taking both insulin and oral antidiabetic medication were found to be strong predictors of prevalence of
depression among DM patients. Based on the findings, we recommend that integrating screening and treating of depression,
early detection and management of diabetic complication, and giving counseling to improve medication adherence is an
effective approach for lowering the impact of depression on DM patients.

1. Introduction

Diabetes mellitus (DM) is a chronic disease which affects almost
every organ in the human body. Globally prevalence of diabetes
is increasing at an alarming rate affecting 463 million people.

The World Health Organization (WHO) projected that 300
and 700 million people will suffer from diabetes by 2025 and
2045, respectively [1, 2]. The burden of diabetes is even higher
in developing countries and in Ethiopia; systematic review result
showed that prevalence of DM is between 2% and 6.5% [3].
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Depression is one of the public health problems charac-
terized by a state of low mood and aversion to activity that
can affect a person’s thoughts, behavior, feelings, and sense
of wellbeing. It is one of the highly prevalent comorbid con-
ditions among diabetic patients. Globally, depression is the
second-leading cause of disability, and diabetic patients have
been reported to be more likely to develop depression than
nondiabetes people with estimated 15%-20% of people with
diabetes struggling with moderate to severe form of depres-
sion [4–6].

Prevalence of depression among DM patients varies
across countries with 8.3% % in the USA [7] to 71.8% in Iran
[8], and in Ethiopia, it is ranging from 15.4 to 64.9% [9–15]
with 39.73% pooled prevalence [16]. The presence of depres-
sion among diabetic patients increases the noncompliance to
the medical treatment, decreases the quality of life, increases
the risk of complication, results in poor prognosis, and
increases mortality. Mortality from DM increases by 1.5-fold
for patients with depression [17].

The occurrence of depression among diabetes is attrib-
uted to different factors. Studies indicated that burden of
complications, financial stress, poor overall health status,
knowledge of diabetes, poor social support and physical
disability, and poor glycemic control are major factors
associated with the presence of depression among DM
patients [10, 18]. Smoking habit, increased number of
comorbidities, higher level of cholesterol, and higher body
mass index are also associated with depression among DM
patients [19, 20].

Reducing the prevalence of depression among diabetes
patients by designing effective management evidence on
associated factors of depression among DM patients is cru-
cial. For that reason, various studies have been piloted at dif-
ferent part of Ethiopia using classical logistic regressions with
small datasets [9–15]. However, for small datasets, a Bayesian
approach is preferred, and the current study applies the
Bayesian framework (logistic regressions) which pools the
prior information with current data to identify factors associ-
ated with depression among DM patients.

2. Methods

2.1. Study Design and Setting. A hospital-based cross-
sectional study was conducted at Adama Hospital and Med-
ical College (AHMC) from March to April 2019. The hospi-
tal, located in Adama city, Oromia National Regional State at
99 km to the southeast of Addis Ababa, the capital of Ethio-
pia. It has an outpatient department for chronic illness fol-
low-up, and diabetes treatment is provided 2 days a week.

2.2. Sample Size Determination and Sampling Procedures.
Sample size was calculated via the Open Epi software using
a single population proportion formula by considering the
following assumptions: prevalence of depression among dia-
betic patients at Felege Hiwot Referral Hospital, Bahir Dar,
Northwest Ethiopia (P = 40:4%) [21], 95% confidence level,
and 5% margin of error. The calculated sample size was
369, and by adding 10% nonresponse rate, the final sample
size became 406. Patients diagnosed with DM who had

follow-up for at least six months, age greater than 18 years,
and visited the facility (AHMC) during the study period were
selected as study participants.

A systematic random sampling method was used to select
study participant. The sampling interval was computed by
dividing the predictable number of diabetic patients per
month into the sample size. The first study participant was
selected by a lottery method from patients in the first sam-
pling interval and turned out to be the second in the list,
and then, every second person in the remaining sampling
intervals was systematically selected until the desired sample
size was reached. Details about the sampling method are
available elsewhere [22].

2.3. Measurements and Operational Definition. Depression
was the response variable that was measured using the
Kessler 6 scales [23] which is validated in Ethiopia [24].
This instrument has 6 questions each asking the respon-
dent how often they experienced symptoms during the
past 30 days and containing 5-point Likert scales
(1 = none of the time, 2 = a little of the time, 3 = some of the
time, 4 =most of the times, 5 = all of the time). Then, item
scores obtained from the scale were summed, and Serious
Psychological Distress was considered when the score is 19
or more.

The explanatory variables included sociodemographic,
behavioral (medication adherence and hazardous drinking
habits), and clinical characteristics. Data related to socio-
demographic and clinical factors were collected by using
semistructure and pretested questionnaire which was
developed by the principal investigator.

Medication adherence was measured using a 4-item
Morisky medication adherence scale (MMAS). A high score
indicates low levels of medication adherence [25]. Hazardous
drinking was assessed using Fast Alcohol Screening Test
(FAST). The Fast Alcohol Screening Test (FAST) is a short
screening questionnaire for hazardous drinking comprising
four questions. Then, item scores obtained from the scale
were summed, and hazardous drinking was considered when
the score is 3 or more [26].

Data was collected through face to face interview with
document review by clinical nurses after receiving training
on how to collect the data using both semistructured and
standard questionnaire tools. Variables such as treatment
modality (oral hypoglycemic agent, insulin therapy, and both
oral hypoglycemic and insulin), diabetes-related complica-
tions, fasting blood sugar (records from the last visits were
taken), and presence of documented comorbidity were
obtained from patients’ medical records. Initially, semistruc-
tured questionnaire was prepared in English version, then
translated into Amharic and Oromiffa (local language) and
again back translated to English by another person to check
the consistency of the meaning.

2.4. Data Processing and Management. Each questionnaire
was checked visually for completeness and consistency.
Data was entered into the Epi-data 3.1 then exported to
the R software 3.4.4. Finally, using the R software, the data
was exported in text format in order to make it suitable
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for analysis in Win BUGS software [27]. Descriptive statis-
tics and posterior summary statistics were presented and
interpreted.

2.5. Statistical Analysis

2.5.1. Likelihood Distribution. The outcome variable was the
presence of depression which is typical Bernoulli and mod-
eled via logistic regression using a Bayesian framework to
find factors associated with the presence of depression
among diabetic patients.

Yi and pi are the status (yes, no) and probability of the
presence of depression, respectively, of all diabetic patients j
. Assuming Y j has a Bernoulli distribution, Y j < Bernoulli
(pj) and modeled covariates Xj and that is logit ðpjÞ = XT j
β + ϵ, where β is the vector of regression coefficients.

2.5.2. Specifying Prior Distributions for the Unknown
Parameters. There are 25 unknown parameters (one inter-
cept and 23 slope of the regression, β0, β2, β3, β4,⋯, β24
and sigma). Let us use proper but noninformative prior;
the priors on all parameters are assumed to be normal
with mean zero and large variance or low precision (0,
precision = 0:0001).

Βj ~N ð0, 0:0001Þ, j ~ 0, 1⋯ 10:

2.5.3. Posterior Distribution of the Parameters. Markov
Chain Monte Carlo (MCMC) simulation was used to esti-
mate the model parameters using Gibbs sampling in the
WinBUGS software [28]. When the MCMC implementa-

tion was applied to the data (having a three-chain), con-
vergence of the MCMC samples was assessed using
standard tools within the WinBUGS software (kernel den-
sity, history plots, autocorrelation plots, and Gelman–
Rubin convergence diagnostic). After discarding the initial
40,000 iterations as burn-in, a total of 807,003 iterations
are used to obtain final samples of 19998 with thinning
50 to make estimation and final analysis. Estimates of
model parameters including AOR with 95% credible inter-
vals were calculated.

2.5.4. Ethics Approval and Consent to Participate. Clearance
was obtained from the institutional review board of the Uni-
versity of Gondar with reference number of
IPH/180/06/2011. The purpose of the study was well
explained, and informed consent was secured from study
participants. No personal identifiers, such as name, address,
and no private information, was collected.

3. Results

3.1. Sociodemographic Characteristics. A total of 359 adults
with DM were included in the analysis with a response
rate of 88.4%. The mean age of participants was 51

Table 1: Sociodemographic characteristics of diabetes patients at
Adama hospital and medical college, Adama city, East Shewa,
Ethiopia 2019.

Variable Frequency (n = 359) Percentage (%)

Gender

Female 176 49.03

Male 183 50.97

Residence

Urban 306 85.24

Rural 53 14.76

Marital status

Single 45 62.67

Married 225 75.21

Widowed 64 17.83

Separated 15 4.18

Divorced 10 2.79

Educational status

Uneducated 60 16.71

Primary cycle 119 33.15

Secondary and above 180 50.14

Occupational status

Unemployed 216 60.17

Employed 76 21.17

Other 67 18.66

Table 2: Behavioral and clinical characteristics of diabetic patients
at Adama hospital and medical college, Adama city, East Shewa,
Ethiopia 2019.

Variable
Frequency
(n = 359)

Percentage
(%)

Hazardous drinking

Yes 22 6.13

No 337 93.87

Type of DM

Type 1 47 13.09

Type 2 312 86.91

Types of medication

Oral 221 61.56

Insulin 110 30.64

Both 28 7.80

Medication adherence

Low 101 28.13

Medium 86 23.96

High 172 47.91

DM complication

Yes 83 23.12

No 276 76.88

Chronic illness other than
DM

Yes 147 40.95

No 212 59.05

Hospital admission

Yes 104 28.97

No 235 71.03

DM: diabetes mellitus.
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(±14.51) years with a range of 19 to 82 years. More than
half (50.97%) of study participants were male. Near to
one third (33.15%) of study participants attended primary
education. Two hundred twenty-five (62.67%) of the par-
ticipants were married, whereas 10 (2.79%) were divorced.
Regarding occupation, 216 (60.17%) adults were unem-
ployed, while 76 (21.17%) were employed as office workers
(Table 1).

3.2. Behavioral and Clinical Characteristics. From the total of
study participants, 22 (6.13%) were hazardous drinker. The
mean (±SD) duration of living with DM was 10.38 (±5.27)
years, and the mean (±SD) level of fasting blood sugar
was 151.07 (±38.21) mg/dl. The majority of study subjects
had type 2 diabetes (312 (86.91%)), 147 (40.95%) had

comorbid disease other than DM, 83 (23.12%) had DM
complication, more than half, 221 (61.56%) are on oral anti-
diabetic medications, and 101 (28.13%) had low medication
adherence (Table 2).

3.3. Prevalence of Depression. The prevalence of depression
among diabetes patients was 9.22% (95% CI: 6.4% to
12.7%). The highest prevalence of depression was observed
among diabetes patients who are living in urban 32
(10.49%) and taking both oral and insulin medication 6
(21.43%). The prevalence of depression was also higher
among diabetes patients who had a history of hospital admis-
sion 20 (19.42%), diabetic complication 14 (16.87%), and low
medication adherence 21 (20.79%).
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Figure 1: Time series for convergence of coefficients for the predictors.
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3.4. Factors Associated with Depression. To identify factors
associated with depression among diabetes patients, we use
a Bayesian logistic regression. Particularly, a Gibbs algorithm
for all parameters was used to estimate the model parameters
given in the Methods section. The convergences of the Gibbs
algorithm were checked through MCMC assessment that
involves checking the sequence, or Markov chain, for conver-
gence and provides a representative sample from the poste-
rior distribution.

3.5. Checking Convergence

3.5.1. Time Series Plot. According to Figure 1, the three inde-
pendently generated MCMC chains are well mixed together
or overlapped. Based on this, we can conclude that the simu-

lation draws are reasonably converged, and therefore, we
can be more confident about the accuracy of posterior
inference.

3.5.2. Density Plot. Density plot is one of the diagnostic
plots that are used to check convergence in Bayesian anal-
ysis. As we can see from Figure 2, the plots for all param-
eters have unimodal densities, suggesting that the
simulated parameter values were generated from stationary
distributions.

3.5.3. Autocorrelation Plot. Autocorrelation plot is another
technique used to assess convergence in Bayesian analysis
via MCMC. As we can observe from Figure 3 independent
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Figure 2: Density plot for convergence of coefficients for the predictors.
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generated MCMC samples were attained after a thinning
of 50 (50 lags).

3.5.4. Gelman–Rubin Statistics. Gelman–Rubin statistic is
another method for assessing convergence. It can be applied
only when multiple chains, based on different sets of initial
values of parameters, are used. From the multiple chains,
within and between variances are calculated, and if the ratio
of the two is close to 1, then convergence is reached.

Figure 4 displays the Gelman–Rubin plots which clearly
show convergence has been achieved.

3.5.5. Assessing the Accuracy of Bayesian Logistic Model
Fitting. The posterior summary estimates by the MCMC
algorithm, especially by Gibbs sampler, have posterior mean,
standard errors, Monte Carlo error, and credible intervals. If
the MC error value for each parameter of interest is less than
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Figure 3: Autocorrelation plot for convergence of coefficients for the predictors.
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about 5% of its posterior standard error, then the posterior
density estimates have accurate posterior estimates.

Accordingly, as we can see from Table 3, MC error for
each significant predictor is less than 5% of its posterior
standard deviation. This implies convergence and accuracy
of posterior estimates are attained, and the model is
appropriate to estimate posterior statistics. In view of the
result of noninformative prior given in Table 3, consider-
ing the credible interval, “fasting blood sugar,” “DM com-

plication,” “hospital admission,” “treatment regimen (both
oral and insulin),” “marital status (widowed),” and “educa-
tional status (primary)” were significantly and strongly
associated with depression among DM patients.

Marital status and educational status are sociodemogra-
phical parameters that have significant and strong associa-
tion with depression among diabetes patients. Holding
other variable constant, the odds of depression among
widowed diabetic patients will be decreased by 91.47%
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Figure 4: Gelman–Rubin statistic plot of for convergence of coefficients for the predictors.
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(HPD CI: (0.0060, 0.3404)) as compared to married diabetic
patients. Diabetes patients with primary level of education
are 5.027 (HPD CI: (1.0680, 15.52)) times more likely to
develop depression than diabetes patients with higher level
education while keeping for all other variable constant.

As fasting blood sugar level increase by one unit, the odds
of the depression will increase by 1.20% (HPD CI: (1.0020,
1.025)) while making other variable constant. Adjusting for
other variables, the odds of depression among diabetes
patients who had no diabetic complication is 81.24% (HPD
CI: (0.0214, 0.671)) lower than their counterpart.

Keeping other variables constant, the odds of depression
among diabetes patients who had no history of hospital
admission in past one month is decreased by 71.35% (HPD
CI: (0.0711, 0.7318)) as compared to those who had history
of hospital admission. Low medication adherents’ diabetes

patients are 29.29 (HPD CI: (3.383, 92.26)) times more likely
to develop depression than high medication adherents while
adjusting for other variables.

Types of medication are one of the clinical factors that
has a significant and strong association with depression
among diabetes patients. Holding other variables constant,
the odds of depression is increased by 24.46 times (HPD
CI: (15.20, 49.37)) among diabetes patients who are taking
both oral antidiabetic medication and insulin as compared
to those are taking only oral antidiabetic medication.

4. Discussion

According to the current study, the prevalence of depres-
sion among diabetes patients was 9.22% (95% CI: 6.4%
to 12.7%). This finding is comparable with studies

Table 3: Summary statistics for the posterior distribution of model parameters.

Parameters (reference) AOR MC error SD
HPD credible intervals

Lower (25%) Upper (75%)

β12 (age) 1.0100 <0.0001 0.0350 0.9435 1.0810

Gender (male)

β11 (female) 1.8990 0.0063 1.7790 0.3744 1.4530

Marital status (married)

β17 (single) 9.7580 0.0468 15.640 0.8662 43.060

β18(widowed) 0.0853 <0.0001 0.0966 0.0060 0.3404

β19 (separated) 9.477 0.2147 103.00 0.0001 53.430

β20 (divorced) 85.71 4.181 2468.0 0.7392 389.90

Educational status (secondary and above)

β13(primary) 5.027 0.0111 4.105 1.0680 15.52

β14 (uneducated) 6.024 0.0190 8.509 0.6198 24.59

Occupational status (jobless)

β15 (employed) 5.539 0.0170 5.713 0.8245 19.76

β16 (other) 0.4415 0.0023 0.6374 0.0001 2.090

Hazardous drinking (no)

β3 (yes) 0.2282 0.0028 0.5028 0.0011 1.373

Medication adherence (high)

β21(low) 29.29 1.103 405.4 3.383 92.26

β22 (medium) 3.393 0.05873 22.02 0.2993 13.16

Duration lived with DM (β8) 0.9582 <0.0001 0.0685 0.8298 1.099

Fasting blood sugar (β7) 1.012 <0.0001 0.0058 1.0020 1.025

Type of DM (type 2)

β9 (type 1) 5.677 0.0522 11.27 0.3278 27.67

DM complication (yes)

β6(no) 0.1876 <0.0001 0.1838 0.0214 0.671

Chronic illness other than DM (yes)

β5 (no) 2.012 0.0068 1.6850 0.4530 6.127

Hospital admission (yes)

β4(no) 0.2865 <0.0001 0.1746 0.0711 0.7318

Types of medication (oral)

β22 (insulin) 5.366 0.0457 16.69 0.7102 20.19

β23(both) 24.46 0.1659 81.47 15.20 49.37

DM: diabetes mellitus; HPD: highest posterior density; MC: Monte Carlo; AOR: adjusted odds ratio; SD: standard deviation.
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conducted in Peru (11.2%) [19] and the USA (8.3%) [7].
However, this result is lower than studies conducted in
Ethiopia (15.4 to 64.9%) [9–15], Tanzania (30%) [29],
Nigeria (30%) [30], Uganda (34.8%) [31], Sudan (44%)
[32], Pakistan (14.7%) [33], and Iran (71.8%) [8]. The pos-
sible explanation for these differences might be due to the
types of diagnostic tools used to assess depression and its
respective cut of value used to decide depression has
occurred.

Various studies have documented that factors associated
with depression among diabetes patients using the classical
logistic regression. Risk factors were age [10, 15, 34], gender
[14, 15, 35–38], marital status [15, 35, 37, 39], educational
status [34, 37, 40], hazardous drinking [38, 39], medication
adherence [13, 39], duration lived with DM [9, 14, 35], fast-
ing blood sugar [41], DM complication [10, 12, 14, 36, 37],
chronic illness other than DM [14, 34], and types of medica-
tion [34].

The present study also demonstrated factors associated
with depression among diabetes patients at AHMC using a
Bayesian logistic regression. Bayesian inference and frequen-
tist (classical) statistics results are tough to compare; this is
because they use different techniques with different tools
for decision making. In frequentist (classical) statistics, stan-
dard deviation and confidence interval are used to make deci-
sion, while in Bayesian statistics, credible interval is used.
However, findings from the Bayesian model are given prefer-
ence, because the technique is more robust and precise than
the traditional statistics.

The current study revealed that as fasting blood sugar
level increase by one unit, the odd of the depression will
increase by 1.20%. This finding can be explained by as
blood glucose level increases, the diabetes patients mani-
festing like polyuria (excessive urination), polydipsia
(excessive thirsty), polyphagia (excessive hunger), general
weakness, and sleeping disturbances [42], which may lead
to develop depression. This can also be defensible as those
who have higher blood glucose want more health care ser-
vices, are incapable to perform their daily activities, and
are incompetent to join in different activities, which may
lead to depression.

According to our study, the odds of depression among
diabetes patients who had no diabetic complication is
81.24% lower than their counterparts. The possible explana-
tion for this result might be, as diabetes patient develops
diabetic-related complication, they need a considerable
amount of time for healing, so they spend their times on
clinic visits, hospitalization, and frequent ulcer dressings.
The presence of a foot ulcer also creates anxiety due to a pos-
sibility of amputation.

The current study documented that low medication
adherents’ diabetes patients are 29.29 times more likely
to develop depression than high medication adherents.
The possible explanation might be good medications are
essential in sustaining the optimal level of fasting blood
sugar which reduces the chance of depression symptoms
among diabetes patients.

According to the present study, the odds of depression
is increased by 24.46 times among diabetes patients who

are taking both oral antidiabetic medication and insulin
than those who are taking only oral antidiabetic medica-
tion. This might be due to injection for insulin may cause
discomfort, and these group diabetic patients (both oral
antidiabetic medication and insulin) are more likely to
have poor glycemic control this might eventually lead to
develop depression symptoms.

The strength of the present study is using a Bayesian
approach rather than classical approach to identify factors
associated with depression among diabetes patients. This
Bayesian method performs better in the sense of yielding
larger coverage probabilities and smaller bias than the classic
maximum likelihood approach. It also combined the prior
information with present data.

However, this study has some limitations that should
be kept in mind when interpreting the results. This study
might be prone to social desirability bias since the data
were collected through face to face interview. Finally, the
study was conducted in a single hospital (AHMC) which
limits the generalizability of the finding in Ethiopia.

5. Conclusion

This study documented that the prevalence of depression
among diabetes patients in the catchment area of Adama
Hospital, Ethiopia, was found to be very low. Higher fast-
ing blood sugar level, diabetic complication, history of
hospital admission, low medication adherence, and taking
both insulin and oral antidiabetic medication were found
to be strong predictors of prevalence of depression among
diabetic patients. Based on the findings, we recommend
integrating screening and treating of depression; early
detection and management of diabetic complication and
giving counseling to improve medication adherence is an
effective approach for lowering the impact of depression
on diabetes patients.
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