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The mammalian orosomucoid-like gene family (ORMDL), containing ORMDL1, ORMDL2, and ORMDL3, is the important
regulator of sphingolipid metabolism, which is relevant to cell growth, proliferation, migration, and invasion. Since the role of
ORMDL1 in cancers remained unclear, the main purpose of our study was to explore the expression patterns and prognostic
values of ORMDL1 in different tumors, especially in cholangiocarcinoma (CHOL), lymphoid neoplasm diffuse large B cell
lymphoma (DLBCL), acute myeloid leukemia (LAML), and thymoma (THYM). Bioinformatics tools including GEPIA, CCLE,
LinkedOmics, cBioPortal, and TIMER databases were used. As a result, the expression levels of ORMDL1 in tumor tissues and
normal tissues varied in different cancers, especially significantly upregulated in CHOL, DLBCL, LAML, and THYM. Moreover,
ORMDL1 mRNA was also highly expressed in cell lines of DLBCL and LAML. Further studies showed that ORMDL1
overexpression was associated with poor prognosis in DLBCL, but not significant in CHOL, LAML, and THYM. Consistently,
there were genetic alterations of ORMDL1 in DLBCL, and patients with genetic alterations indicated worse survival.
Coexpressed genes and related biological events with ORMDL1 in DLBCL were found via LinkedOmics, Gene Ontology (GO),
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The relationship between ORMDL1 and cancer immune cells
was investigated, and ORMDL1 expression was positively correlated with infiltrating levels of B cells. In conclusion, ORMDL1 is
suggested to be a tumorigenic factor and considered as the potential therapeutic target and prognostic biomarker in DLBCL.

1. Introduction

The mammalian orosomucoid-like gene family (ORMDL),
including ORMDL1, ORMDL2, and ORMDL3, encodes
transmembrane proteins localized to the endoplasmic reticu-
lum [1–5]. ORMDLs are primarily involved in negative feed-
back regulation of sphingolipid metabolism, ceramide
synthesis, and unfolded protein response [3–10]. The full-
length human ORMDL1 cDNA was originally obtained after
screening a human retinal cDNA library and confirmed to be
located at chromosome 2q32 [1]. During the process of
sphingolipid biosynthesis, serine palmitoyltransferase (SPT)
catalyzed the critical rate-limiting step. Inhibition of
ORMDL1 led to enhanced SPT activity and increased sphin-
golipid levels [6]. In addition, the expression levels of
ORMDL1 were demonstrated to be significantly correlated
with familial Alzheimer’s disease-related presenilin (PS)
mutations, manifesting as elevated ORMDL1 and ORMDL2

levels due to PS deficiency. Silencing of ORMDLs sup-
pressed nicastrin maturation and γ-secretase function [2].
For ORMDL3, it was closely associated with asthma risk
in childhood [11, 12] and participated in cellular stress
response [13], lymphocyte activation [14], and eosinophil
trafficking [15].

As an important component of the cell membrane,
sphingolipids can regulate cell growth, proliferation, migra-
tion, invasion, and metastasis through cancer signaling
pathways, in addition to exerting barrier function and
maintaining membrane fluidity [16–18]. Since ORMDL1
was a regulator of sphingolipid levels in cells, we hypothe-
sized that ORMDL1 might play a role in the pathogenesis
and progression of tumors. Thus, our study shed light on
the specific role of ORMDL1 in different tumors via bioinfor-
matics analysis, particularly in cholangiocarcinoma (CHOL),
lymphoid neoplasm diffuse large B cell lymphoma (DLBCL),
acute myeloid leukemia (LAML), and thymoma (THYM).
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Figure 1: Continued.
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We emphatically investigated the expression level of
ORMDL1 in different types of cancers, the effect of ORMDL1
expression on patient prognosis, and the genetic alterations
and the potential interaction of ORMDL1 with related genes
especially in DLBCL.

2. Methods

2.1. GEPIA Dataset Analysis. Gene Expression Profiling
Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/
index.html) is an online database. As an interactive web,
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Figure 1: The expression levels ofORMDL1 in CHOL, DLBCL, LAML, and THYM (GEPIA). (a, b) The expression levels ofORMDL1 in pan-
cancer. (c, d) The expression levels of ORMDL1 in CHOL, DLBCL, LAML, and THYM. ∗P < 0:05. CHOL: cholangiocarcinoma; DLBCL:
lymphoid neoplasm diffuse large B cell lymphoma; LAML: acute myeloid leukemia; THYM: thymoma.
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GEPIA provides 9,736 tumors and 8,587 normal samples
from The Cancer Genome Atlas (TCGA) and the
Genotype-Tissue Expression (GTEx) projects for analyzing
the RNA sequencing expression data [19]. GEPIA was used
to analyze the differential expression of ORMDL1 between
normal tissues and tumor tissues in 33 different types of can-
cer. We compared the expression patterns of ORMDL1 in
four cancer types, including CHOL, DLBCL, LAML, and
THYM. Moreover, GEPIA also provided the function for
prognostic curve analysis and pathological stage evaluation.

2.2. CCLE Dataset Analysis. The Cancer Cell Line Encyclope-
dia (CCLE, http://www.broadinstitute.org/ccle/home) pro-
ject is a collaboration between the Broad Institute and the
Novartis Institutes for Biomedical Research and its Geno-
mics Institute of the Novartis Research Foundation. It can
be applied to conduct a detailed genetic and pharmacologic
characterization of a large panel of human cancer models,
develop integrated computational analyses that link distinct
pharmacologic vulnerabilities to genomic patterns, and
translate cell line integrative genomics into cancer patient
stratification. CCLE provides public access to genomic data,
analysis, and visualization for about 1,000 cell lines [20].
The expression of ORMDL1 was verified by the CCLE
dataset.

2.3. LinkedOmics Dataset Analysis. LinkedOmics (http://
www.linkedomics.org/login.php) provides a newly developed
platform for analyzing large-scale cancer omics data from
TCGA and Clinical Proteomic Tumor Analysis Consortium

(CPTAC) [21]. We used LinkedOmics to inquire into the
prognostic values of ORMDL1 expression in the four can-
cer types, including CHOL, DLBCL, LAML, and THYM.
The survival differences were visualized by Kaplan–Meier
plots. Furthermore, the correlation coefficient and coex-
pressed gene patterns were calculated according to the
online instruction.

2.4. cBioPortal Analysis. The cBioPortal database (http://
cbioportal.org) is an online database that converts complex
cancer genomic data from TCGA into well-understood
genetic, epigenetic, and proteomic data, including somatic
mutations, altered copy number, mRNA and miRNA expres-
sion, DNA methylation, and protein abundance data. It can
be used to explore genetic changes in tumor samples and
compare the effects of these changes on patient survival
[22]. In our study, 48 DLBCL samples (TCGA, Provisional)
with pathological reports were selected for further analysis
of ORMDL1 genetic alterations using cBioPortal. The muta-
tion plots were drawn to directly reflect all types of ORMDL1
genetic alterations. Additionally, Kaplan–Meier survival
curves were constructed to analyze the influence of ORMDL1
genetic alterations on the DLBCL patient survival.

2.5. TIMER Analysis. Tumor Immune Estimation Resource
(TIMER) is a comprehensive database for systematical anal-
ysis of the abundances of six immune infiltrates (B cells, CD4
+ T cells, CD8+ T cells, neutrophils, macrophages, and den-
dritic cells) in diverse cancer types. The function of the gene
module is to explore the correlation between gene expression

mRNA expression (RNAseq): ORMDL 1
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Figure 2: The expression of ORMDL1 in cell lines of different cancer types (CCLE).
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Figure 3: Continued.
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and abundance of immune infiltrates [23]. In this study, the
relationship between ORMDL1 expression and the six
immune cells was estimated by TIMER in DLBCL.

2.6. Statistical Analysis. The difference in ORMDL1 expres-
sion between tumor tissues and normal tissues was com-
pared with an independent t-test. ORMDL1 expression in

different clinical stages was evaluated using one-way
ANOVA. The relationship between ORMDL1 expression
and patient prognosis was detected using the Kaplan–
Meier survival analysis and log-rank test. The correlation
between ORMDL1 and related genes was analyzed using
the Pearson correlation test. P < 0:05 indicated statistical
significance.
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Figure 3: The prognostic value comparing the high and low expression of ORMDL1 in CHOL, LAML, THYM, and DLBCL (LinkedOmics
and shinyGEO). (a–d) Overall survival curves of CHOL, LAML, THYM, and DLBCL, analyzed by LinkedOmics. (e, f) Overall survival curves
of DLBCL, analyzed by shinyGEO. CHOL: cholangiocarcinoma; LAML: acute myeloid leukemia; THYM: thymoma; DLBCL: lymphoid
neoplasm diffuse large B cell lymphoma.
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3. Results

3.1. Expression Levels of ORMDL1 in Different Types of
Human Cancers. To determine differences of ORMDL1
expression between tumor samples and normal samples,
the ORMDL1 mRNA levels of different tumor samples and
normal samples were analyzed using GEPIA. The differential
expression of ORMDL1 in tumor samples and normal sam-
ples from all TCGA cancer types is listed in Figures 1(a)
and 1(b). In particular, the results indicated that ORMDL1
expression levels were significantly upregulated in CHOL,
DLBCL, LAML, and THYM compared to their correspond-
ing normal tissues (Figures 1(c) and 1(d)).

3.2. ORMDL1 mRNA Expression in Different Kinds of Cancer
Cell Lines. By collecting genetic information from CCLE,
investigation of ORMDL1 expression was extended to vari-
ous cancer cell lines. As a result, ORMDL1mRNA was found
to be highly expressed in cell lines of LAML and DLBCL,
which ranked 1st and 11th among 40 kinds of cancers
(Figure 2).

3.3. The Prognostic Influence of ORMDL1 on CHOL, DLBCL,
LAML, and THYM. We further explored the influence of
ORMDL1 expression levels on the survival of patients in four
cancer types, including CHOL, DLBCL, LAML, and THYM.
The Kaplan–Meier curves and log-rank test analysis revealed
that increased ORMDL1 was associated with poor overall
survival (OS) in DLBCL significantly, but not in CHOL,
LAML, and THYM by LinkedOmics (Figures 3(a)–3(d)).

Also, similar results were predicted in GSE10846 and
GSE53786 using shinyGEO online tool, which could analyze
patient survival from the GEO database, suggesting that
DLBCL patients with higher ORMDL1 levels tended to have
lower OS (Figures 3(e) and 3(f)).

3.4. Genetic Alterations of ORMDL1 in DLBCL. Since
ORMDL1 might play a role in DLBCL, genetic alterations
of ORMDL1 in DLBCL were determined using cBioPortal
database analysis. ORMDL1 mutations included gene gain
and shallow deletion from 48 DLBCL patients (TCGA, Provi-
sional) (Figure 4(a)). The relationship between ORMDL1
genetic alterations and DLBCL patient survival was further
evaluated. The Kaplan–Meier survival analysis showed that
cases with genetic alterations were associated with worse
prognosis (Figure 4(b)).

3.5. Coexpressed Genes and Functional Analysis of ORMDL1
in DLBCL. To figure out the potential interaction of
ORMDL1 with other genes in DLBCL, correlation analysis
between ORMDL1 and various genes and markers was per-
formed via LinkedOmics. As shown in Figure 5, the top 50
significant genes positively and negatively correlated with
ORMDL1were shown in the heat map. A detailed description
of the coexpression genes is listed in Table 1. Furthermore,
Gene Ontology (GO) analysis in biological process by GSEA
indicated that ORMDL1 coexpressed genes mainly partici-
pated in DNA damage response, nucleus localization, rRNA
metabolic process, and cell cycle checkpoint (Figure 6(a)).
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Figure 5: Coexpressed gene patterns of ORMDL1 in DLBCL (LinkedOmics). DLBCL: lymphoid neoplasm diffuse large B cell lymphoma.
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pathway analysis showed enrichment in cell cycle, ABC
transporters, oxidative phosphorylation, and DNA replica-
tion (Figure 6(b)).

3.6. ORMDL1 Is Correlated with Immune Infiltration Level in
DLBCL. To understand the relationship between ORMDL1
expression and immune signatures, we analyzed the six
immune marker genes in DLBCL, including B cells, CD8+
T cells, CD4+ T cells, macrophages, neutrophils, and den-
dritic cells. The results revealed that the expression level of
ORMDL1 was significantly correlated with the infiltrating
level of B cells in DLBCL (Figure 7(a)). Moreover, the gene
gain mutation of ORMDL1 promoted the B cell infiltration
in DLBCL (Figure 7(b)).

4. Discussion

Actually, the ORMDL gene family is a group of evolutionary
conserved gene sequence found in Drosophila, yeast, and
mammals. Among them, Drosophila only has a single-copy
gene, yeast has two homologous genes of Orm1 and Orm2,
and mammalian cells contain three homologous genes with
ORMDL1, ORMDL2, and ORMDL3 [1]. The three human
ORMDL isoforms are located on chromosomes 2q32,
12q13, and 17q21, respectively, with approximately 80%
identical amino acid, proving that they may have some com-
mon biological functions [1, 12, 24]. The most important
function of ORMDLs is to regulate sphingolipid biosynthesis
and maintain ceramide homeostasis [3–10, 25–28], where
SPT is the rate-limiting enzyme. In yeast, the Orm/SPT com-
pound regulates sphingolipid expression levels by a negative
feedback response. When the sphingolipid concentration is
high, the Orm protein binds to SPT to inhibit SPT activity
and reduce the further synthesis of sphingolipid. When the
sphingolipid concentration is low, the N-terminal region
phosphorylation of Orm protein causes its separation from

SPT, which eliminates the repression of SPT and promotes
sphingolipid biosynthesis [3, 4, 24, 25]. However, the regula-
tion mechanism similar to that of yeast cannot be found in
mammalian ORMDLs since human ORMDL proteins lack
N-terminal phosphorylation sites [1, 4]. The study by Siow
and Wattenberg demonstrated the feedback response of
ORMDL-mediated sphingolipid synthesis [10]. The phe-
nomenon that inhibition of SPT activity caused by permeable
cells treated with C6 ceramide suggested ORMDLs might
have a structural domain interacting with C6 ceramide,
which was further involved in the regulation of ORMDL-
dependent SPT activity. In addition, Wang et al. explored
the relationship between ORMDL1, SPT, and sphingomyelin
based on a free cholesterol- (FC-) loading microenvironment
in human atherosclerotic macrophages [7, 9]. According to
their research, the induction of endoplasmic reticulum (ER)
stress and autophagy in FC-loaded macrophages led to
ORMDL1 shifting from ER to autophagosome, followed by
the dissociation of SPT, which was originally bound to
ORMDL1. Then, the activation of SPT resulted in increased
sphingomyelin synthesis, excessive FC buffering, and
reduced cytotoxicity.

Dysregulation of sphingolipid metabolism in cancers has
been described in several studies [29–35]. Typical sphingoli-
pid metabolites such as ceramide and sphingosine could be
used as bioactive signaling molecules, suppressing cell
growth and promoting apoptosis [31]. Phosphorylated
metabolites such as sphingosine-1-phosphate (S1P) are
related with survival, proliferation, and migration of cancer
cells [36, 37]. The metabolism of bioactive sphingolipids in
mammals is regulated by around 40 enzymes, which play
key roles in cancer signaling pathways and therapeutic tar-
gets [29, 31, 32]. Consistently, sphingolipid enzymes and
metabolites were abnormally expressed in a variety of can-
cers. For example, ceramide levels were upregulated in head
and neck cancer and breast cancer [38, 39], while they were
downregulated in ovarian cancer and colon cancer [40, 41].
Moreover, sphingosine was highly expressed in endometrial
cancer [42]; S1P was overexpressed in glioblastoma [43],
and SPT was lowly expressed in colon cancer [44]. Therefore,
it was reconfirmed that metabolic disorders of sphingolipids
interacted closely with tumorigenesis, tumor development,
and chemoresistance of cancer patients.

As described above, ORMDLs act as critical factors in
maintaining the balance of cellular sphingolipid levels. How-
ever, it remains unclear whether ORMDLs are involved in
cancer networks associated with sphingolipid metabolism.
In our study, we first preliminarily analyzed ORMDL1
expression in tumor tissues and normal tissues using the
GEPIA database and found that ORMDL1 was expressed dif-
ferently in diverse cancer tissues and adjacent tissues, espe-
cially highly expressed in CHOL, DLBCL, LAML, and
THYM. Second, high expression of ORMDL1 in cell lines of
DLBCL and LAML was verified by the CCLE database, which
was consistent with the results in the corresponding tumor
samples. To further elucidate the prognostic effect of
ORMDL1 expression on CHOL, DLBCL, LAML, and THYM,
the Kaplan–Meier survival curves were generated by GEPIA.
It revealed that ORMDL1 overexpression was significantly

Table 1: Correlation analysis between ORMDL1 and related genes
in DLBCL by LinkedOmics.

Gene names
DLBCL

Pearson P value

RBM6 3:736e − 01 8:902e − 03
ELMOD3 5:138e − 01 1:876e − 04
ANKRD13D 4:768e − 01 6:130e − 04
C1orf63 6:451e − 01 7:428e − 07
SFRS18 4:299e − 01 2:747e − 03
STX16 4:791e − 01 5:704e − 04
SUPT7L 3:958e − 01 5:358e − 03
DCUN1D2 3:992e − 01 4:943e − 03
POLA2 −4:732e − 01 6:819e − 04
SFRS17A 4:085e − 01 3:944e − 03
TMC8 4:460e − 01 1:486e − 03
SORBS1 4:469e − 01 1:452e − 03
PPWD1 4:299e − 01 2:294e − 03
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Figure 6: Continued.
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Figure 6: Functional analysis of ORMDL1 in DLBCL. (a) Gene Ontology (GO) analysis indicated ORMDL1mainly participated in biological
events like DNA damage response, nucleus localization, rRNAmetabolic process, and cell cycle checkpoint. (b) Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis showed ORMDL1 enriched in cell cycle, ABC transporters, oxidative phosphorylation, and DNA
replication. DLBCL: lymphoid neoplasm diffuse large B cell lymphoma.
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associated with poor survival of DLBCL, indicatingORMDL1
might facilitate tumorigenesis and recurrence in DLBCL. The
results of GSE10846 and GSE53786 further confirmed the
results that high expression of ORMDL1 indicated poor
prognosis in DLBCL patients. In addition, the cBioPortal
database was used as a powerful tool for discovering
ORMDL1 genetic alterations in DLBCL, since genetic alter-
ation was considered as an important factor in cancer
development [45, 46]. Expectedly, increased gene copies
and slight gene deletion existed in DLBCL, which partly
explained the higher expression of ORMDL1 in DLBCL
compared with normal samples. The concomitant result
also showed cases with ORMDL1 genetic alterations had
worse prognosis. Finally, through LinkedOmics and Pear-
son correlation test, genes that positively and negatively
interacted with ORMDL1 were found and functional anal-
ysis in GO and KEGG pathways was further explored,
which might be jointly involved in the ORMDL1-related
cancer signaling pathways.

There were still some limitations to be solved. Firstly,
differences of sample sizes among multidatabases might
cause some bias. Secondly, this study only analyzed
transcriptional levels of ORMDL1 in cancers, without its
posttranslational levels. Finally, molecular mechanism
investigation should be carried out to further explore can-

cer pathways associated with ORMDL1 and sphingolipid
metabolism.

5. Conclusions

This was the initial study comprehensively analyzing the
expression patterns and prognostic values ofORMDL1 in dif-
ferent tumors. ORMDL1 is promising to be the potential
therapeutic target and prognostic marker in DLBCL.
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